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Globular realization and cubical
underlying homotopy type of time flow of

process algebra

Philippe Gaucher

Abstract. We construct a small realization as flow of every precubical
set (modeling for example a process algebra). The realization is small
in the sense that the construction does not make use of any cofibrant
replacement functor and of any transfinite construction. In particular, if
the precubical set is finite, then the corresponding flow has a finite glob-
ular decomposition. Two applications are given. The first one presents
a realization functor from precubical sets to globular complexes which is
characterized up to a natural S-homotopy. The second one proves that,
for such flows, the underlying homotopy type is naturally isomorphic to
the homotopy type of the standard cubical complex associated with the
precubical set.
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1. Introduction

1.1. Presentation of the results. Various topological models of concur-
rency [Gou03] have been introduced so far. Local pospaces [FGR98] are
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topological spaces equipped with a local partial ordering representing a time
flow. D-spaces [Gra03] are topological spaces equipped with a family of con-
tinuous paths playing the role of execution paths. A d-space is not necessar-
ily locally partially ordered but their category is complete and cocomplete.
This is an advantage of this model on the one of local pospaces. A close
framework is the full subcategory of d-spaces which are colimit-generated
by a small full subcategory of cubes [FR07]. The interest of the latter
category is that it is locally presentable, and that it is therefore possible
to construct directed coverings using strict factorization system techniques.
Streams [Kri07] are locally preordered topological spaces. The category
of streams is also complete and cocomplete. Every d-space and every lo-
cal pospace can be viewed as a stream. Finally, the globular complexes
[GG03] [Gau05a] are topological spaces equipped with a globular decom-
position which is the directed analogue of the cellular decomposition of a
CW-complex. The globular complexes can be viewed as a subcategory of
the categories of local po-spaces, of d-spaces, and of streams. Nevertheless,
the category of globular complexes is big enough to contain all examples
coming from concurrency [GG03]. All these models start from a topological
space representing the underlying state space of the concurrent system. And
an additional structure on this topological space models time irreversibility.

In the setting of flows introduced in [Gau03], the nonconstant execu-
tion paths are viewed as objects themselves, not as paths of an underlying
topological space. The topology of the path space models concurrency and
nonconstant execution paths can be composed. So a flow is, by definition,
a small category without identity maps enriched over compactly generated
topological spaces. The main motivation for introducing this category is the
study of the branching and merging homology theories [Gau05b]. Indeed,
they impose the functoriality of the mapping associating an object with its
set of nonconstant execution paths1 and also the possibility of composing
cubes.2 None of the other topological models of concurrent systems intro-
duced so far (d-space, local pospace, stream, d-space colimit-generated by
cubes) has the first feature since the associated categories contain too many
morphisms. More precisely, they contain morphisms contracting noncon-
stant execution paths. Of course, it is possible to remove the “contracting
morphisms” from the categories of d-spaces, local pospaces, streams and
d-spaces colimit-generated by cubes. But these models then lose all their
interesting properties. These homology theories are expected to be impor-
tant in the study of higher dimensional bisimulation between concurrent
processes by algebraic invariants. Indeed, all these notions are related to
the structure of the branching and merging areas of execution paths of a
time flow.

1See [Gau03] Section 20 for further explanations.
2See the introduction and especially Figure 3 of [Gau01] for further explanations.
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It is possible to realize every process algebra [WN95] as a precubical set,
and as a flow [Gau07c] using a realization functor | − |flow from precubical
sets to flows. This realization functor is complicated to handle since its
construction requires the use of the cofibrant replacement functor of the
category of flows which is a transfinite construction of length 2ℵ0 ([Gau03]
Proposition 11.5). The main result of the paper is

Theorem (Theorem 4.2.4 and Corollary 4.2.5). There exists a small realiza-
tion functor gl(−) from precubical sets to flows which is colimit-preserving.
It is small in the sense that the values on cubes are given by an ordinary
nontransfinite induction. It is a realization functor in the sense that it is
equivalent to | − |flow up to a natural S-homotopy equivalence of flows.

Two applications of this result are given in this paper. Other applications
will be given in future papers.

The lack of a real underlying topological space in the setting of flows
makes some situations very difficult to treat. The first application is:

Theorem (Theorem 5.4.3). The realization functor | − |flow : �opSet →
flow from the category of precubical sets to that of flows defined in [Gau07c]
factors up to a natural S-homotopy equivalence as a composite

�opSet
gltop−→ glTop cat−→ flow

where glTop is the category of globular complexes and where cat : glTop→
flow is the realization functor from globular complexes to flows defined in
[Gau05a]. The functor gltop is unique up to a natural S-homotopy equiva-
lence of globular complexes.

A notion of underlying homotopy type of flow does exist anyway. The
underlying state space of a flow exists, and is unique up to homotopy, not
up to homeomorphism [Gau05a]. The fundamental tool to carry out the
construction is also the notion of globular complex. This definition enabled
us to prove the invariance of the underlying homotopy type of a flow by
refinement of observation in [Gau06b]. As a second application of the main
result of the paper, or rather, as an application of the first application,
the following theorem proposes a simplification of the construction of the
underlying homotopy type functor:

Theorem (Theorem 6.2.1). Let K be a precubical set. The underlying
homotopy type of the flow |K|flow associated with the precubical set K is
naturally isomorphic to the homotopy type of the standard cubical complex
|K|space associated with K: i.e., the functor | − |space is the unique colimit-
preserving functor from precubical sets to topological spaces associating the
n-cube with the topological n-cube [0, 1]n for all n � 0.

This paper can be read as a sequel of the papers [Gau05a] and [Gau06b]
which study the underlying homotopy type of a flow. Indeed, several results
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Table 1. Overview of the functors of the paper:

�opSet
gltop(−) ��

|−|flow

��

gl(−)

��

|−|space

��

glTop

γglTop

��

|−|
���������������������

cat �� flow

γflow

��

��

����
Ω=|−|◦cat−1◦γflow

��

top

γtop

��
Ho(top) glTop[SH−1] ∼= glTop/∼S|−|

��

cat

		
� Ho(flow)

cat
−1





γtop, γglTop, γflow Canonical localization functors
| − |space Cubical complex associated with a precubical set
| − |flow Realization functor from precubical sets to flows
| − | Underlying topological space functor
gl(−) Small realization functor from precubical sets to flows

gltop(−) Small realization functor from precubical sets to glob-
ular complexes

cat and cat−1 Equivalence between globular complexes and flows
Ω Underlying homotopy type functor

of [Gau05a] and [Gau06b] are used in this work. It can also be read as a
continuation of [Gau07c] which initializes the study of flows modeling process
algebras. This work is in fact a preparatory work for the study of process
algebras up to homotopy.

1.2. Outline of the paper. Section 2 is devoted to the preparatory proofs
of some facts about cocubical objects in a simplicial model category. The
main Theorem 2.3.3 and Theorem 2.3.4 are used in the proofs of Theo-
rem 4.2.4, of Corollary 4.2.5 and of Theorem 6.2.1. Section 3 constructs the
simplicial structure of the model category of flows. This structure is neces-
sary for the application of Theorem 2.3.3 and Theorem 2.3.4 in the proofs
of Theorem 4.2.4 and Corollary 4.2.5. This result was not yet available in a



Globular realization 105

published work. Section 4 constructs the small realization functor from pre-
cubical sets to flows. Section 5 describes the first application, and Section 6
the second application of the main result of the paper.

1.3. Prerequisites and notations. It is required some familiarity with
model category techniques [Hov99] [Hir03], with category theory [ML98]
[Bor94] and with simplicial techniques [GJ99]. In a locally small category C,
the set of objects fromX to Y is denoted by C(X,Y ). The notation �means
weak equivalence or equivalence of categories, the notation ∼= means isomor-
phism, the notation � � �� means cofibration and the notation �� �� means
fibration. Let C be a cocomplete category. The class of morphisms of C that
are transfinite compositions of pushouts of elements of a set of morphisms
K is denoted by cell(K). An element of cell(K) is called a relative K-cell
complex. The category of sets is denoted by Set. The cofibrant replacement
functor is denoted by (−)cof . The function complex of a simplicial model
category is denoted by Map(−,−). The initial object is denoted by ∅. The
terminal object is denoted by 1. In general, the category of functors from a
category B to a categoryM is denoted byMB. Note that the categoryMB
is locally small if and only if the category B is essentially small [FS95]. The
category of simplicial sets is denoted by ΔopSet. Δ is the standard cate-
gory of simplices: the objects are the posets [n] = {0 < 1 < · · · < n} and
the maps are the nondecreasing maps (beware of the fact that the notation
[n] has a second meaning in this paper). Δ[n] = Δ(−, [n]) is the standard
n-simplex.

2. About cocubical objects in a simplicial model
category

2.1. Precubical set. A precubical set K consists of a family (Kn)n�0 of
sets and of set maps ∂αi : Kn → Kn−1 with n � 1, 1 � i � n and α ∈ {0, 1}
satisfying the cubical relations ∂αi ∂

β
j = ∂βj−1∂

α
i for any α, β ∈ {0, 1} and for

i < j [BH81]. An element of Kn is called a n-cube.
A good reference for presheaves is [MLM94]. A precubical set can be

viewed as a presheaf over a small category denoted by � 3 with set of objects
{[n], n ∈ N}, generated by the morphisms δαi : [n−1]→ [n] for 1 � i � n and
α ∈ {0, 1} and satisfying the cocubical relations δβj ◦ δαi = δαi ◦ δβj−1 for i < j

and for all (α, β) ∈ {0, 1}2. With the conventions [0] = {()}, [n] = {0, 1}n
for n � 1 and {0, 1}0 = {()}, the small category � is the subcategory of the
category of sets generated by the set maps δαi : [n − 1] → [n] for 1 � i � n
and α ∈ {0, 1} defined by

δαi (ε1, . . . , εn−1) = (ε1, . . . , εi−1, α, εi, . . . , εn−1).

The category of precubical sets is denoted by �opSet.

3All the facts about the small category � recalled here are used later in the paper.
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Let �[n] := �(−, [n]). This defines a functor, also denoted by �, from �
to �opSet. By Yoneda’s lemma, one has the natural bijection of sets

�opSet(�[n],K) ∼= Kn

for every precubical set K. The boundary of �[n] is the precubical set
denoted by ∂�[n] defined by removing the interior of �[n]: (∂�[n])k :=
(�[n])k for k < n and (∂�[n])k = ∅ for k � n. In particular, one has
∂�[0] = ∅.

Let K be a precubical set. Let K�n denote the precubical set obtained
from K by keeping the p-dimensional cubes of K only for p � n. In particu-
lar, K�0 = K0. Let �n ⊂ � be the full subcategory of � whose set of objects
is {[k], k � n}. A presheaf over �n is called a n-dimensional precubical set.
The category �op

n Set will be identified with the full subcategory of �opSet
of precubical sets K such that the inclusion K�n ⊂ K is an isomorphism of
�opSet.

Let K be a precubical set. The category �↓K of cubes of K is the small
category defined by the pullback of categories

�↓K ��

��

�opSet↓K

��
� �� �opSet.

In other terms, an object of �↓K is a morphism �[m]→ K and a morphism
of �↓K is a commutative diagram

�[m]

����
��

��
��

�� �[n]

����
��

��
��

K.

2.2. The category of all small diagrams over a cocomplete cate-
gory. Let DM be the category of all small diagrams of objects of a cocom-
plete category M. The objects are the functors D : B → M where B is
a small category. A morphism from a diagram D : B → M to a diagram
E : C → M is a functor φ : B → C together with a natural transformation
μ : D → E ◦ φ.

Proposition 2.2.1. LetM be a cocomplete category. The colimit construc-
tion D 	→ lim−→D induces a functor from DM to M.

Proof. A morphism of diagrams (φ, μ) : D → E gives rise to a morphism
D → E ◦ φ in MC . For every object W of M, one has the natural set map
(where DiagB is the constant diagram functor over B and where DiagC is
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the constant diagram functor over C):
M(lim−→E,W )
∼=MC(E,DiagC(W )) by adjunction

−→MB(E ◦ φ,DiagC(W ) ◦ φ)

=MB(E ◦ φ,DiagB(W )) since DiagC(W ) ◦ φ = DiagB(W )

−→MB(D,DiagB(W ))
∼=M(lim−→D,W ) by adjunction.

One obtains a map lim−→D −→ lim−→E by setting W = lim−→E. So the colimit
construction induces a functor from DM to M. �

2.3. Cocubical objects in a simplicial model category. Let us con-
sider a simplicial model categoryM. A cocubical object (resp. of dimension
n � 0) is a functor from � (resp. �n) to M.

Let X be a cocubical object of M. Let X̃K be the functor from the
category of cubes �↓K of a precubical set K to M defined on objects by

X̃K(�[n]→ K) = X([n])

and on morphisms by

X̃K

⎛
⎜⎝ �[m]

�[δ]−→ �[n]
↓ ↓
K = K

⎞
⎟⎠ = X(δ).

The mapping X 	→ X̃ induces a functor from M� to DM�opSet. Let (̂−)
be the composite functor

(̂−) :M�
g(−) �� DM�opSet

lim−→ ��M�opSet

in which the right-hand functor is the functor of Proposition 2.2.1. So one
has

X̂(K) = lim−→
�[n]→K

X([n]) = lim−→�↓K
X̃K .

The category � has a structure of a direct Reedy category with the de-
gree function d([n]) = n for all n � 0. Let us equip the category M�

of cocubical objects ofM with its Reedy model category structure ([Hir03]
Theorem 15.3.4). The following proposition describes the Reedy cofibrations
and the Reedy fibrations of cocubical objects.

Proposition 2.3.1. Let M be a model category. Then:
(1) The Reedy fibrations of cocubical objects are the objectwise fibrations.
(2) A cocubical object X of M is Reedy fibrant if and only if for every

n � 0, X([n]) is fibrant.
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(3) A cocubical object X is Reedy cofibrant if and only if for any n � 0,
the map X̂(∂�[n] ⊂ �[n]) is a cofibration of M.

Proof. A Reedy fibration ofM� is by definition a map of cocubical objects
X → Y such that for every object [n] of �, the map

X([n])→M[n]X ×M[n]Y Y ([n])

is a fibration ofM where M[n]X (resp. M[n]Y ) is the matching object of X
(resp. of Y ) at [n]. These matching objects are equal to the terminal object
1 of M since the Reedy category � is direct. So the Reedy fibrations are
the objectwise fibrations. Hence the first assertion.

A cocubical object X is therefore Reedy fibrant if and only if for every
object [n] of �, the map X([n]) → 1 is a fibration. Hence the second
assertion.

A Reedy cofibration of M� is by definition a map of cocubical objects
X → Y such that for every object [n] of �, the map

L[n]Y 
L[n]X X([n])→ Y ([n])

is a cofibration of M where L[n]X (resp. L[n]Y ) is the matching object of
X (resp. of Y ) at [n]. The latching category at α = [n], usually denoted by
∂(�↓α), is by definition the full subcategory of the category �↓α of cubes of
�[n] containing the maps �[m] → �[n] different from the identity of �[n].
And the latching object of X at α is by definition

L[n]X ∼= lim−→
∂(�↓α)

X(�[m]) ∼= X̂(∂�[n]).

Hence the third assertion. �
Proposition 2.3.2. The composite functor

(̂−) :M� g(−)−→ DM�opSet
lim−→−→M�opSet

induces an equivalence of categories

M� �M�opSet
lim−→

where M�opSet
lim−→ is the category of colimit-preserving functors from �opSet

to M.

Proof. Consider the functor F :M�opSet
lim−→ →M� defined by F (Z) = Z ◦�.

Then for every cocubical object X ofM, one has the natural isomorphisms
ofM

F (X̂)([n]) ∼= X̂(�[n]) ∼= lim−→
�[m]→�[n]

X([m]) ∼= X([n])

and, since Z is colimit-preserving,

F̂ (Z)(K) ∼= lim−→
�[n]→K

Z(�[n]) ∼= Z(K). �
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By [Hir03] Theorem 15.3.4 again, the Reedy model structure of M� is
simplicial with the tensor product and cotensor product of a cocubical object
X by a simplicial set K defined by the composites X ⊗K := (− ⊗K) ◦X
and XK := (−)K ◦X.

Theorem 2.3.3. Let M be a simplicial model category. Let I, X and Y
be three cocubical objects of M. Let pX : X → I and pY : Y → I be
two objectwise trivial fibrations of cocubical objects of M. Assume that for
every n � 0, the maps X̂(∂�[n]) → X̂(�[n]) and Ŷ (∂�[n]) → Ŷ (�[n]) are
cofibrations of M and I([n]) is fibrant. Then:

• There exists a natural transformation from X̂ to Ŷ over Î, i.e., a map
X̂ → Ŷ such that the following diagram commutes:

X̂

cpX �
��

��
��

�� Ŷ

cpY����
��

��
�

Î .

• Take two natural transformations μ̂ : X̂ → Ŷ and ν̂ : X̂ → Ŷ over
Î. Then there exists a simplicial homotopy between μ̂(K) and ν̂(K)
which is natural with respect to K.
• For any natural transformation μ̂ : X̂ → Ŷ over Î and any natural

transformation ν̂ : Ŷ → X̂ over Î, the map μ̂(K) ◦ ν̂(K) is naturally
simplicially homotopy equivalent to IdbY (K) and the map ν̂(K)◦μ̂(K) is
naturally simplicially homotopy equivalent to Id bX(K)

, natural meaning
natural with respect to K.

Proof. The cocubical object X is Reedy cofibrant by Proposition 2.3.1.
The map pY is a trivial Reedy fibration by Proposition 2.3.1 as well. Let
A→ B be a cofibration of simplicial sets. Consider a commutative diagram
of simplicial sets:

A ��

��

Map(X,Y )

��
B ��

k

���
�

�
�

�
Map(X, I)

where the map (pY )∗ : Map(X,Y )→ Map(X, I) is induced by the composi-
tion by pY . By adjunction, the lift k exists if and only if the lift k′ exists in
the commutative diagram of cocubical objects of M

X ⊗A ��

��

Y

��
X ⊗B ��

k′
���

�
�

�
�

I.

The map X ⊗A→ X ⊗B is the pushout product of the Reedy cofibration
∅ → X by the cofibration of simplicial sets A → B, and therefore is a
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Reedy cofibration. Hence the existence of k′ and k. So the simplicial map
(pY )∗ : Map(X,Y )→ Map(X, I) is a trivial fibration of simplicial sets. Let
F be the fibre over pX of the simplicial map (pY )∗ : Map(X,Y )→ Map(X, I)
defined by the pullback diagram of simplicial sets:

F ��

�
����

Map(X,Y )

�
����

Δ[0]
pX �� Map(X, I).

Since the pullback of a trivial fibration is a trivial fibration, the map F →
Δ[0] is a trivial fibration. The lift 
 in the commutative diagram of simplicial
sets

∅ ��
� �

��

F

�
����

Δ[0]

�
��	

	
	

	
	

Δ[0]

gives 
(Id[0]) ∈ F0 ⊂ Map(X,Y )0 = M�(X,Y ). By definition, 
(Id[0]) :
X → Y is a morphism of cocubical objects over I. Hence a natural trans-
formation 
̂(Id[0]) : X̂ → Ŷ over Î and the first assertion.

Take two natural transformations μ̂ and ν̂ from X̂ to Ŷ over Î . By
Proposition 2.3.2, one can suppose that they come from two morphisms of
cocubical objects μ and ν from X to Y over I. One obtains the commutative
diagram of simplicial sets:

Δ[0] 
Δ[0]� �

��

(μ,ν) �� F

�
����

Δ[1] ��

��








Δ[0].

Thus, there exists a simplicial path Δ[1]→ F ⊂ Map(X,Y ) between μ and
ν, i.e., by adjunction a morphism of cocubical objects H : X ⊗ Δ[1] → Y
such that the two natural transformations X ⇒ X ⊗Δ[1]→ Y are μ and ν,
i.e., H is a simplicial homotopy between μ and ν. One obtains a simplicial
homotopy H̃K ∈ Map(X̃K , ỸK)1 between μ̃K and ν̃K .4 Since there is an
isomorphism

lim−→(X̃K ⊗Δ[1]) ∼= (lim−→ X̃K)⊗Δ[1]

because the functor −⊗Δ[1] is colimit-preserving, one obtains a simplicial
homotopy Ĥ(K) ∈ Map(X̂(K), Ŷ (K))1 between μ̂(K) and ν̂(K) which is
natural with respect to K. Hence the second assertion.

4We are working here in the simplicial model category of functors from �↓K to M
which is also equipped with a Reedy structure by setting d(�[n] → K) = n.



Globular realization 111

The third assertion is a consequence of the second assertion by noticing
that Id bX is a natural transformation from X̂ to itself over Î and that IdbY is
a natural transformation from Ŷ to itself over Î. �

Theorem 2.3.4. Let M be a simplicial model category. Let n � 0. Let I,
X and Y be three cocubical objects of M of dimension n. Let pX : X → I
and pY : Y → I be two objectwise trivial fibrations of cocubical objects of
M. Assume that for every 0 � p � n, the maps X̂(∂�[p]) → X̂(�[p]) and
Ŷ (∂�[p])→ Ŷ (�[p]) are cofibrations of M and I([p]) is fibrant. Then:

• There exists a natural transformation from X̂ to Ŷ over Î.
• Take two natural transformations μ̂ : X̂ → Ŷ and ν̂ : X̂ → Ŷ over
Î. Then there exists a simplicial homotopy between μ̂(K) and ν̂(K)
which is natural with respect to K.
• For any natural transformation μ̂ : X̂ → Ŷ over Î and any natural

transformation ν̂ : Ŷ → X̂ over Î, the map μ̂(K) ◦ ν̂(K) is naturally
simplicially homotopy equivalent to IdbY (K) and the map ν̂(K)◦μ̂(K) is
naturally simplicially homotopy equivalent to Id bX(K)

, natural meaning
natural with respect to the precubical set K of dimension n.

Proof. Use the Reedy structure of �n and the Reedy model structure of
M�n in the proof of Theorem 2.3.3. �

3. The weak S-homotopy model category of flows
is simplicial

The goal of this section is to prove that the weak S-homotopy model
category of flow is simplicial (Theorem 3.3.15).

3.1. Topological space. All topological spaces are compactly generated,
i.e., are weak Hausdorff k-spaces. Further details about these topological
spaces are available in [Bro88] [May99], the appendix of [Lew78] and also
the preliminaries of [Gau03]. All compact spaces are Hausdorff. The cate-
gory of compactly generated topological spaces together with the continuous
maps is denoted by top. The category top is equipped with the usual
model structure having the weak homotopy equivalences as weak equiva-
lences and having the Serre fibrations as fibrations. This model structure
is simplicial and any topological space is fibrant. The homotopy category,
i.e., the localization of top by the weak homotopy equivalences, is denoted
by Ho(top). The functor γtop : top → Ho(top) is the canonical functor
which is the identity on objects. The set of continuous maps top(X,Y )
from X to Y equipped with the Kelleyfication of the compact-open topol-
ogy is denoted by TOP(X,Y). The latter topological space is the internal
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hom of the cartesian closed category top. So one has the natural home-
omorphism TOP(X × Y,Z) ∼= TOP(X,TOP(Y,Z)). Moreover the co-
variant functor TOP(X,−) : top → top and the contravariant functor
TOP(−,X) : topop → top preserve limits [Kel05].

3.2. Flow. A flow X is a small category without identity maps enriched
over the category of compactly generated topological spaces. The set of
objects is denoted by X0. The space of morphisms from α to β is denoted
by Pα,βX.5 A morphism of flows f : X → Y is a set map f0 : X0 → Y 0

together with a continuous map Pf : PX → PY preserving the structure.
The corresponding category is denoted by flow. If for all α ∈ X0, the space
Pα,αX is empty, then X is called a loopless flow. The composition law of a
flow is denoted by ∗.

Any poset P , and in particular any set viewed as a trivial poset (x � y
if and only if x = y), can be viewed as a loopless flow with a nonidentity
morphism from α to β if and only if α < β. This yields a functor from the
category of posets with strictly increasing maps to that of flows.

Let Z be a topological space. The flow Glob(Z) is defined by:

• Glob(Z)0 = {0̂, 1̂},
• PGlob(Z) = Pb0,b1Glob(Z) = Z,
• s = 0̂, t = 1̂ and a trivial composition law.

It is called the globe of the space Z.
The weak S-homotopy model structure of flow is characterized as follows

(cf. [Gau03] for further details):
• The weak equivalences are the weak S-homotopy equivalences, i.e.,

the morphisms of flows f : X −→ Y such that f0 : X0 −→ Y 0 is a
bijection of sets and such that Pf : PX −→ PY is a weak homotopy
equivalence.
• The fibrations are the morphisms of flows f : X −→ Y such that

Pf : PX −→ PY is a Serre fibration.
Note that any flow is fibrant. The homotopy category is denoted Ho(flow).
This model structure is cofibrantly generated. The set of generating cofi-
brations is the set

Igl
+ = Igl ∪ {R : {0, 1} −→ {0}, C : ∅ −→ {0}}

with Igl = {Glob(Sn−1) ⊂ Glob(Dn), n � 0} where Dn is the n-dimensional
disk and Sn−1 the (n − 1)-dimensional sphere. By convention, the (−1)-
dimensional sphere is the empty space. The set of generating trivial cofibra-
tions is

Jgl = {Glob(Dn × {0}) ⊂ Glob(Dn × [0, 1]), n � 0}.
5Sometimes, an object of a flow is called a state and a morphism a (nonconstant)

execution path.
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Table 2

Notations of this paper Notations of [Gau03]
X ⊗K |K|�X

XK {|K|,X}S

Let X and U be two flows. Let FLOW(X,U) be the set flow(X,U)
equipped with the Kelleyfication of the compact-open topology. Let f, g :
X ⇒ U be two morphisms of flows. Then a S-homotopy is a continuous
map H : [0, 1]→ FLOW(X,U) with H0 = f and H1 = g. This situation is
denoted by f ∼S g. The S-homotopy relation defines a congruence on the
category flow. If there exists a map f ′ : U → X with f ◦ f ′ ∼S IdU and
f ′ ◦ f ∼S IdX , then f is called a S-homotopy equivalence.

3.3. Simplicial structure of the model category of flows. Let K be
a nonempty connected simplicial set. Let X be a flow. Then one has the
isomorphism of topological spaces

TOP(|K|,PX) ∼=
⊔

(α,β)∈X0×X0

TOP(|K|,Pα,βX)

where the topological space |K| is the geometric realization of the simplicial
set K. Note the latter isomorphism is false if K is empty or not connected.
The associative composition law ∗ : PX ×X0 PX → PX gives rise to a
continuous map

∗ : TOP(|K|,PX)×X0 TOP(|K|,PX) ∼= TOP(|K|,PX×X0 PX)

→ TOP(|K|,PX).

The homeomorphism

TOP(|K|,PX) ×X0 TOP(|K|,PX) ∼= TOP(|K|,PX×X0 PX)

holds since the functor TOP(|K|,−) is limit-preserving. Hence the following
definition:

Definition 3.3.1. Let K be a nonempty connected simplicial set. Let X
be an object of flow. Let XK be the flow defined by:

• (XK)0 = X0,
• Pα,β(XK) = TOP(|K|,Pα,βX) for all (α, β) ∈ X0 ×X0, and
• the above composition law.

Several theorems of [Gau03] are going to be used. Therefore, it is helpful
for the reader to give the correspondence between the notations of this paper
(left column of Table 2) and of [Gau03] (right column of Table 2) for a flow
X and a nonempty connected simplicial set K.
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Proposition 3.3.2. Let K be a nonempty connected simplicial set. The
mapping X 	→ XK gives rise to an endofunctor of flow. The functor (−)K

is a right adjoint.

Proof. Consequence of [Gau03] Theorem 7.8. �

Notation 3.3.3. Let K be a nonempty connected simplicial set. Let us
denote by −⊗K the left adjoint of (−)K .

Definition 3.3.4. Let K be a nonempty simplicial set. Let (Ki)i∈I be its
set of nonempty connected components. Let:
• X ⊗K :=

⊔
i∈I X ⊗Ki,

• XK :=
∏
i∈I X

Ki .

And let X ⊗∅ = ∅ and X∅ = 1.

Proposition 3.3.5. Let K be a simplicial set. The pair of functors (−⊗K) :
flow � flow : (−)K is a categorical adjunction.

Proof. If K = ∅, then one has the isomorphisms

flow(X ⊗∅, Y ) ∼= flow(∅, Y ) ∼= 1 ∼= flow(X,Y ∅).

Now let K be a nonempty simplicial set. Let (Ki)i∈I be its set of nonempty
connected components. Then one has

flow(X ⊗K,Y ) ∼= flow(
⊔
i∈I

(X ⊗Ki), Y ) by definition of X ⊗K

∼=
∏
i∈I

flow(X ⊗Ki, Y )

∼=
∏
i∈I

flow(X,Y Ki) by Proposition 3.3.2

∼= flow(X,
∏
i∈I

Y Ki)

∼= flow(X,Y K) by definition of XK .

Hence the adjunction. �

Definition 3.3.6. Let X and Y be two objects of flow. Let

Map(X,Y ) := flow(X ⊗Δ[∗], Y ).

It is called the function complex from X to Y .

Proposition 3.3.7. Let X and Y be two flows. Then one has the natural
isomorphism of simplicial sets

Map(X,Y ) ∼= Sing(FLOW(X,Y ))

where Sing is the singular nerve functor.
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Proof. Let n � 0. Since the topological space |Δ[n]| is nonempty and
connected, one has Sing(FLOW(X,Y ))n = top(|Δ[n]|,FLOW(X,Y )) ∼=
flow(X ⊗Δ[n], Y ) by [Gau03] Theorem 7.9. �

Proposition 3.3.8. Let B be a small category. Let X : B → flow be a
functor. Then one has the natural isomorphisms of simplicial sets

Map(lim−→Xb, Y ) ∼= lim←−Map(Xb, Y )

Map(Y, lim←−Xb) ∼= lim←−Map(Y,Xb)

for any flow Y of flow.

Proof. Limits and colimits are calculated pointwise in the category of sim-
plicial sets. Since for every n � 0, the functor − ⊗Δ[n] is a left adjoint by
Proposition 3.3.5, one obtains the following two natural bijections:

Map(lim−→Xb, Y )n ∼= flow((lim−→Xb)⊗Δ[n], Y )(1)
∼= flow(lim−→(Xb ⊗Δ[n]), Y )
∼= lim←−flow(Xb ⊗Δ[n], Y )
∼= lim←−Map(Xb, Y )n

Here, the first and fourth isomorphisms are by definition of Map, and the
second is because −⊗Δ[n] is a left adjoint.

Map(Y, lim←−Xb)n ∼= flow(Y ⊗Δ[n], lim←−Xb)(2)
∼= lim←−flow(Y ⊗Δ[n],Xb)
∼= lim←−Map(Y,Xb)n.

Here, the first and third isomorphisms are by definition of Map. �

Proposition 3.3.9. Let K and L be two simplicial sets. Then one has a
natural isomorphism of flows XK×L = (XK)L for every flow X of flow.

Proof. If K or L is empty, then XK×L = (XK)L = 1 by definition. Sup-
pose now that K and L are both nonempty and connected. The flows XK×L
and (XK)L have same set of states X0. And P(XK×L) ∼= TOP(|K×L|,PX)
and P((XK)L) = TOP(|L|,TOP(|K|,PX)). Hence the conclusion in this
case since top is cartesian closed and since there is a homeomorphism
|K × L| ∼= [K| × |L| by [Hov99] Lemma 3.1.8. We treat now the gen-
eral case where K and L are both nonempty. Let (Ki)i∈I and (Lj)j∈J
be the nonempty connected components of K and L respectively. Then
K × L =

∏
i∈I

∏
j∈J Ki × Lj and:

XK×L ∼=
∏
i∈I

∏
j∈J

XKi×Lj ∼=
∏
i∈I

∏
j∈J

(XKi)Lj ∼=
∏
j∈J

(
∏
i∈I

XKi)Lj ∼=
∏
j∈J

(XK)Lj

∼= (XK)L.
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Here, the first isomorphism follows since the Ki × Lj’s are nonempty and
connected, and the third since the functors (−)Lj are right adjoints. The
fourth is by definition of XK and the fifth by definition of (−)L. �
Proposition 3.3.10. Let K and L be two simplicial sets. Let X be a flow.
Then one has a natural isomorphism of flows (X ⊗K)⊗L ∼= X ⊗ (K ×L).

Proof. Let Y be another flow. Then one has

flow((X ⊗K)⊗ L, Y ) ∼= flow(X ⊗K,Y L) ∼= flow(X, (Y L)K)
∼= flow(X,Y L×K) ∼= flow(X ⊗ (K × L), Y ).

Here, the first, second and fourth isomorphisms are by Proposition 3.3.5
and the third by Proposition 3.3.9. The result now follows by Yoneda’s
lemma. �
Proposition 3.3.11. Let K be a simplicial set. Let X and Y be two flows.
Then one has a natural isomorphism of simplicial sets

Map(X ⊗K,Y ) ∼= Map(K,Map(X,Y )).

Proof. If K = ∅, then one has to compare Map(X⊗∅, Y ) ∼= Map(∅, Y ) ∼=
1 by Proposition 3.3.8 and Map(∅,Map(X,Y )) ∼= 1. So one can suppose
the simplicial set K nonempty. By construction of the functor −⊗K and by
Proposition 3.3.8, one can suppose that K is connected as well. Let n � 0.
Thus,

Map(X ⊗K,Y )n ∼= flow(X ⊗ (K ×Δ[n]), Y )
∼= top(|K ×Δ[n]|,FLOW(X,Y ))
∼= ΔopSet(K ×Δ[n],Map(X,Y ))
∼= Map(K,Map(X,Y ))n.

Here, the first isomorphism is by Proposition 3.3.10, the second by [Gau03]
Theorem 7.9, the third by adjunction and by Proposition 3.3.7, and the
fourth by definition of Map in ΔopSet. �
Proposition 3.3.12. One has the natural isomorphism of simplicial sets

Map(X ⊗K,Y ) ∼= Map(X,Y K)

for every simplicial set K and every flow X,Y of flow.

Proof. One has for any n � 0

Map(X ⊗K,Y )n ∼= flow(X ⊗K ⊗Δ[n], Y )
∼= flow(X ⊗Δ[n], Y K)
∼= Map(X,Y K)n.

Here, the first and third isomorphisms are by definition of Map, and the
second is by Proposition 3.3.10 and Proposition 3.3.5. �



Globular realization 117

Lemma 3.3.13. Let f : X −→ Y be a morphism of flows. Then the
following conditions are equivalent:

(1) f is a fibration of flows, that is the continuous map Pf : PX −→ PY
is a fibration of topological spaces.

(2) For any (α, β) ∈ X0 × X0, the continuous map Pf : Pα,βX −→
Pf(α),f(β)Y is a fibration of topological spaces.

Proof. A continuous map is a fibration if and only if it satisfies the right
lifting property with respect to the inclusion maps Dn −→ Dn × [0, 1]. The
result comes from the connectedness of both Dn and Dn × [0, 1]. �
Proposition 3.3.14. Let i : A −→ B be a cofibration of flows. Let p :
X −→ Y be a fibration of flows. Then the morphism of simplicial sets

Q(i, p) : Map(B,X) −→ Map(A,X) ×Map(A,Y ) Map(B,Y )

is a fibration of simplicial sets. Moreover if either i or p is trivial, then the
fibration Q(i, p) is trivial as well.

Proof. By [GJ99] Proposition II.3.13 p95, it suffices to prove that the mor-
phism of flows

XΔ[n] −→ X∂Δ[n] ×Y ∂Δ[n] Y Δ[n]

is a fibration (resp. trivial fibration) for any n � 0 as soon as X −→ Y is a
fibration (resp. trivial fibration) of flows. The case of a fibration is the only
one treated since the other case is similar.

For n = 0, one has to check that

XΔ[0] −→ 1×1 Y
Δ[0] ∼= Y Δ[0]

is a fibration. Since Δ[0] is connected, XΔ[0] = X and Y Δ[0] = Y . So there
is nothing to check for n = 0.

For n = 1, one has to check that

XΔ[1] −→ X∂Δ[1] ×Y ∂Δ[1] Y Δ[1]

is a fibration. Since ∂Δ[1] is the discrete two-point simplicial set, then
X∂Δ[1] = X × X. Since Δ[1] is connected, one has to check that for any
(α, β) ∈ X0 ×X0, the continuous map

TOP(|Δ[1]|,Pα,βX) −→ (Pα,βX×Pα,βX)×(Pα,βY×Pα,βY)TOP(|Δ[1]|,Pα,βY)

is a fibration of topological spaces. Using the homeomorphisms

Pα,βX × Pα,βX ∼= TOP({−1, 1},Pα,βX)

and
Pα,βY × Pα,βY ∼= TOP({−1, 1},Pα,βY),

one has to check that the continuous map

TOP(|Δ[1]|,Pα,βX) −→
TOP({−1, 1},Pα,βX)×TOP({−1,1},Pα,βY) TOP(|Δ[1]|,Pα,βY)
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is a fibration of topological spaces. So one has to prove that for any com-
mutative square

Dn × {0} ��

��

TOP(|Δ[1]|,Pα,βX)

��
Dn × [0, 1] ��

k

���������������
TOP({−1, 1},Pα,βX)×TOP({−1,1},Pα,βY) TOP(|Δ[1]|,Pα,βY),

the lift k exists. By adjunction, it suffice to prove that the lift k′ of the
commutative square

(Dn × |Δ[1]|) ∪ (Dn × [0, 1] × {−1, 1}) ��

��

Pα,βX

��
Dn × [0, 1] × |Δ[1]| ��

k′

������������
Pα,βY

exists. The inclusion {−1, 1} ⊂ |Δ[1]| is a cofibration. So the left-hand
map is the pushout product of a cofibration with a trivial cofibration. By
Lemma 3.3.13, the continuous map Pα,βX −→ Pα,βY is a fibration of topo-
logical spaces. The case n = 1 is therefore solved.

Consider now the case n � 2. Then both Δ[n] and ∂Δ[n] are connected.
Therefore one has to check that for any (α, β) ∈ X0 ×X0, the continuous
map

TOP(|Δ[n]|,Pα,βX) −→
TOP(|∂Δ[n]|,Pα,βX)×TOP(|∂Δ[n]|,Pα,βY) TOP(|Δ[n]|,Pα,βY)

is a fibration. This holds for the same reason as above because:
(1) The category of topological spaces we are using is cartesian closed.
(2) The inclusion |∂Δ[n]| −→ |Δ[n]| is a cofibration.
(3) The mapping Pα,βX −→ Pα,βY is a fibration by Lemma 3.3.13. �

Theorem 3.3.15. The model category flow together with the functors −⊗
K, (−)K and Map(−,−) assembles to a simplicial model category.

Proof. By definition, the set Map(X,Y )0 is the set flow(X,Y ) of mor-
phisms from the flow X to the flow Y . Thus, the identity of IdX yields
for every flow X a simplicial map Δ[0] → Map(X,X). The theorem is
then a consequence of Proposition 3.3.11, Proposition 3.3.12 and Proposi-
tion 3.3.14. �

Let us conclude this section by an important fact:

Proposition 3.3.16. Let X and Y be two flows. Let f, g : X ⇒ Y be two
morphisms of flows. There exists a simplicial homotopy H : X ⊗ Δ[1] →
Y between f and g if and only if there exists a S-homotopy H : [0, 1] →
FLOW(X,Y ) between f and g.
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(0̂, 0̂)
(b0,∗) ��

(∗,b0)

��

(∗,∗)

��












(0̂, 1̂)

(∗,b1)

��
(1̂, 0̂)

(b1,∗) �� (1̂, 1̂)

Figure 1. The flow {0̂ < 1̂}2

Sketch of proof. See Table 2 for the notations. Since Δ[1] is nonempty
and connected, one has the equality X ⊗ Δ[1] = |Δ[1]| � X by definition
of the tensor product. And one has the bijection flow(|Δ[1]| � X,Y ) ∼=
top([0, 1],FLOW(X,Y )) by [Gau03] Theorem 7.9. �

4. Comparing realization functors from precubical
sets to flows

4.1. Realizing a precubical set as a flow. A state of the flow associated
with the poset {0̂ < 1̂}n (i.e., the product of n copies of {0̂ < 1̂}) is denoted
by a n-uple of elements of {0̂, 1̂}. By convention, {0̂ < 1̂}0 = {()}. The
unique morphism/execution path from (x1, . . . , xn) to (y1, . . . , yn) is denoted
by a n-uple (z1, . . . , zn) of {0̂, 1̂, ∗} with zi = xi if xi = yi and zi = ∗ if
xi < yi. For example in the flow {0̂ < 1̂}2 (cf. Figure 1), one has the
algebraic relation (∗, ∗) = (0̂, ∗) ∗ (∗, 1̂) = (∗, 0̂) ∗ (1̂, ∗).

Let � → flow be the functor defined on objects by the mapping [n] 	→
({0̂ < 1̂}n)cof and on morphisms by the mapping

δαi 	→ ((ε1, . . . , εn−1) 	→ (ε1, . . . , εi−1, α, εi, . . . , εn−1))
cof

where the εi’s are elements of {0̂, 1̂, ∗}.
The functor | − |flow : �opSet→ flow is then defined by [Gau07c]

|K|flow := lim−→
�[n]→K

({0̂ < 1̂}n)cof .

It is a left adjoint. So it commutes with all small colimits.
The functor X 	→ X0 from flows to sets is a left adjoint since there is a

natural bijection Set(X0, S) ∼= flow(X, Ŝ) where Ŝ is the flow defined by
Ŝ0 = S and Pα,βŜ = {(α, β)} with the composition law (α, β) ∗ (β, γ) =
(α, γ). So one obtains the natural bijections of sets

(3) |K|0flow
∼= lim−→

�[n]→K

({0̂ < 1̂}n)0 ∼= lim−→
�[n]→K

{0̂, 1̂}n ∼= lim−→
�[n]→K

�[n]0 ∼= K0.
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4.2. Small realization of a precubical set as a flow. The first two
propositions will help the reader to understand the differences between the
realization functor | − |flow and the new one gl(−) which is going to be
constructed in this section.

Proposition 4.2.1 (e.g., [Hov99] Lemma 5.2.6). LetM be a model category.
Consider a pushout diagram of M

A ��

��

B

��
C �� D

such that the objects A, B and C are cofibrant and such that the map A→ C
is a cofibration. Then D is cofibrant and is the homotopy colimit. In other
terms, the commutative diagram above is also a homotopy pushout diagram.

Proposition 4.2.2. The functor | − |flow : �opSet→ flow is a left adjoint
(and therefore is colimit-preserving). Moreover, it satisfies the following
properties:
• For every n � 0, there is a homotopy pushout diagram of flows

Glob(Sn−1) ��

��

|∂�[n + 1]|flow

��
Glob(Dn) �� |�[n+ 1]|flow.

h

• There exists an objectwise weak S-homotopy equivalence of cocubical
flows

|�[∗]|flow −→ {0̂ < 1̂}∗
(with always, by convention, {0̂ < 1̂}0 = {()}).

Proof. One only has to prove the existence of the homotopy pushout dia-
gram. Equation (3) implies |∂�[n + 1]|0flow = {0̂, 1̂}n+1. By [Gau07c] The-
orem 7.8, there is a homotopy equivalence Sn−1 � Pb0...b0,b1...b1|∂�[n + 1]|flow.
This yields a morphism of flows

tn : Glob(Sn−1)→ |∂�[n + 1]|flow

defined by tn(0̂) = 0̂ . . . 0̂, tn(1̂) = 1̂ . . . 1̂ and

Pb0,b1tn : Pb0,b1Glob(Sn−1) = Sn−1 → Pb0...b0,b1...b1 gl(∂�[n+ 1])

is a homotopy equivalence. Then consider the pushout diagram of flows:

Glob(Sn−1)
tn ��

��

|∂�[n + 1]|flow

��
Glob(Dn) �� Zn+1.



Globular realization 121

By construction, one has the equality Pα,β|�[n+1]|flow = Pα,β|∂�[n+1]|flow

for every (α, β) �= (0̂ . . . 0̂, 1̂ . . . 1̂) and there is a pushout diagram of topo-
logical spaces

Sn−1
Pb0,b1tn ��

��

Pb0...b0,b1...b1|∂�[n + 1]|flow

��
Dn �� Pb0...b0,b1...b1Zn+1.

Since the model category top is left proper, the map Dn → Pb0...b0,b1...b1Zn+1 is
a weak homotopy equivalence. So the flow Zn+1 and |�[n+1]|flow are weakly
S-homotopy equivalent. Since Zn+1 and |�[n + 1]|flow are both cofibrant
and fibrant, there is a S-homotopy equivalence Zn+1 � |�[n + 1]|flow. The
pushout diagram defining Zn+1 is also a homotopy pushout diagram by
Proposition 4.2.1. Hence the result. �
Proposition 4.2.3. Loopless flows satisfy the following two facts:

(1) If a flow X is loopless, then the reflexive and transitive closure of the
set

{(α, β) ∈ X0 ×X0 such that Pα,βX �= ∅}
induces a partial ordering on X0.

(2) The functor X 	→ X0 from flows to sets induces a functor from the
full subcategory of loopless flows to that of partially ordered sets with
strictly increasing maps.

Proof. The first assertion is [Gau06a] Lemma 4.2. The second assertion is
then clear. �
Theorem 4.2.4. There exists a colimit-preserving functor gl : �opSet →
flow satisfying the following properties:

(1) For every n � 0, there is a pushout diagram of flows

Glob(Sn−1) ��

��

gl(∂�[n+ 1])

��
Glob(Dn) �� gl(�[n+ 1]).

(2) There exists an objectwise weak S-homotopy equivalence of cocubical
flows

gl(�[∗]) −→ {0̂ < 1̂}∗
(with always, by convention, {0̂ < 1̂}0 = {()}). In particular with
n = 0, gl(�[0]) = {()}.

Note that the first condition alone does not imply the second condition.
Note also that by Proposition 4.2.1, the pushout diagram above is also a
homotopy pushout diagram.
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Proof. Let us construct the restriction of the functor gl(−) to the category
of n-dimensional precubical sets �op

n Set by induction on n � 0. The functor
gl(−) will satisfy the natural isomorphism

gl(K�n) ∼= lim−→
�[p]→K�n

gl(�[p])

for every precubical set K. One will also prove by induction on n � 0 that:
• For any morphism δ of �n, the map gl(�[δ]) is a relative Igl-cell

complex.
• There exists a morphism of cocubical flows of dimension n from gl([∗])

to {0̂ < 1̂}∗ which is an objectwise weak S-homotopy equivalence.
• For all 0 � p � n, the map gl(∂�[p] ⊂ �[p]) is a cofibration.

For n = 0, let gl(�[0]) = {0̂ < 1̂}0. Note that this defines a functor
from �op

0 Set to flow and that for any morphism δ of �0, one has gl(�[δ]) ∈
cell(Igl) since δ = Id[0] is the only possibility.

Now suppose the construction done for n � 0. Consider the three cocu-
bical flows of dimension n defined by X([∗]) = gl(�[∗]), Y ([∗]) = |�[∗]|flow

and I([∗]) = {0̂ < 1̂}∗ for all 0 � ∗ � n. By induction hypothesis, there
exists a morphism of cocubical flows of dimension n from X to I which is an
objectwise weak S-homotopy equivalence. And Proposition 4.2.2 provides a
morphism of cocubical flows of dimension n from Y to I which is an object-
wise weak S-homotopy equivalence. Any map from any cocubical flow to I is
an objectwise fibration since for any n � 0, the path space PI([n]) is discrete.
Finally, by induction hypothesis, each map gl(∂�[p] ⊂ �[p]) for 0 � p � n
is a cofibration. And each map |∂�[p] ⊂ �[p]|flow for 0 � p � n is a cofi-
bration by [Gau07c] Proposition 7.6. Theorem 2.3.4 and Proposition 3.3.16
yield a natural S-homotopy equivalence μK�n

: gl(K�n) → |K�n|flow. The
precubical set ∂�[n+1] is of dimension n. So by induction hypothesis, there
exists a S-homotopy equivalence

μ∂�[n+1] : gl(∂�[n+ 1]) �−→ |∂�[n + 1]|flow.

There is also

gl(∂�[n + 1])0 ∼= |∂�[n+ 1]|0flow
∼= {0̂, 1̂}n+1

by Equation (3). The continuous map

Pb0...b0,b1...b1μ∂�[n+1] : Pb0...b0,b1...b1 gl(∂�[n + 1]) �−→ Pb0...b0,b1...b1|∂�[n+ 1]|flow

is a homotopy equivalence by [Gau03] Corollary 19.8. Using [Gau07c] Theo-
rem 7.8, one deduces that the topological spaces Pb0...b0,b1...b1 gl(∂�[n+ 1]) and
Sn−1 are homotopy equivalent. This yields a morphism of flows

sn : Glob(Sn−1)→ gl(∂�[n+ 1])

defined by:
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• sn(0̂) = 0̂ . . . 0̂ with the identifications gl(∂�[n+ 1])0 = ∂�[n+ 1]0 =
{0̂, 1̂}n+1.
• sn(1̂) = 1̂ . . . 1̂ with the identifications gl(∂�[n+ 1])0 = ∂�[n+ 1]0 =
{0̂, 1̂}n+1.
• Pb0,b1sn : Pb0,b1Glob(Sn−1) = Sn−1 → Pb0...b0,b1...b1 gl(∂�[n + 1]) is a homo-

topy equivalence.
The flow gl(�[n+ 1]) is then defined by the pushout diagram:

(4) Glob(Sn−1)
sn ��

��

gl(∂�[n+ 1])

��
Glob(Dn) �� gl(�[n+ 1]).

Note that by construction, the map gl(∂�[n+1] ⊂ �[n+1]) is a cofibration.
The 2(n+ 1) inclusions �[n] ⊂ ∂�[n+ 1] yield the definition of the gl(δαi )’s
for all δαi : [n]→ [n+1] with 1 � i � n+1 and α ∈ {0, 1} as the composites

gl(δαi ) : gl(�[n]) ⊂ gl(∂�[n+ 1]) −→ gl(�[n+ 1]).

Since the category �n+1 is the quotient of the free category generated by
the δαi : [p− 1]→ [p] for 1 � p � n+1 with 1 � i � p and α ∈ {0, 1}, by the
cocubical relations, one has to check the cocubical relation gl(δβj ) ◦ gl(δαi ) =

gl(δαi ) ◦ gl(δβj−1) for i < j for every map δβj ◦ δαi : [n − 1] → [n + 1] and
δαi ◦ δβj−1 : [n − 1] → [n + 1]. By induction, each morphism of flows gl(δαi )

is an inclusion of Igl-cell subcomplexes. The equality δβj ◦ δαi = δαi ◦ δβj−1

implies that the sources of gl(δβj ) ◦ gl(δαi ) and gl(δαi ) ◦ gl(δβj−1) are the same
Igl-cell subcomplex of gl(�[n + 1]).6 Hence the equality. So the functor
from �n to flow defined by [p] 	→ gl(�[p]) for p � n is extended to a functor
from �n+1 to flow defined by [p] 	→ gl(�[p]) for p � n+ 1. Let

gl(K�n+1) = lim−→
�[p]→K�n+1

gl(�[p])

for all precubical sets K. This construction extends the functor

gl : �op
n Set→ flow

to a functor gl : �op
n+1Set→ flow.

It remains to prove that one has an objectwise weak S-homotopy equiv-
alence of cocubical flows of dimension n + 1 from gl(�[∗]) to {0̂ < 1̂}∗ to
complete the induction and the proof. The map

gl(δαi ) : gl(�[n]) ⊂ gl(∂�[n + 1]) −→ gl(�[n+ 1])

6This argument is possible since every element of cell(Igl) is an (effective) monomor-
phism of flows by [Gau03] Theorem 10.6. Indeed, a subcomplex of a relative Igl-cell
complex is then entirely determined by its set of cells by [Hir03] Proposition 10.6.10 and
Proposition 10.6.11.
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induces a set map

gl(δαi )0 : gl(�[n])0 ⊂ gl(∂�[n+ 1])0 −→ gl(�[n+ 1])0.

By Equation (3) and Proposition 4.2.3, one obtains a strictly increasing set
map

gl(δαi )0 : {0̂ < 1̂}n → {0̂ < 1̂}n+1.

This yields a morphism of cocubical flows of dimension n+ 1 from gl(�[∗])
to {0̂ < 1̂}∗. It remains to prove that gl(�[n + 1]) is weakly S-homotopy
equivalent to {0̂ < 1̂}n+1. By construction of gl(�[n+1]), one has the equal-
ity Pα,β gl(�[n + 1]) = Pα,β gl(∂�[n + 1]) for every (α, β) �= (0̂ . . . 0̂, 1̂ . . . 1̂)
and there is a pushout diagram of topological spaces

Sn−1
Pb0,b1sn

��

��

Pb0...b0,b1...b1 gl(∂�[n+ 1])

��

Dn �� Pb0...b0,b1...b1 gl(�[n+ 1]).

Since the map Pb0,b1sn is a weak homotopy equivalence, and since the model
category top is left proper, the map Dn → Pb0...b0,b1...b1 gl(�[n + 1]) is a weak
homotopy equivalence. �

Corollary 4.2.5. There exist a natural transformation μ : gl(−)→ |− |flow

inducing for every precubical set K a natural S-homotopy equivalence μK :
gl(K) � |K|flow and a natural transformation ν : | − |flow → gl(−) inducing
for every precubical set K a natural S-homotopy equivalence νK : |K|flow �
gl(K) which is an inverse up to S-homotopy of μK .

Proof. Consider the three cocubical flows X([∗]) = gl(�[∗]), Y ([∗]) =
|�[∗]|flow and I([∗]) = {0̂ < 1̂}∗ for all ∗ � 0. Theorem 4.2.4 and Proposi-
tion 4.2.2 yield objectwise weak S-homotopy equivalences X → I and Y → I.
Since the path space PI([n]) is discrete for all n � 0, the two maps X → I
and Y → I are objectwise trivial fibrations of cocubical flows. Then let us
apply Theorem 2.3.3 and let us notice that a simplicial homotopy gives rise
to a S-homotopy by Proposition 3.3.16. �

The following theorem gives a sufficient condition for a functor to be a
realization functor:

Theorem 4.2.6. Let X → {0̂ < 1̂}∗ be an objectwise weak S-homotopy
equivalence of cocubical flows. Assume that for every n � 0, the map
X̂(∂�[n])→ X̂(�[n]) is a cofibration. Then there exist natural transforma-
tions μ : gl → X̂ and ν : X̂ → gl inducing natural S-homotopy equivalences
which are inverse to each other up to S-homotopy. In particular, for all
n � 0, there is a commutative diagram of flows which is also a homotopy
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pushout diagram

Glob(Sn−1) ��

��

X̂(∂�[n+ 1])

��
Glob(Dn) �� X̂(�[n+ 1])

h

where the left-hand vertical map is the inclusion of flows Glob(Sn−1 ⊂ Dn)
and the right-hand vertical map X̂(∂�[n + 1] ⊂ �[n+ 1]).

Proof. Since the path space P{0̂ < 1̂}n of the flow {0̂ < 1̂}n is discrete
for all n � 0, the map X → {0̂ < 1̂}∗ is an objectwise trivial fibration of
flows. Then apply Theorem 2.3.3 and Theorem 4.2.4 to obtain the natural
transformations μ and ν. One obtains the commutative diagram of flows

Glob(Sn−1) ��

��

gl(∂�[n + 1])

��

μ∂�[n+1] �� X̂(∂�[n+ 1])

��
Glob(Dn) �� gl(�[n+ 1])

μ�[n+1] �� X̂(�[n+ 1]),

and therefore the commutative diagram of flows

Glob(Sn−1) ��

��

gl(∂�[n+ 1])

��

μ∂�[n+1] �� X̂(∂�[n + 1])

��

X̂(∂�[n+ 1])

��
Glob(Dn) �� gl(�[n+ 1])

μ�[n+1]

��

φn �� Tn
ψn �� X̂(�[n+ 1]).

The map φn is a weak S-homotopy equivalence since flow is left proper by
[Gau07b] Theorem 7.4. So by the two-out-of-three property, the map ψn is
a weak S-homotopy equivalence as well. Hence the homotopy pushout of
flows. �

5. Realizing a precubical set as a small globular
complex

5.1. Globular complex. A globular complex is, like a d-space, a local
pospace and a stream, a topological space with an additional structure mod-
eling time irreversibility. We refer to [Gau05a] for further explanations about
the following list of definitions.7 The original definition of a globular com-
plex can be found in [GG03] but this old definition is slightly different and
less tractable than the one of [Gau05a]. So it will not be used.

7The paper [Gau07a] gives an interpretation of the category of globular complexes as
the full subcategory of cellular objects of a combinatorial model category. This point of
view will not be used in this work.
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A multipointed topological space (X,X0) is a pair such that X0 is a sub-
set of the topological space X. A morphism of multipointed topological
spaces f : (X,X0) −→ (Y, Y 0) is a continuous map f : X −→ Y such that
f(X0) ⊂ Y 0. The corresponding category is denoted by MTop. The cat-
egory of multipointed spaces is cocomplete. Let Z be a topological space.
The (topological) globe of Z, which is denoted by Globtop(Z), is the multi-
pointed space (|Globtop(Z)|, {0̂, 1̂}) where the topological space |Globtop(Z)|
is the quotient of {0̂, 1̂}
 (Z× [0, 1]) by the relations (z, 0) = (z′, 0) = 0̂ and
(z, 1) = (z′, 1) = 1̂ for any z, z′ ∈ Z (cf. Figure 2). In particular, Globtop(∅)
is the multipointed space ({0̂, 1̂}, {0̂, 1̂}). If Z is a singleton, then the globe
of Z is denoted by

−→
I top. Let

Igl,top := {Globtop(Sn−1) −→ Globtop(Dn), n � 0}.
A globular precomplex is a λ-sequence for some ordinal λ of multipointed
topological spaces X : λ −→ MTop such that X ∈ cell(Igl,top) and such
that X0 = (X0,X0) with X0 a discrete space. This λ-sequence is charac-
terized by a presentation ordinal λ, and for any β < λ by an integer nβ � 0
and an attaching map φβ : Globtop(Snβ−1) −→ Xβ . The family (nβ, φβ)β<λ
is called the globular decomposition of X. A morphism of globular pre-
complexes f : X −→ Y is a morphism of multipointed spaces still denoted
by f from lim−→X to lim−→Y . If X is a globular precomplex, then the under-
lying topological space of the multipointed space lim−→X is denoted by |X|.
Let X be a globular precomplex. A morphism of globular precomplexes
τ :
−→
I top −→ X is nondecreasing if there exist t0 = 0 < t1 < · · · < tn = 1

such that:

(1) τ(ti) ∈ X0 for all 0 � i � n.
(2) τ(]ti, ti+1[) ⊂ Globtop(Dnβi\Snβi

−1) for some (nβi
, φβi

) of the globular
decomposition of X.

(3) For 0 � i < n, there exists ziτ ∈ Dnβi\Snβi
−1 and a strictly increasing

continuous map ψiτ : [ti, ti+1] −→ [0, 1] such that ψiτ (ti) = 0̂ and
ψiτ (ti+1) = 1̂ and for any t ∈ [ti, ti+1], τ(t) = (ziτ , ψiτ (t)).

In particular, the restriction τ �]ti,ti+1[ of τ to ]ti, ti+1[ is one-to-one. The

set of nondecreasing morphisms from
−→
I top to X is denoted by Ptop(X). A

morphism of globular precomplexes f : X −→ Y is nondecreasing if the
canonical set map top([0, 1], |X|) −→ top([0, 1], |Y |) induced by composi-
tion by f yields a set map Ptop(X) −→ Ptop(Y ). In other terms, one has
the commutative diagram of sets

Ptop(X) ��

⊂
��

Ptop(Y )

⊂
��

top([0, 1], |X|) �� top([0, 1], |Y |).
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X

TIME

Figure 2. Symbolic representation of Globtop(X) for some
topological space X.

A globular complex X is a globular precomplex such that the attaching maps
φβ are nondecreasing. A morphism of globular complexes is a morphism of
globular precomplexes which is nondecreasing. The category of globular
complexes together with the morphisms of globular complexes as defined
above is denoted by glTop.

5.2. S-homotopy equivalence of globular complex. Let X and U be
two globular complexes. Let glTOP(X,U) be the set glTop(X,U) equipped
with the Kelleyfication of the compact-open topology. Let f, g : X ⇒ U be
two morphisms of globular complexes. Then a S-homotopy is a continuous
map H : [0, 1] → glTOP(X,U) with H0 = f and H1 = g. This situation
is denoted by f ∼S g. The S-homotopy relation defines a congruence on
the category glTop. If there exists a map f ′ : U → X with f ◦ f ′ ∼S IdU
and f ′ ◦ f ∼S IdX , then f is called a S-homotopy equivalence. The class of
S-homotopy equivalences of globular complexes is denoted by SH.

Since the S-homotopy relation of globular complexes is associated with
a cylinder functor ([Gau05a] Corollary II.4.9), there is an isomorphism of
categories

glTop[SH−1] ∼= glTop/∼S
between the localization of the category of globular complexes by the S-
homotopy equivalences and the quotient of the category of globular com-
plexes by S-homotopy (see the proof of [Gau05a] Theorem V.4.1 and also
[Gau03] Theorem 4.7).

5.3. Realizing a globular complex as a flow. By Theorem III.3.1 of
[Gau05a], there exists a unique functor cat : glTop −→ cell(Igl

+ ) ⊂ flow
such that:

(1) If X = X0 is a discrete globular complex, then cat(X) is the flow X0.
(2) If Z = Sn−1 or Z = Dn for some integer n � 0, then

cat(Globtop(Z)) = Glob(Z).
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(3) For any globular complexX with globular decomposition (nβ, φβ)β<λ,
for any limit ordinal β � λ, the canonical morphism of flows

lim−→
α<β

cat(Xα) −→ cat(Xβ)

is an isomorphism of flows.
(4) For any globular complexX with globular decomposition (nβ, φβ)β<λ,

for any β < λ, one has the pushout of flows

Glob(Snβ−1)
cat(φβ)

��

��

cat(Xβ)

��
Glob(Dnβ ) �� cat(Xβ+1).

The properties of the functor cat used in this paper are summarized in the
statement below:

Theorem 5.3.1. One has:

• The functor cat induces for each pair (X,U) of globular complexes
a surjective set map glTop(X,U)→ flow(cat(X), cat(U)) ([Gau05a,
Corollary IV.3.15]).
• For each flow X ∈ cell(Igl

+ ), there exists a globular complex Xtop with

cat(Xtop) = X

([Gau05a, Theorem V.4.1] and [Gau06b, Theorem 6.1]).
• The functor cat : glTop→ flow induces a category equivalence

glTop[SH−1] � Ho(flow)

between the localization of glTop by the S-homotopy equivalences and
the homotopy category of flows ([Gau05a, Theorem V.4.2]).
• There exists a unique functor | − | : glTop[SH−1] → Ho(top) such

that the following diagram of categories is commutative:

glTop
|−| ��

γglTop

��

top

γtop

��
glTop[SH−1]

|−| �� Ho(top)

where γglTop : glTop → glTop[SH−1] is the canonical functor from
the category of globular complexes to its localization by the S-homotopy
equivalences ([Gau05a, Corollary VII.2.3]).
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5.4. Realizing a precubical set as a small globular complex.

Proposition 5.4.1 (Dual of [ML98] Exercise III.4.8b). Let C be a category.
Consider a commutative diagram of C:

A ��

��

B ��

��

C

��
D �� E �� F

such the square ABDE is a pushout diagram. Then the square ACDF is a
pushout diagram if and only if the square BCEF is a pushout diagram.

Theorem 5.4.2. There exists a functor gltop : �opSet → glTop such
that for every precubical set K, there is a natural isomorphism of flows
cat(gltop(K)) ∼= gl(K).

The functor gltop(−) which is going to be constructed essentially coincides
with the functor from precubical sets to globular complexes constructed in
[GG03]. Essentially means not exactly. Indeed, the old definition of globular
complex given in [GG03] and the new one given in [Gau05a] are not exactly
the same. For example, with the new definition, an execution path is locally
strictly increasing: see the remark in [Gau05a] between Definition II.2.14
and Definition II.2.15. Another difference: Hausdorff spaces are used in
[GG03]. Weak Hausdorff spaces are used here and in [Gau05a]. Moreover,
the construction given in the following proof is more tractable than the
construction given in [GG03] thanks to the use of the cocomplete category
of multipointed topological spaces. Note that the functor cat is not colimit-
preserving. It only preserves globular decompositions of globular complexes.
So the proof is a little bit more complicated than expected. Intuitively, the
construction of gltop(K) consists of replacing each globe Glob(Dn) of gl(K)
by a topological globe Globtop(Dn).

Proof of Theorem 5.4.2. First of all, let us construct the restriction of
the functor gltop(−) to �op

n Set and let us prove the existence of a natural
isomorphism cat(gltop(K�n)) ∼= gl(K�n) by induction on n � 0. The functor
gltop(−) will satisfy the natural isomorphism

gltop(K�n) ∼= lim−→
�[p]→K�n

gltop(�[p])

for every precubical set K, where the colimit is taken in the category of
multipointed topological spaces MTop. So viewed as a functor from �op

n Set
to MTop, the functor gltop(−) is a left adjoint. We will also prove by
induction on n that for any morphism δ of �n, the morphism of globular
complexes gltop(�(δ)) is an element of cell(Igl,top).
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For n = 0, let gltop(K�0) = K0. We have done since cat(gltop(K�0)) =
K0. Note this defines a functor from �op

0 Set to glTop which is colimit-
preserving. Note also that for any morphism δ of �0, one has gltop(�[δ]) ∈
cell(Igl,top), δ = Id[0] being the only possibility.

Now suppose the construction done for n � 0. The precubical set ∂�[n+1]
is of dimension n. So the globular complex gltop(∂�[n+1]) is already defined
by induction hypothesis and one has the isomorphism of flows

cat(gltop(∂�[n+ 1])) ∼= gl(∂�[n+ 1]).

Since the set map

glTop(Globtop(Sn−1), gltop(∂�[n + 1]))→ flow(Glob(Sn−1), gl(∂�[n+ 1]))

is onto by Theorem 5.3.1, there exists a morphism of globular complexes

stopn : Globtop(Sn−1)→ gltop(∂�[n + 1])

with cat(stopn ) = sn, sn being the map defined in the proof of Theorem 4.2.4.
Let gltop(�[n + 1]) be the multipointed topological space defined by the
pushout diagram of multipointed topological spaces

(5) Globtop(Sn−1)
stopn ��

��

gltop(∂�[n + 1])

��
Globtop(Dn) �� gltop(�[n+ 1]).

The globular decomposition of the multipointed space gltop(�[n + 1]) is
obtained by considering the globular decomposition of the globular complex
gltop(∂�[n + 1]) and by adding the globular cell

Globtop(Sn−1) ⊂ Globtop(Dn)

with the attaching map stopn . So the multipointed space gltop(�[n+ 1]) is a
globular complex.

The 2(n + 1) inclusions �[n] ⊂ ∂�[n + 1] yield the definition of the
gltop(δαi )’s for all δαi : [n]→ [n+ 1] with 1 � i � n+ 1 and α ∈ {0, 1} as the
composites:

gltop(δαi ) : gltop(�[n]) ⊂ gltop(∂�[n+ 1]) −→ gltop(�[n+ 1]).

Since the category �n+1 is the quotient of the free category generated by
the δαi : [p − 1] → [p] for 1 � p � n + 1 with 1 � i � p and α ∈ {0, 1}, by
the cocubical relations, one has to check the cocubical relation gltop(δβj ) ◦
gltop(δαi ) = gltop(δαi ) ◦ gltop(δβj−1) for i < j for every map δβj ◦ δαi : [n− 1]→
[n + 1] and δαi ◦ δβj−1 : [n − 1] → [n + 1]. By induction, each morphism of
globular complexes gltop(δαi ) is an inclusion of Igl,top-cell subcomplexes. The
equality δβj ◦δαi = δαi ◦δβj−1 implies that the sources of gltop(δβj )◦gltop(δαi ) and
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gltop(δαi )◦gltop(δβj−1) are the same Igl,top-cell subcomplex of gltop(�[n+1]).8

Hence the equality.
So the functor from �n to glTop defined by [p] 	→ gltop(�[p]) for p � n

is extended to a functor from �n+1 to MTop defined by [p] 	→ gltop(�[p])
for p � n+ 1. Let

gltop(K�n+1) = lim−→
�[p]→K�n+1

gltop(�[p])

for all precubical sets K. This construction extends the functor gltop :
�op
n Set → glTop to a functor gltop : �op

n+1Set → MTop which is still
colimit-preserving since it is still a left adjoint. So one obtains the commu-
tative diagram of multipointed spaces

⊔
x∈Kn+1

Globtop(Sn−1)
F
stopn ��

��

⊔
x∈Kn+1

gltop(∂�[n + 1]) ��

��

gltop(K�n)

��⊔
x∈Kn+1

Globtop(Dn) ��
⊔
x∈Kn+1

gltop(�[n+ 1]) �� gltop(K�n+1).

The left-hand square is a pushout by definition of gltop(�[n+1]). The right-
hand square is a pushout since gltop : �opSet→MTop is colimit-preserving
and since for every precubical set K, there is a pushout diagram of sets

⊔
x∈Kn+1

∂�[n+ 1] ��

��

K�n

��⊔
x∈Kn+1

�[n+ 1] �� K�n+1

where the sum is over x ∈ Kn+1 = �opSet(�[n + 1],K) and where the
corresponding map ∂�[n+1]→ K�n is the composite ∂�[n+1] ⊂ �[n+1] x→
K�n. Since pushout diagrams compose by Proposition 5.4.1, one obtains the
pushout diagram of multipointed spaces

(6)
⊔
x∈Kn+1

Globtop(Sn−1) ��

��

gltop(K�n)

��⊔
x∈Kn+1

Globtop(Dn) �� gltop(K�n+1),

8This argument is possible since every element of cell(Igl,top) is an (effective) monomor-
phism of multipointed topological spaces by [Gau06b] Theorem 8.2. Indeed, since MTop
is cocomplete, a subcomplex of a relative Igl,top-cell complex is then entirely determined
by its set of cells by [Hir03] Proposition 10.6.10 and Proposition 10.6.11.
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and then, by construction of the functor cat : glTop → flow, the pushout
diagram of flows⊔

x∈Kn+1
Glob(Sn−1) ��

��

cat(gltop(K�n))

��⊔
x∈Kn+1

Glob(Dn) �� cat(gltop(K�n+1)).

Diagram (6) above yields a globular decomposition for the multipointed
space gltop(K�n+1), proving that the functor gltop(−) is actually a functor
from �op

n+1Set to glTop. By construction of the functor cat : glTop →
flow, there is a pushout diagram of flows⊔

x∈Kn+1

Glob(Sn−1)
F
sn ��

��

⊔
x∈Kn+1

cat(gltop(∂�[n+ 1]))

��⊔
x∈Kn+1

Glob(Dn) ��
⊔

x∈Kn+1

cat(gltop(�[n+ 1])).

So by Proposition 5.4.1, one obtains the pushout diagram of flows:9

(7)
⊔
x∈Kn+1

cat(gltop(∂�[n+ 1])) ��

��

cat(gltop(K�n))

��⊔
x∈Kn+1

cat(gltop(�[n+ 1])) �� cat(gltop(K�n+1)).

The diagram of solid arrows of Figure 3 is commutative for the following
reasons:
• The back face is commutative and is a pushout diagram of flows by

Diagram (7).
• The front face is commutative and is a pushout diagram of flows since

the functor gl : �opSet→ flow is colimit-preserving.
• Apply the functor cat to Diagram (5). One obtains the pushout dia-

gram of flows

Glob(Sn−1)
cat(stopn ) ��

��

cat(gltop(∂�[n + 1]))

��
Glob(Dn) �� cat(gltop(�[n+ 1])).

Diagram (4) and the equality cat(stopn ) = sn imply the commutativity
of the left-hand face.

9Let us repeat that the functor cat is not colimit-preserving. So the use of Proposi-
tion 5.4.1 seems to be necessary to obtain Diagram (7).
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F
x∈Kn+1

cat(gltop(∂�[n + 1]))

∼=
������������

��

�� cat(gltop(K�n))

∼=

		�����������

��

F
x∈Kn+1

gl(∂�[n + 1]) ��

��

gl(K�n)

��

F
x∈Kn+1

cat(gltop(�[n + 1]))

∼=
������������

�� cat(gltop(K�n+1))

		������

F
x∈Kn+1

gl(�[n + 1]) �� gl(K�n+1).

Figure 3. Isomorphism cat(gltop(K�n+1)) ∼= gl(K�n+1).

• Finally, the top face is commutative since there is a natural isomor-
phism

cat(gltop(K)) ∼= gl(K)

for all precubical sets K of dimension n by induction hypothesis.
Hence the existence of an isomorphism of flows

cat(gltop(K�n+1)) ∼= gl(K�n+1)

for every precubical set K. The isomorphism is natural for the following
reasons:
• The map

⊔
x∈Kn+1

cat(gltop(∂�[n+ 1]))→ cat(gltop(K�n)) is natural
with respect to K since it is the image by the functor cat ◦ gltop(−)
of the natural map of precubical sets i(K,n) :

⊔
x∈Kn+1

∂�[n + 1] →
K�n.
• The map

⊔
x∈Kn+1

gl(∂�[n + 1]) → gl(K�n) is natural with respect
to K since it is the image by the functor gl(−) of the natural map of
precubical sets i(K,n).
• There is a natural isomorphism cat(gltop(L)) ∼= gl(L) with respect to
L for every n-dimensional precubical set L by induction hypothesis.
Apply this fact for L = K�n and L =

⊔
x∈Kn+1

∂�[n + 1].
• Morphisms of precubical sets of the form

⊔
x∈Kn+1

A → ⊔
x∈Kn+1

B

are natural with respect to K for every morphism of precubical sets
A→ B.

The induction is now complete. One has

cat(gltop(K)) ∼= lim−→ cat(gltop(K�n))

by definition of the functor cat. And one has gl(K) ∼= lim−→ gl(K�n) since the
functor gl(−) is colimit-preserving. Hence a natural isomorphism of flows
cat(gltop(K)) ∼= gl(K). �
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Note that the functor gltop : �opSet → glTop is not unique. It is
entirely characterized up to isomorphism of functors by the noncanonical
choice of the maps sn : Glob(Sn−1)→ gl(∂�[n + 1]) and of the maps stopn :
Globtop(Sn−1)→ gltop(∂�[n+1]) for all n � 0. Let γflow : flow → Ho(flow)
be the canonical functor from the category of flows to its homotopy category.
Let us denote by

cat : glTop[SH−1] � Ho(top) : cat−1

the equivalence of categories between the globular complexes up to S-homo-
topy and the homotopy category of flows (see Theorem 5.3.1).

Theorem 5.4.3. The functor γflow ◦ | − |flow : �opSet→ Ho(flow) factors
up to an isomorphism of functors as a composite

�opSet
hogltop−→ glTop/∼S−→ Ho(flow).

The functor hogltop : �opSet→ glTop/ ∼S is unique up to isomorphism of
functors.

In other terms, the functor gltop(−) constructed in Theorem 5.4.2 is
unique up to a natural S-homotopy of globular complexes.

Proof. Since there is an isomorphism of categories

glTop[SH−1] ∼= glTop/∼S ,
let us identify the two categories. Let

hogltop = γglTop ◦ gltop .

Then one obtains the isomorphisms of functors

cat ◦ hogltop = γflow ◦ cat ◦ gltop ∼= γflow ◦ | − |flow

by Theorem 5.4.2 and Theorem 4.2.4. Hence the existence. Take two func-
tors hogltop1 : �opSet → glTop/ ∼S and hogltop2 : �opSet → glTop/ ∼S
satisfying the condition of the theorem. Then

cat ◦ hogltop1 = cat ◦ hogltop2 = γflow ◦ | − |flow.

So one has the isomorphisms of functors

hogltop1
∼= cat−1 ◦ (cat ◦ hogltop1 ) ∼= cat−1 ◦ (cat ◦ hogltop2 ) ∼= hogltop2 . �

6. Globular and cubical underlying homotopy type

6.1. Definition of the globular and cubical underlying homotopy
type. Let � → top be the functor defined on objects by the mapping
[n] 	→ [0, 1]n and on morphisms by the mapping

δαi 	→ ((ε1, . . . , εn−1) 	→ (ε1, . . . , εi−1, α, εi, . . . , εn−1)) .



Globular realization 135

The functor | − |space : �opSet→ top is then defined by

|K|space := lim−→
�[n]→K

[0, 1]n.

It is a left adjoint. So it commutes with all small colimits. The purpose of
this section is the comparison of this functor with the underlying homotopy
type functor defined by the composite [Gau05a]:

Ω : flow
γflow ��Ho(flow) cat

−1
��glTop[SH−1]

|−| ��Ho(top).

6.2. Comparison of the two functors.

Theorem 6.2.1. For every precubical set K, there is a natural isomorphism
of homotopy types γtop(|K|space) ∼= Ω(|K|flow).

Proof. Consider the three cocubical topological spaces:
• X([∗]) = [0, 1]∗ for all ∗ � 0,
• Y ([∗]) = | gltop(�[∗])| for all ∗ � 0,
• I([∗]) = {0} for all ∗ � 0.

There exist a unique map X → I and a unique map Y → I which are
both objectwise weak homotopy equivalences and objectwise fibrations. The
cocubical object X satisfies the hypotheses of Theorem 2.3.3 in an obvious
way. The proof of Theorem 5.4.2 implies the pushout diagram of spaces

|Globtop(Sn−1)| stopn ��

��

| gltop(∂�[n+ 1])|

��
|Globtop(Dn)| �� | gltop(�[n+ 1])|

for every n � 0. Since the continuous map |Globtop(Sn−1)| → |Globtop(Dn)|
is a cofibration of topological spaces (see the proof of [Gau06b] Theorem 8.2),
the map | gltop(∂�[n + 1])| → | gltop(�[n + 1])| is a cofibration as well. So
the cocubical space Y satisfies the hypotheses of Theorem 2.3.3 as well.
Hence there exists a natural homotopy equivalence |K|space � | gltop(K)|
with respect to K. So there exists a natural isomorphism of homotopy
types γtop(|K|space) ∼= γtop(| gltop(K)|). The proof is complete after the
following sequence of natural isomorphisms:

γtop(|K|space) ∼= γtop(| gltop(K)|) ∼= |γglTop(gltop(K))|
∼= |cat−1 ◦ cat ◦ γglTop(gltop(K))|
∼= |cat−1 ◦ γflow(cat(gltop(K)))|
∼= |cat−1 ◦ γflow(|K|flow)|
= Ω(|K|flow).
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Here, the first isomorphism is by the results above, the second and fourth
are by Theorem 5.3.1, the fifth by Theorem 5.4.2, and the last equality by
definition of Ω. �
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Chevaleret, Case 7012, 75205 PARIS Cedex 13, France

gaucher@pps.jussieu.fr http://www.pps.jussieu.fr/˜gaucher/

This paper is available via http://nyjm.albany.edu/j/2008/14-4.html.

http://nyjm.albany.edu/j/2008/14-4.html
http://www.pps.jussieu.fr/~gaucher/
mailto:gaucher@pps.jussieu.fr
http://www.ams.org/mathscinet-getitem?mr=1365754
http://www.emis.de/cgi-bin/MATH-item?0822.18001
http://www.ams.org/mathscinet-getitem?mr=1300636
http://www.emis.de/cgi-bin/MATH-item?0906.18001
http://www.ams.org/mathscinet-getitem?mr=1712872
http://www.emis.de/cgi-bin/MATH-item?0923.55001
http://www.ams.org/mathscinet-getitem?mr=1702278
http://www.emis.de/cgi-bin/MATH-item?1086.18001
http://www.ams.org/mathscinet-getitem?mr=2177301
http://www.ams.org/mathscinet-getitem?mr=0651714
http://www.emis.de/cgi-bin/MATH-item?0909.55001
http://www.ams.org/mathscinet-getitem?mr=1650134
http://www.emis.de/cgi-bin/MATH-item?1017.55001
http://www.ams.org/mathscinet-getitem?mr=1944041
http://www.emis.de/cgi-bin/MATH-item?1059.55009
http://www.ams.org/mathscinet-getitem?mr=2030049
http://www.emis.de/cgi-bin/MATH-item?1034.68059
http://www.ams.org/mathscinet-getitem?mr=1994942
http://www.emis.de/cgi-bin/MATH-item?0949.55001
http://www.ams.org/mathscinet-getitem?mr=1711612

