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The Morava K-Theory Eilenberg–Moore
spectral sequence

John Carter

Abstract. In this article I consider the convergence of the Eilenberg–
Moore spectral sequence for Morava K-theory. This spectral sequence
can be constructed by applying Morava K-theory to D. L. Rector’s geo-
metric cobar construction of the Eilenberg–Moore spectral sequence. I
have shown that the Eilenberg–Moore spectral sequence for Morava K-
theory converges if the Eilenberg–Moore spectral sequence for ordinary
homology collapses at E2 and the homology satisfies certain finiteness
conditions.
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1. Introduction

This article concerns the convergence of the Eilenberg–Moore spectral
sequence for computing the Morava K-theory of a homotopy pullback. We
consider the special case associated to the path-loop fibration

ΩB → PB → B.

The calculation of the homology of loop spaces for generalized homology
theories such as Morava K-theory has been a long-standing problem. There
are two good reasons to suspect that the Eilenberg–Moore spectral sequence
could be a useful tool toward this end. First it can be constructed from a
tower of cofibrations and therefor can be used for any generalized homol-
ogy theory. (We will make particular use of D. L. Rector’s construction of
the Eilenberg–Moore spectral sequence from a tower of cofibrations.) And
second for a generalized homology theory with Künneth isomorphisms the
Eilenberg–Moore spectral sequence has a has a tractable (in theory anyway)
E2-page, namely E2 = CotorK∗(B)(K∗,K∗).

Historically, for the Eilenberg–Moore spectral sequence, good convergence
results are available in the case K∗ = H∗(−, Fp) [6, 7, 8, 25]. For other
cohomology theories with Künneth isomorphisms, namely where K∗ is one
of Morava’s K-theories, useful general convergence criterion have proven
elusive. Since the early 1980’s there have been a number of convergence
results for the Eilenberg–Moore spectral sequence for Morava K-theory. For
example in [29], Tamaki utilizes the Snaith splitting of ΩnΣnX to show
convergence for spaces of the form Ωn−1ΣnX. In [12], Jeanneret and Osse
consider the pullback diagram

X ×B Y ��

��

X

p

��
Y �� B

in which B is connected. They prove that the spectral sequence converges
to E∗(X ×B Y ) when p is a fibration and E∗(ΩB) is an exterior algebra on
finitely many odd-degree generators. In [17], Mahowald, Ravenel, and Shick
construct what they call the Thomified Eilenberg–Moore spectral sequence
which is based on Rector’s construction and L. Smith’s related construction.
In [24], Shipley considers the convergence of spectral sequence constructed
from cosimplicial spaces which includes Rector’s construction as a particular
example. More general criteria on the base space would go a long way toward
making the Eilenberg–Moore spectral sequence for Morava K-theory more
useful.

We will define the Eilenberg–Moore spectral sequence for Morava K-
Theory as the spectral sequence that arises from applying Morava K-theory
to the tower of cofibrations due to Rector.
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Theorem 1.1. The Eilenberg–Moore spectral for Morava K-Theory comes
from applying Morava K-Theory to the tower of cofibrations

(1.1) P (B) � Σ∞ΩB

��
...
��

Σ−nB∧n �� Pn(B)

��
...
��

Σ−3B∧3 �� P3(B)

��
Σ−2B∧2 �� P2(B)

��
P1(B) � Σ−1B.

and has
E2 = CotorK(n)∗(B)(K(n)∗,K(n)∗)

Under the assumption that the spectral sequence converges for ordinary
homology with field coefficients we are justified in writing P (B) � Σ∞ΩB.
Upon applying Morava K-theory to the tower (1.1), limn K(m)∗(Pn(B)) is
the obvious target of the spectral sequence, however convergence is by no
means guaranteed.

To see that we cannot expect the K(m)∗-based Eilenberg–Moore spectral
sequence to converge in general note that for the nth Eilenberg–Maclane
space, K(n, Z/p).

K(m)∗(K(n, Z/p)) =

{
�= 0 n ≤ m

0 n > m.

So, consider the K(m)∗-based Eilenberg–Moore spectral sequence for

B = K(m + 1, Z/p).

If one applies K(m)∗(−) to the tower (1.1), the target of the resulting spec-
tral sequence is the associated graded, G(−), of the inverse limit, i.e.,

G(lim K(m)∗(Pn(B))).

If this spectral sequence converged as hoped the target should be an associ-
ated graded group for

K(m)∗(ΩK(m + 1, Z/p)) = K(m)∗(K(m, Z/p)).
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But this is not the case since K(m)∗(B) = K(m)∗ and K(m)∗(B∧n) =
K(m)∗ but K(m)∗(ΩB) �= K(m)∗. That is the mth Morava K-theory does
not ‘see’ K(m + 1, Z/p) but it does ‘see’ K(m, Z/p) so all of the groups in
the Eilenberg–Moore spectral sequence are trivial but the hoped for target
is not. In this case the K(m)∗-based Eilenberg–Moore spectral sequence
clearly cannot converge to K(m)∗(ΩK(m + 1, Z/p)).

In this article I show that under some reasonable hypotheses on the base
space B, that this spectral sequence calculates the Morava K-theory of ΩB.
Specifically:

Theorem 1.2. Let B be a 1-connected CW complex with finitely many cells
in each dimension such that the Eilenberg–Moore spectral sequence for mod
p homology collapses at the E2 page and

Rank
(⊕

i

Hj−i(ΩB,K(m)i)
)

is not infinite for adjacent j. Then the K(m)∗-based Eilenberg–Moore spec-
tral sequence for B converges to K(m)∗(ΩB).

Here convergence is convergence in the sense of Boardman [4, Definition
5.2]. That is:

(1) The filtration exhausts G and there are isomorphisms E∞s ∼= Fs/Fs+1

for all s. (This alone is weak convergence.)
(2) The filtration of G is Hausdorff, i.e.,

⋂
s Fs = {0}.

The criteria for 1.2 come quite naturally from the method of proof which
might be of interest in its own right.

To get at the convergence question we apply the Atiyah–Hirzebruch spec-
tral sequence for K(n)∗ to all of the spaces in Rector’s tower. We are mo-
tivated here by the fact that the Atiyah–Hirzebruch spectral sequence for
K(n)∗ has E∞ term K(n)∗(B), so the inverse limit of the E∞ terms has the
same form as the Eilenberg–Moore spectral sequence for Morava K-theory.
This process gives rise to a tower of spectral sequences which gives rise to
some obvious questions:

(1) Let E be the Atiyah–Hirzebruch spectral sequence for K(m)∗(P (B)),
and E(n) the Atiyah–Hirzebruch sequence for K(m)∗(Pn(B)). Is the
spectral sequence E equal to lim E(n), the inverse limit of the spectral
sequences E(n)?

(2) If the answer to question one is yes, what relationship holds between
lim(K(m)∗(Pn(B))) and K(m)∗(P (B))?

(3) If we understand the answers to questions one and two, what does
this say about the convergence of the K(m)∗-based Eilenberg–Moore
spectral sequence for ΩB?

Notice that if the answer to the first of these questions is yes then, as-
suming the Atiyah–Hirzebruch spectral sequence for all of the spaces in the
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tower converge, we get a close relationship between, lim E(n)∞, an associ-
ated graded group for lim(K(m)∗(Pn(B))) and, E∞, an associated graded
group for K(m)∗(P (B)) = K(m)∗(Σ∞ΩB). The criteria of Theorem 1.2
are precisely the criteria that guarantee that lim E(n)∞ = E∞ as graded
groups, and they arise from a careful analysis of how differentials can lift
in a tower of spectral sequences. Once we have this result we can compare
the Eilenberg–Moore spectral sequence for Morava K-theory with the spec-
tral sequence that results from filtering lim E(n)∞ (an associated graded
group for K(m)∗(P (B)) = K(m)∗(Σ∞ΩB)) by the groups E(n)∞ which are
associated graded groups for K(m)∗(Pn(B)). This leads to our result and
practical criteria for the computation of the Morava K-theory of at least
some spaces.

1.1. A computation. It is important to note that the assumptions of 1.2
apply to some interesting spaces. For example this spectral sequence will
converge for any space where the loopspace has finite mod-p, homology
or has only even or only odd-dimensional homology in mod-p homology.
Examples include SU(m)/SU(n), BU, a product of odd spheres, any H-
space with homology or cohomology an exterior algebra etc. In all of these
cases the ordinary Eilenberg–Moore spectral sequence will collapse at E2

since the differential lowers degree by 1 and
⊕

i Hj−i(P (B),K(m)i) will be
concentrated in all even dimensions.

Example 1.3. As an example of a space whose Morava K-theory can be cal-
culated with the K(m)∗-based Eilenberg–Moore spectral sequence consider
Bm,n = SU(m)/SU(n). To see that Theorem 1.2 applies recall that

H∗(Bm,n) = E(b2n+1, b2n+3, . . . , b2m+1)

where |b2n+1| = 2n + 1. That is the homology of Bm,n is an exterior algebra
on generators in odd dimension. This implies that the Eilenberg–Moore
spectral sequence for ordinary homology is concentrated in even degrees
and hence collapses. Finally notice that Hp,q(ΩBm,n) is concentrated in even
dimensions and so is not infinite in adjacent dimensions, so that Theorem 1.2
applies.

It is known that for any multiplicative homology theory

h∗(Bm,n) = E(b2n+1, b2n+3, . . . , b2m+1),

so it is a primitively generated exterior algebra on odd-dimensional genera-
tors (see [2]). We show in this case Cotor is a polynomial algebra. To see
this first notice that although Cotor is defined as the dual of Tor, it can be
identified with Ext in this case. To simplify notation here let k = K(m)∗
i.e., k is a graded field.

Lemma 1.4. If P∗ is a free resolution of M such that A and M are of finite
type, then

CotorA(M,k) ∼= ExtA∗(M∗, k).
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Proof. Since A and M are of finite type, we can choose a free A-resolution
P∗ of finite type. Since linear duality of finite-dimensional vector spaces is
an exact functor, P ∗ is a free A∗-resolution of M∗. Then

ExtA∗(M∗, k) = H∗(homA∗(P ∗, k)) = H∗(homA∗(P ∗,homk(k, k)))
∼= H∗(homk(P ∗ ⊗A∗ k, k)) ∼= H∗((P�Ak)∗∗)
∼= H∗(P�Ak) = CotorA(M,k). �

A standard Ext calculation then gives the following [13, 14]:

Lemma 1.5. If E is a finitely generated primitive exterior algebra with
generators xi then

CotorE(k, k) = k(yi)
where deg(yi) = (1,deg(xi)).

The E2 page of the K(m)∗-based spectral sequence for computing ΩBm,n

is
CotorK(m)∗(Bm,n)(K(m)∗,K(m)∗) = k(yi)

deg(yi) = (1, bi).
Since K(m)∗(Bm,n) is concentrated in even degrees E2 = E∞. So

G(K(m)∗(Bm,n)) = k(yi).

Since it is not well-known, we begin by recalling Rector’s construction of
the Eilenberg–Moore spectral sequence.

1.2. Rector’s construction. The original motivation for Rector’s cosim-
plicial construction for the Eilenberg–Moore spectral sequence ([22]) was to
show how the Steenrod operations interact with the spectral sequence struc-
ture. But his construction also allows one to construct the Eilenberg–Moore
spectral sequence for generalized homology theories. Rector began with the
cosimplicial space construction associated to a pullback. His construction
proceeded as follows.

Assume B is a simply connected pointed space and start with a pullback
diagram,

Ef ��

��

E

p

��
X

f �� B.

Let
Δ : B → B × B

be the diagonal map. This is cocommutative, coassociative, and has a counit.
We can thus create a cosimplicial space G∗(X,B,E).

G0(X,B,E)
−→←−−→G1(X,B,E)

−→←−−→←−−→
G2(X,B,E) · · ·



Eilenberg–Moore spectral sequence 501

where
Gn(E,B,X) = E × Bn × X,

δt : Gs−1 → Gs for 0 � t � s is given by

δt(e, b1, b2, . . . , bs−1, x)

=

⎧⎪⎨⎪⎩
(e, f(e), b1, b2, . . . , bs−1, x) if t = 0
(e, b1, b2, . . . , bt, bt, bt+1, . . . , bs−1, x) if 1 � t � s − 1
(e, b1, b2, . . . , bs−1, p(x), x) if t = s,

and
σt(e, b1, . . . , bn, x) = (e, b1, . . . , bt−1, bt+1, . . . , bn, x).

For the pullback diagram above we have a natural weak homotopy equiva-
lence [8, 9.2]

Ef �w Tot(G∗(X,B,E))
From this he defined a sequence of cofibrations,

L0(B) → GN
1 (E,B,X) → L1(B)

L1(B) → GN
2 (E,B,X) → L2(B)

L2(B) → GN
3 (E,B,X) → L3(B)

...

Ln−1(B) → GN
n (E,B,X) → Ln(B).

Here GN∗ (E,B,X) is the normalized cosimplicial space (see [32, Definition
8.3.6] example) and Ln−1(B) is the cofiber of the induced map. This se-
quence of cofibrations induces an exact couple

D1
−p,q = Hq(Lp(B))

E1
−p,q = Hq(GN

p (E,B,X)).

Rector then showed that the spectral sequence associated to this exact cou-
ple is isomorphic to the Eilenberg–Moore spectral sequence. (A good source
for this is [30].)

In the language of spectra let G
N
n (E,B,X) and Ln(B) be the suspension

spectra associated to these spaces. Define the spectra

Es := Σ−sG
N
s (E,B,X)

Ps(B) := Σ−sLs(B).

At the level of spectra for s � 0, δ0 induces a map Ps(B) → Es giving a

cofiber sequence Ps(B) hs−→ Es
∂s−→ ΣPs+1(B), where ∂s is the projection

from the topological quotient of Gs by one subspace to the quotient by
a bigger subspace. One can obtain an exact couple and hence a spectral
sequence by applying any homology theory to this sequence of cofibrations.
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For the constructions in this paper we will specialize to the path-loop
fibration, i.e.,

ΩB ��

��

PB

��
∗ �� B.

For the path-loop fibration, Es and Ps(B) have a particularly nice form.
For s ≥ 0 there is a homology isomorphism [17]

H∗(Es) = Σ−sH∗(∗) ⊗ H∗(B∧s) = Σ−sH∗(B∧s)

where H denotes reduced homology. Since B is simply connected, the con-
nectivity of Es is at least s − 1. The theorem below is a translation of
Rector’s theorem [22].

Theorem 1.6. The Eilenberg–Moore spectral sequence comes from applying
homology to the tower of cofibrations

(1.2) P (B) � Σ∞ΩB

��
...
��

Σ−nB∧n �� Pn(B)

��
...
��

Σ−3B∧3 �� P3(B)

��
Σ−2B∧2 �� P2(B)

��
P1(B) � Σ−1B

and has
E2 = CotorH∗(B)(k, k) ⇒ H∗(ΩB).

Remark 1.7. In this formulation of the Eilenberg–Moore spectral sequence,
convergence is transparent when π1(B) = 0. Formally we know that a
spectral sequence of this form converges to limn H∗(Pn(B)). In this case
since the maps Pn(B) → Pn−1(B) are increasingly connective, the maps
H∗(Pn(B)) → H∗(Pn−1(B)) are isomorphisms over a greater range and so
the tower of homology groups is Mittag-Leffler. Therefore limn H∗(Pn(B)) =
0, so limn H∗(Pn(B)) ∼= H∗(P (B)). Though convergence is transparent, one
still has to compare it to Eilenberg and Moore’s original approach to prove
that it abuts to H∗(ΩX).



Eilenberg–Moore spectral sequence 503

For any generalized homology theory we can use the tower (1.1) to define
a spectral sequence.

Definition 1.8. The h∗-based Eilenberg–Moore spectral sequence is the
spectral sequence that results from applying h∗(−) to Rector’s tower of cofi-
brations, (1.1). Furthermore, if h∗(−) is a multiplicative homology theory
with a perfect Künneth theorem for B, then

E2 = Cotorh∗(B)(h∗, h∗).

Clearly this process will give rise to a spectral sequence defined by the
exact couple hq(Pl(B)) = Dl,q and hq(Σ−lB∧l) = El,q. This defines a right
half-plane spectral sequence with exiting differentials. Since colim Dl,∗ = 0
if the spectral sequence converges, it converges strongly to lim Dl,∗ [4, 6.1b].

1.3. K(m)∗-based Eilenberg–Moore spectral sequence. We review
the properties of Morava K-theory, K(m)∗, which are used in this paper.
Fix a prime p. For each m there is a spectrum K(m) with

π∗(K(0)) = K(0)∗ = Q

concentrated in degree 0, and

π∗(K(m)) = K(m)∗ = Z/p[vm, v−1
m ]

with |vm| = 2(pm − 1) for m > 0.
In addition K(m)∗(−) has a perfect Künneth theorem; that is

K(m)∗(X × Y ) = K(m)∗(X) ⊗ K(m)∗(Y ).

The spectrum K(m) is derived from complex cobordism and is character-
ized by the formal group of height m. For a definition and more complete
discussion of the properties of K(m)∗ see [34].

Lemma 1.9. If the K(m)∗-based Eilenberg–Moore spectral sequence con-
verges for a CW spectrum B, it converges strongly to lim K(m)q(Pl(B)).

Because the Morava K-theories have a perfect Künneth theorem

E2 = CotorK(m)∗(B)(K(m)∗,K(m)∗),

which in some cases will be amenable to calculation.
We would like this spectral sequence to converge to K(m)∗(ΩB) but it is

unclear when it does so. The main subject of this paper is to establish some
criteria which guarantee convergence to K(m)∗(ΩB).

Acknowledgements. I would like to thank my advisor Hal Sadofsky for
all of his help and Peter May who looked at and commented on an early
version of this paper.
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2. Analysis of the spectral sequence

Our goal is to give convergence conditions for the K(m)∗-based Eilenberg–
Moore spectral sequence. One major tool I will use for the analysis of the
Eilenberg–Moore spectral sequence is the Atiyah–Hirzebruch spectral se-
quence. The Atiyah–Hirzebruch spectral sequence is a spectral sequence
used to calculate generalized homology theories in terms of ordinary homol-
ogy. For a CW complex X, and a generalized homology theory h∗(−), this
spectral sequence has E2

p,q = Hp(X,hq(∗)) ⇒ hp+q(X). Similarly if X is a
spectrum and h∗(−) a generalized homology theory, the Atiyah–Hirzebruch
spectral sequence has E2

p,q = Hp(X,hq(∗)) ⇒ hp+q(X). See, for example,
[28, Chapter 15].

The Eilenberg–Moore spectral sequence for K(m)∗ comes from applying
K(m)∗(−) to a tower of cofibrations of spectra (from (1.1)). To analyze this
spectral sequence we consider the Atiyah–Hirzebruch spectral sequence for
each Pn(B) with

E2
p,q = Hp(Pn(B),K(m)q) ⇒ K(m)∗(Pn(B)).

This yields a tower of spectral sequences. We will use this tower to under-
stand K(m)∗(ΩB). To get information from this tower of spectral sequences
there are several things we would like to know.

(1) Let E be the Atiyah–Hirzebruch spectral sequence for K(m)∗(P (B)),
and E(n) the Atiyah–Hirzebruch sequence for K(m)∗(Pn(B)). Is the
spectral sequence E equal to lim E(n), the inverse limit of the spectral
sequences E(n)?

(2) If the answer to question one is yes, what relationship holds between
lim(K(m)∗(Pn(B))) and K(m)∗(P (B))?

(3) If we understand the answers to questions one and two, what does
this say about the convergence of the K(m)∗-based Eilenberg–Moore
spectral sequence for ΩB?

3. Inverse limits of spectral sequences

In this section we will show that the inverse limit (over n) of the Atiyah–
Hirzebruch spectral sequences for K(m)∗(Pn(B)) is the Atiyah–Hirzebruch
spectral sequence for K(m)∗(P (B)). First I will describe more specifically
what I mean by the inverse limit of the Atiyah–Hirzebruch spectral sequences
for K(m)∗(Pn(B)).

Let {E(n)} be a sequence of spectral sequences with maps of spectral
sequences E(n) → E(n − 1). We form the tri-graded abelian groups Er

p,q =
lim Er

p,q(Pn(B)), and define differentials by taking the inverse limit of the
differentials in the E(n). That is if dr(n) is the rth differential in E(n)
and (xn) ∈ Er

p,q then dr((xn)) = (dr(n)(xn)). The resulting object is a
spectral sequence provided that H(Er

p,q, d
r) = Er+1

p,q . This is equivalent
to showing that H(limn E(n)rp,q, d

r) = limn H(E(n)rp,q, d
r). To see when
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H(limn E(n)rp,q, d
r) = limn H(E(n)rp,q, d

r), notice that (Er
p,q, d

r) is a chain
complex. Thus we can apply the following theorem due to Milnor. See [32,
3.5.8] for details.

Theorem 3.1. Let · · ·C2 → C1 → C0 be a tower of chain complexes of
abelian groups satisfying the Mittag-Leffler condition and let C = limi Ci.
Then there is an exact sequence for each q:

0 → lim1 Hq+1(Ci) → Hq(C) → lim Hq(Ci) → 0.

So if lim1 Hq+1(Ci) = 0, the inverse limit of spectral sequences forms a
spectral sequence. If, for example, the Er

p,q are all finite-dimensional vector
spaces, then the hypothesis of Theorem 3.1. will hold for all (Er

p,q, d
r) and

all lim1 terms of the homology will be 0.
Let E(n) be the Atiyah–Hirzebruch spectral sequence for K(m)∗(Pn(B)).

It is not clear a priori that the inverse limit of Atiyah–Hirzebruch spectral
sequence is the Atiyah–Hirzebruch spectral sequence of the inverse limit.

Lemma 3.2. Let B be a 1-connected CW complex with finitely many cells
in each dimension. Take E(n) to be the Atiyah–Hirzebruch spectral sequence
for K(m)∗(Pn(B)) Then:

(1) lim E(n) is a spectral sequence.
(2) The canonical map from the Atiyah–Hirzebruch spectral sequence for

K(m)∗(ΩB) to lim E(n) is an isomorphism.

Proof. The idea is to use the fact that the Eilenberg–Moore spectral se-
quence converges for ordinary homology to identify the E2 terms of these
spectral sequences. First, since B has only finitely many cells in each di-
mension, the Er

p,q are all finite-dimensional vector spaces, and lim E(n) is
a spectral sequence. By construction we have a map from P (B) to each of
the Pn(B) that is compatible with the maps in the tower. This gives us a
map from the Atiyah–Hirzebruch spectral sequence for P (B) to the Atiyah–
Hirzebruch spectral sequence for each Pn(B) that is compatible with the
maps in the tower. By the universal property of the inverse limit we get
a map Φ from the Atiyah–Hirzebruch spectral sequence for P (B) to the
inverse limit of the Atiyah–Hirzebruch spectral sequences for the Pn(B).

Since B is 1-connected, the Eilenberg–Moore spectral sequence for ΩB
converges. This implies that limH∗(Pn(B)) = H∗(P (B)). Recall that
E(n)2p,q = Hp(Pn(B),K(m)q) and that P (B) = Σ∞ΩB. So

lim E(n)2p,q = lim Hp(Pn(B),K(m)q)

= Hp(P (B),K(m)q)

= Hp(ΩB,K(m)q).

Since the Atiyah–Hirzebruch spectral sequence for K(m)∗(ΩB) has

E2
p,q = Hp(ΩB,K(m)q)
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this implies that Φ is an isomorphism at the E2 page. The isomorphism
follows from the standard comparison theorem for spectral sequences. See
[4, 5.3] for a precise statement. �

4. The E∞ term of the inverse limit spectral
sequence

We would like to prove that lim K(m)∗(Pn(B)) = K(m)∗(P (B)). This
would give strong convergence on the K(m)∗-based Eilenberg–Moore spec-
tral sequence. However lim K(m)∗(Pn(B)) �= K(m)∗(P (B)) even under
some very restrictive conditions. So instead we will show that

lim G(K(m)∗(Pn(B))) = G(K(m)∗(P (B))).

First we must show that lim(E(n)∞) is the same as (lim E(n))∞. Recall
that for each Pn(B) there is an Atiyah–Hirzebruch spectral sequence that
converges strongly to K(m)∗(Pn(B)). In other words E(n)∞ is the asso-
ciated graded to K(m)∗(Pn(B)). It seems natural to guess that the E∞
term of a spectral sequence defined as the inverse limit of spectral sequences
would have as its E∞ term the inverse limit of the E∞ terms. We shall see
that this is not necessarily the case. First we must analyze lim(E(n)∞) and
(lim E(n))∞ and determine how they are related.

Proposition 4.1. Let B be a CW complex with finitely many cells in each
dimension. The canonical map Φ : (lim E(n))∞ → lim (E(n)∞) is onto.

This map is not one-to-one in general (see below).

Proof. Let (xn) be a class in lim (E(n)∞) with xn ∈ E(n)∞. Define Mn ∈
E(n)2 as Mn = {x : x = xn in E(n)∞}. Since B has only finitely many cells
in each dimension, this is a finite-dimensional vector space. We now have a
tower

��
...
��

Mk+2

��
Mk+1

��
Mk.

Since this is a tower of finite-dimensional vector spaces, lim Mn �= 0. This
gives an element (xn) ∈ (lim E(n))2 = (lim E(n)2) such that

Φ((xn)) = (xn). �
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We now show that Φ : (lim E(n))∞ → lim (E(n)∞) may not be one-to-
one. Let xn ∈ E2(n) with xn �→ xn−1. Suppose that xn ∈ im(drn) and
limn→∞ rn = ∞. Then (xn) is not a boundary in lim (E(n)) so (xn) �= 0 in
(lim E(n))∞ even though xn = 0 in E(n)∞ for each n (see Figure 1). Thus
(xn) �= 0 in (lim E(n))∞ but Φ(xn) = (xn) = 0.

(4.1) • • • • •

(xn) • • • •

• • • •

������������������� • •

• ��• • • • • •

���������������������������������

q

��

• • • • • • • •

����������������������������������������������

Figure 1. This diagram is meant to represent the superim-
posed pages of the Atiyah–Hirzebruch spectral sequence for
three of the Pn(B). The arrows shown are the differential hit-
ting xn in Pn(B). This illustrates that as n increases so may
the length of the differential hitting xn. If this trend holds
for all n then in the inverse limit spectral sequence there will
be no differential hitting (xn). This phenomenon is central
in both our convergence results and nonconvergence exam-
ples.

5. The E∞ term of the Eilenberg–Moore spectral
sequence for Morava K-theory

Recall the K(m)∗-based Eilenberg–Moore spectral sequence results from
applying K(m)∗(−) to Rector’s tower of cofibrations (1.1). Recall also that
if the spectral sequence converges, it has E∞ term [4, 6.1b]

G(lim Dl,∗) = G(lim K(m)∗(Pn(B))).

Under certain conditions we will show that G(lim Dl,∗) is an associated
graded of K(m)∗(P (B)) with an exhaustive Hausdorff filtration.

Lemma 5.1. If B has only finitely many cells in each dimension and

lim(E(n)∞) = (lim E(n))∞

then:
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(1) The canonical map Φ : K(m)∗(P (B)) → lim K(m)∗(Pn(B)) induces
a morphism of filtered groups which is an isomorphism of their re-
spective associated graded groups. That is

G(lim K(m)∗(Pn(B))) ∼= G(K(m)∗(P (B))).

The filtration on K(m)∗(P (B)) is exhaustive and Hausdorff.
(2) The canonical map K(m)∗(P (B)) → lim K(m)∗(Pn(B)) is one-to-

one.

Proof. First recall the E∞ term of the Atiyah–Hirzebruch spectral sequence
for K(m)∗(Pn(B)) is G(K(m)∗(Pn(B))). The filtration for lim(E(n)∞) is the
inverse limit of the filtrations for E(n)∞, that is

Fk = lim
n

(
Im

(
K(m)∗((Pn(B))(k)) i−→ K(m)∗(Pn(B))

))
.

This is an increasing filtration on limn K(m)∗(Pn(B)). In Lemma 3.2 we
proved that for B a simply connected CW complex with finitely many
cells in each dimension, the inverse limit spectral sequence is isomorphic
to the Atiyah–Hirzebruch spectral sequence for P (B). The latter spectral
sequence has E∞ term G(K(m)∗(P (B))), so we have a homomorphism of
filtered groups that is an isomorphism at the level of associated graded
groups. Finally the filtration on G(K(m)∗(P (B))) is the filtration from the
Atiyah–Hirzebruch spectral sequence for Pn(B) which is both exhaustive
and Hausdorff [4, 12.6]. �

Corollary 5.2. If B has only finitely many cells in each dimension and

lim(E(n)∞) = (lim E(n))∞,

then the K(m)∗-based Eilenberg–Moore spectral sequence for B converges.

Proof. Recall that convergence of a spectral sequence to a group G requires
that [4, Definition 5.2]:

(1) The filtration exhausts G and there are isomorphisms E∞s ∼= Fs/Fs+1

for all s. (This alone is weak convergence.)
(2) The filtration of G is Hausdorff.

Let Fn be the filtration for the K(m)∗-based Eilenberg–Moore spectral se-
quence. This spectral sequence formally converges to lim K(m)∗(Pn(X))
and has a canonical filtration

Fn = Ker (K(m)∗(lim Pn(X)) → K(m)∗(Pn(X)) .

Fn is a complete, exhaustive filtration for (lim K(m)∗(Pn(X)) [4, 5.4]. The
map Φ induces a filtration, F ′, on K(m)∗(ΩB) with

F ′n = Fn ∩ K(m)∗(ΩB).

Since Φ is one-to-one, ∩nF ′n = ∩nFn = 0, so F ′n is a Hausdorff filtration.
Also K(m)∗(ΩB) = F ′−1 so F ′n is exhaustive as well. Finally to see that
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Fn/Fn+1 = F ′n/F ′n+1 note that we have a commutative diagram,

(5.1) K(m)∗(ΩB) ��

Φ
��

K(m)∗(PkB)

∼=
��

limn K(m)∗(PnB)
ik �� K(m)∗(PkB)

where Φ is one-to-one. And thus, in Boardman’s sense, the spectral sequence
converges to K(m)∗(P (X)). �

6. Results

6.1. Main theorem.

Theorem 6.1. Let B be a 1-connected space defined by a CW complex with
finitely many cells in each degree such that the Eilenberg–Moore spectral
sequence for ordinary homology collapses at the E2 page and

Rank
(⊕

i

Hj−i(ΩB,K(m)i)
)

is not infinite for consecutive values of j. Then the Morava K-theory Eilen-
berg–Moore spectral sequence for B converges to K(m)∗(ΩB).

Recall that
⊕

i Hj−i(ΩB,K(m)i) consists of all elements of total degree
j on the E2 page of the Atiyah–Hirzebruch spectral sequence for ΩB.

Proof. We consider the unraveled exact couple that forms the Eilenberg–
Moore spectral sequence for ordinary homology.
(6.1)

...

i

��
H∗(Σ−nB∧n)

jn

�� H∗(Pn(B))
kn

��

in
��

H∗(Σ−nB∧n+1)

H∗(Σ−n+1B∧n−1)
jn−1

�� H∗(Pn−1(B))
kn−1

��

in−1

��

H∗(Σ−n+1B∧n)

H∗(Σ−n+2B∧n−2)
jn−2

�� H∗(Pn−2(B))
kn−2

��

in−2

��

H∗(Σ−n+2B∧n−1)

...

Recall that d1 = k ◦ j and dn is constructed by applying j, lifting through
in−1, and applying k.
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Represent a permanent cycle in the Atiyah–Hirzebruch spectral sequence
for K(m)∗(ΩB) by (xn) where xn ∈ E(n)2. We are using Lemma 3.2 which
identifies the Atiyah–Hirzebruch spectral sequence for K(m)∗(ΩB) with the
inverse limit of Atiyah–Hirzebruch spectral sequences for K(m)∗(PnB).

We wish to construct our proof by showing that under our hypothesis,
the hypotheses of Corollary 5.2 hold. We need to show that under the above
assumptions if for all n, xn = 0 ∈ E(n)∞ then (xn) = 0 ∈ (lim E(n))∞. By
abuse xn represents both an element of the E2 page which is a permanent
cycle, and its class on the E∞ page. In short we need to rule out something
like the situation described by Diagram (4.1). The key fact here is that, by
assumption, the only nontrivial differential in the Eilenberg–Moore spectral
sequence is d1.

Suppose din(yn) = xn in the Atiyah–Hirzebruch spectral sequence for
K(m)∗(PnB) where the in are increasing monotonically. If we can show that
limn→∞ in is finite, then we will have shown that (xn) = 0 in (lim E(n))∞.
We investigate what circumstances can lead to in+1 > in. Since we are really
worried about in+1 > in, for infinitely many n, we may begin by assuming
n is large. In particular, we take advantage of the fact that our hypotheses
guarantee that the Atiyah–Hirzebruch spectral sequence for K(m)∗(PnB)
stabilizes in any fixed dimension for n sufficiently large. So with out loss
of generality, assume n is large enough so that H∗(Pn+1) → H∗(Pn) is an
isomorphism in the dimension of xn.

There are two possible ways to have in+1 > in: either yn does not lift
to yn+1, and xn+1 is in the image of a longer differential, or there is a lift
of yn, say ỹn, but ỹn supports a shorter differential than din . These two
situations are summarized graphically in Diagram (6.2) and Diagram (6.3)
in Figures 2 and 3, respectively.

The situation described under (6.2) does not happen under our hypothe-
ses. To see why, assume yn ∈ E(n)2 does not lift to a yn+1 ∈ E(n + 1)2.
This implies kn(yn) = b �= 0 ∈ H∗(Σ−nB∧n+1). Let yn−s be the image of yn

in H∗(P (n−s)). Choose s so that yn−s �= 0 in H∗(P (n−s)) but yn−s−1 = 0
in H∗(P (n − s − 1)). Then yn−s = jn−s(α). This shows ds+1(α) = b in
the Eilenberg–Moore spectral sequence for ΩB. But since d1 is the only
nontrivial differential in that Eilenberg–Moore spectral sequence, ds+1 = 0
if s > 0. So b must be 0 on the Es+1 page and so it must be 0 on the E2

page of the Eilenberg–Moore spectral sequence. Choose a so that d1(a) = b,
and let y′n = jn(a). Let λn = yn − y′n, and notice that k(λn) = 0 so λn lifts
to λn+1 ∈ P (n + 1) with i(λn+1) = λn. Finally

din(λn) = din(yn − y′n) = din(yn) − din(jn(a)) = din(yn) = xn,

and so din(λn+1) = xn+1 Here we are using the assumption that n is large
enough so that xn+1 is determined by xn. So the situation described in
Diagram (6.2) cannot happen.
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(6.2) xn+1

��

i

��

q

��

yn+1

din+1

��

xn

yn

din

		�����������

��

q

��

Figure 2. This is an illustration of elements on the
E2 pages of the Atiyah–Hirzebruch spectral sequences for
K(m)∗(Pn+1(B)) and K(m)∗(Pn(B)) with higher differen-
tials superimposed. In this diagram yn does not lift and
yn, xn ∈ E(n)2 while xn+1, yn+1 ∈ E(n + 1)2.

The situation described in Diagram (6.3) can happen. For (xn) to be
nonzero in (lim E(n))∞ it would have to happen for infinitely many n. Sup-
pose this is the case: let (xn) ∈ (lim E(n))2 such that xn = 0 ∈ E(n)∞
for all n with (xn) �= 0 ∈ (lim E(n))∞. Also let xn ∈ Hj−i(Pn(B),K(m)i).
Recall that in the Atiyah–Hirzebruch spectral sequence for homology the
differential lowers total degree by one, so that all elements that can support
a differential with image xn are in

⊕
p+q=j+1 Hp(Pn(B),K(m)q). In the

above proof for the impossibility of the scenario in Diagram (6.2) we show
that if an element yn on the E2 page of the Atiyah–Hirzebruch spectral
sequence for Pn(B) supports a differential, there is an element on the E2

page of the Atiyah–Hirzebruch spectral sequence for Pn+1(B) that supports
a differential with image xn+1. As a consequence each yn ∈ E(n) gives rise
to an element (yn) ∈ (lim E(n))2. This means that under the assumption
that the situation described in Diagram (6.3) happens an infinite number
of times the rank of

⊕
p+q=j+1 Hp(P (B),K(m)q) is infinite. Furthermore

since each yn supports a differential, and the in are increasingly connective,
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(6.3) xn+1

zn+1

ỹn

da		�����

��

i

��

q

��

yn+1

din+1





xn

yn

din

����������������

��

q

��

Figure 3. This is an illustration similar to Diagram 6.2, but
in this case yn does lift but yn+1 is 0 on the E(n)in page of
the Atiyah–Hirzebruch spectral sequence for K(m)∗(Pn+1B).
In this diagram yn, xn ∈ E(n)2 while xn+1, yn+1, ỹn, zn+1 ∈
E(n + 1)2.

(yn) supports a differential in lim (E(n)). One consequence of this is that
for each yn ∈ (lim E(n))2 there is an xn ∈ (lim E(n))2. Since the differential
lowers dimension by one, if yn is in total degree j + 1, xn is in total degree
j. As a result the rank of

⊕
p+q=j Hp(P (B),K(m)q) would also be infinite.

This contradicts the assumptions of Theorem 6.1 so the situation described
in Diagram (6.3) can happen at most a finite number of times.

We have shown that under the assumptions of Theorem 6.1,

G(lim Dl,∗) = G(lim K(m)∗(Pn(B)))

so by Lemma 5.1 the K(m)∗-based Eilenberg–Moore spectral sequence con-
verges. �

6.2. Secondary result.

Theorem 6.2. Let B be a space defined by a finite CW complex such that the
Eilenberg–Moore spectral sequence for ordinary homology collapses at the E2
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page and the Atiyah–Hirzebruch spectral sequence for Morava K-theory for
Pn(B) collapses at the Ek page for all n and some fixed k. Then the Morava
K-theory Eilenberg–Moore spectral sequence for B converges to K(m)∗(ΩB).

We use the following lemma. (The proof is not given but hopefully obvi-
ous.)

Lemma 6.3. For any space B, if the K(m)∗ Atiyah–Hirzebruch spectral
sequence for B collapses then the Atiyah–Hirzebruch spectral sequence for
B∧n also collapses.

Proof. As we have seen, the K(m)∗-based Eilenberg–Moore spectral se-
quence converges under any conditions which rule out the scenarios described
by Diagrams (6.2) and (6.3) occurring an infinite number of times. Since
the Eilenberg–Moore spectral sequence for ordinary homology collapses at
E2, We know that Diagram (6.2) cannot occur by our previous argument.
It suffices to prove that the situation described by Diagram (6.3) can oc-
cur at most a finite number of times, but this is clear since we know that
the longest differential in the Atiyah–Hirzebruch spectral sequence for any
Pn(B) is of length k − 1. So we have shown that under the assumptions of
Theorem 6.1,

G(lim Dl,∗) = G(lim K(m)∗(Pn(B)))
so by Lemma 5.1 the K(m)∗-based Eilenberg–Moore spectral sequence con-
verges. �
Remark 6.4. In practice it would be very hard to verify that the Atiyah–
Hirzebruch spectral sequence for all Pn(B) collapses at Ek for a given k. As
we will show in a sequel to this paper even if the Atiyah–Hirzebruch spec-
tral sequence for B has only 1 differential the Atiyah–Hirzebruch spectral
sequence for Pn(B) can have many nontrivial differentials.
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