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Cells and constructible representations in
type B

Thomas Pietraho

Abstract. We examine the partition of a finite Coxeter group of type B
into cells determined by a weight function L. The main objective of these
notes is to reconcile Lusztig’s description of constructible representations
in this setting with conjectured combinatorial descriptions of cells.
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1. Introduction

Consider a finite Coxeter group W together with a weight function L :
W → Z, as in [15]. Every weight function is specified by its values on
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the simple reflections in W and defines an Iwahori–Hecke algebra H by
explicit generators and relations. Furthermore, following Lusztig, a weight
function determines a partition W into left, right, and two-sided cells, each
one of which carries representations of H and W [15]. Their role in the
representation theory of reductive algebraic groups over finite or p-adic fields
is described in Chapter 0 of [15]. Cells also arise in the study of rational
Cherednik algebras and the Calogero–Moser space (see [11] and [10]).

Left cell representations of W are intimately related to its constructible
representations; that is, the minimal class of representations of W which
contains the trivial representation and is closed under truncated induction
and tensoring with sign. In fact, left-cell and constructible representations
coincide when L is the length function on W (see [14]). With the additional
stipulation that the conjectures (P1)–(P15) of [15] hold, M. Geck has shown
this to be true for general weight functions as well ([6]).

Left cells are well understood for dihedral groups and Coxeter groups of
type F4. We focus our attention on the remaining case of Coxeter groups of
type Bn. The weight function is then specified by two integer parameters a
and b:

�

b
� � �� � �

a a a

Given a, b �= 0, we may assume both are positive by [9](5.4.1), and write
s = b

a for their quotient. Parameterizations of the left, right, and two-sided
cells of W have been obtained by Garfinkle [5] in the equal parameter case
s = 1, by Lusztig [13] and Bonnafé, Geck, Iancu, and Lam [3] for s = 1

2

and s = 3
2 , and Bonnafé–Iancu [2] and Bonnafé [1] in the asymptotic case

s > n−1. Furthermore, a description for the remaining values of s has been
conjectured by Bonnafé, Geck, Iancu, and Lam in [3]. On the other hand,
constructible representations of W were already described by Lusztig for all
values of s by relying on conjectures (P1)–(P15) of [15].

The above parametrizations of cells in type Bn can be stated in terms
of families of standard domino tableaux of arbitrary rank. Reconciling this
description of cells with Lusztig’s parametrization of constructible represen-
tations is therefore a natural question and is the main purpose of this paper.
We focus our attention on the case s ∈ N, excluding the cases for which the
left cell and constructible representations are conjectured to be irreducible.
In this setting, our main result shows the consistency of Lusztig’s conjectures
(P1)–(P15) with the conjectural descriptions of cells. As corollaries to this
work, we amend the original conjectural description of two-sided Kazhdan–
Lusztig cells in [3], and examine under what circumstances Lusztig’s notion
of special representation can exist in the unequal parameter case.

The paper is organized as follows. Section 2 defines cells in unequal
parameter Hecke algebras and summarizes the requisite combinatorics. In
Section 3, we examine the conjectural combinatorial description of cells in
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Weyl groups of type Bn and its consequences. Finally, Section 4 connects
this work with constructible representations.

2. Definitions and preliminaries

We begin by defining Kazhdan–Lusztig cells for unequal parameter Hecke
algebras. The rest of the section is devoted to the combinatorics pertinent
to their conjectured parametrization in type Bn. Our main goal is to de-
scribe certain properties of cycles in a domino tableau, first on the level of
partitions, and then on the level of symbols.

2.1. Kazhdan–Lusztig cells. Let (W,S) be a Coxeter system with weight
function L : W → Z which takes positive values on all s ∈ S. Define H to
be the generic Iwahori–Hecke algebra over A = Z[v, v−1] with parameters
{vs | s ∈ S}, where vw = vL(w) for all w ∈ W . The algebra H is free over
A and has a basis {Tw |w ∈ W} in terms of which multiplication takes the
form

TsTw =
{

Tsw if �(sw) > �(w), and
Tsw + (vs − v−1

s )Tw if �(sw) < �(w).

for s ∈ S and w ∈ W . As in [15](5.2), it is possible to construct a Kazhdan–
Lusztig basis of H which we denote by {Cw | w ∈ W}. For x, y ∈ W and
some hxyz ∈ A, multiplication in H takes the form

CxCy =
∑
z∈W

hxyzCz.

Definition 2.1. ([15](8.1)) Fix (W,S) a Coxeter system with a weight func-
tion L.

(1) We will say w′ ≤L w if there exists s ∈ S for which Cw′ appears
with a nonzero coefficient in CsCw and reuse the same notation ≤L
for the transitive closure of this binary relation. The equivalence
relation associated with the preorder ≤L will be denoted by ∼L and
its equivalence classes will be called Kazhdan–Lusztig left cells of W .

(2) We will say w′ ≤R w iff w′−1 ≤L w−1, write ∼R for the correspond-
ing equivalence relation and call its equivalence classes the Kazhdan–
Lusztig right cells of W .

(3) Finally, we define ≤LR as the pre-order generated by ≤L and ≤R,
write ∼LR for the corresponding equivalence relation and call its
equivalence classes the Kazhdan–Lusztig two-sided cells of W .

Each Kazhdan–Lusztig cell carries a representation of the Iwahori–Hecke
algebra H. We reconstruct the definition of [15](8.3). If C is a Kazhdan–
Lusztig left cell and w ∈ C, then

[C]A =
⊕

w′≤Lw

ACw′
/ ⊕

w′≤Lw,w′ /∈C

ACw′,
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is a quotient of two left ideals in H and therefore is a left H-module. The set
[C]A does not depend on the specific choice of w ∈ C, is free over A, and has
a basis {ew | w ∈ C} indexed by elements of C where ew is the image of Cw

in the above quotient. Elements of H act on [C]A via Cxey =
∑

z∈C hxyzez

for x ∈ W and y ∈ C. Finally, by restricting to scalars, [C]A gives rise to a
W -module which we denote by [C]. The situation is similar for right cells.
If D is a Kazhdan–Lusztig two-sided cell and w ∈ D, then

[D]A =
⊕

w′≤LRw

ACw′
/ ⊕

w′≤LRw,w′/∈D

ACw′ ,

is a quotient of two two-sided ideals of H and therefore is a H-bimodule.
The set [D]A does not depend on the specific choice of w ∈ D, is free over
A, and has a basis {ew | w ∈ D} indexed by elements of D where ew is the
image of Cw in the above quotient. Again by restricting to scalars, [D]A
gives rise to a W -module which we denote by [D].

2.2. Partitions. Let p = (p1, p2, . . . , pk) be a partition of m with the con-
vention p1 ≥ p2 ≥ · · · ≥ pk > 0. We will routinely identify a partition p
with its Young diagram Yp, or a left-justified array of boxes whose lengths
decrease from top to bottom. Thus the partition (4, 3, 3, 1) = (4, 32, 1) will
correspond to the Young diagram

If the Young diagram of a partition can be tiled by dominos, we will say
that the underlying partition is of rank zero. In general, suppose that we can
remove a domino from a Young diagram in such a way that what remains
is another Young diagram justified at the same row and column. Repeating
this process starting with a partition p will eventually terminate, and the
reminder will be a Young diagram of a partition (r, r − 1, r − 2, . . . , 1) for
some r ≥ 0. We will write p ∈ Pr and say that p is of rank r. The rank of a
partition is unique; each partition of m belongs to Pr for exactly one value
of r. The core of p is the triangular partition (r, r − 1, r − 2, . . . , 1).

Let sij denote the square in row i and column j of a Young diagram and
extend this notion somewhat by letting i and j take values that may not
describe squares in the Young diagram. We define two sets of squares related
to the Young diagram of a partition p.

Definition 2.2. For a partition p ∈ Pr and its corresponding Young dia-
gram Yp, consider squares sij such that i+ j ≡ r (mod 2), i+ j > r +1, and
either the addition of sij to Yp or the removal of sij from Yp yields another
Young diagram. Among these, we will say
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• sij ∈ C(p) iff i is odd.
• sij ∈ H(p) iff i is even.

We will write HC(p) for the union C(p)∪H(p). Furthermore, we define sets
HC∗(p), C∗(p), and H∗(p) exactly as above, but requiring i + j > r + 2
instead. We will say sij ∈ HC(p) is filled if it lies in Yp itself, otherwise, we
will say it is empty. Finally, let γp = |{sij ∈ Yp | i + j = r + 2}| and κp be
the number of filled squares in HC(p).

Fact 2.1. We have the following easy consequences:
(1) The element of HC(p) with the smallest row number lies in C(p).
(2) Elements of C(p) and H(p) alternate with increasing row number.
(3) |H(p)| ≤ |C(p)|.
(4) Both γp = r + 1 as well as κp �= 0 imply that HC(p) = HC∗(p).

Example 2.3. In the Young diagram of the rank 2 partition p = (4, 32, 1),
these sets are C(p) = C∗(p) = {s15, s33, s51} and H(p) = H∗(p) = {s24, s42}.
Definition 2.4. Let sij, skl, and smn ∈ HC(p). We will say that smn lies
between sij and skl iff m is between i and k and n is between j and l (where
m is between i and k iff i ≤ m ≤ k or i ≥ m ≥ k). We will say that two
squares of HC(p) are adjacent in HC(p) if no other square of HC(p) lies
between them.

Remark 2.5. The set HC(p) coincides with the union of the sets of corners
and holes of p as defined for r = 0 and 1 in [4]. When r = 0, C(p) is
the set of corners and H(p) is the set of holes; however, our definitions
diverge from Garfinkle’s for r = 1. This is not unexpected: when r = 1, the
left cells identified in Conjecture 4.1 are not the ones studied by Garfinkle.
Their parametrization depends on a different choice of variable squares, see
Remark 2.7.

Remark 2.6. The set HC∗(p) is precisely the union of addable and remov-
able squares as defined in [11]. Following [11], the heart of p will be the
partition obtained from p by removing all filled squares of HC∗(p).

2.3. Tableaux. Consider a partition p. A domino tableau of shape p is a
Young diagram of p whose squares are labeled by a set M of nonnegative
integers in such a way that every positive integer labels exactly two adjacent
squares and all labels increase weakly along both rows and columns. A
domino tableau is standard if M ∩ N = {1, . . . , n} for some n, and of rank r
if p ∈ Pr and 0 labels the square sij iff i+ j < r + 2. We will write SDTr(p)
for the family of all standard domino tableaux of rank r and shape p and
SDTr(n) for the family of all standard domino tableaux of rank r which
contain exactly n dominos.

The moving-though operation on a domino tableau defines another domino
tableau whose labels agree on a certain subset of its squares. In a domino
tableau of rank r, we will say that the square sij in row i and column j is
variable iff i + j ≡ r (mod 2); otherwise, we will say it is fixed.
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Remark 2.7. Our choice of fixed and variable squares coincides with that
of [4] when r = 0 but not when r = 1. As mentioned in Remark 2.5, in this
latter case the left cells identified in Conjecture 4.1 are not the ones studied
by Garfinkle and their description relies on the above assignment of fixed
and variable squares.

Consider a domino D = D(k, T ) with label k ∈ N in a domino tableau
T of rank r and write suppD(k, T ) for the set of its underlying squares.
Then suppD(k, T ) contains a fixed and a variable square. Suppose that
we wanted to create another domino tableau by changing the label of the
variable square of D in a way that preserved the labels of all fixed squares
of T while perturbing T minimally. As in [4], this leads to the notion of a
cycle in a domino tableau; we define it presently.

Definition 2.8. Suppose that suppD(k, T ) = {sij, si+1,j} or {si,j−1, sij}
and the square sij is fixed. Define D′(k) to be a domino labeled by the
integer k with suppD′(k, T ) equal to

{sij , si−1,j} if k < label si−1,j+1, and

{sij , si,j+1} if k > label si−1,j+1.

Alternately, suppose that suppD(k, T ) = {sij, si−1,j} or {si,j+1, sij} and the
square sij is fixed. Define suppD′(k, T ) to be

{sij , si,j−1} if k < label si+1,j−1, and

{sij , si+1,j} if k > label si+1,j−1.

Definition 2.9. The cycle c = c(k, T ) through k in a domino tableau T
of rank r is a union of labels of dominos in T defined by the condition
that l ∈ c if either l = k, or either suppD(l, T ) ∩ suppD′(m,T ) �= ∅ or
suppD′(l, T ) ∩ suppD(m,T ) �= ∅ for some D(m,T ) ∈ c.

We will refer to the set of dominos with labels in a cycle c as the cycle c
itself. For a domino tableau T of rank r and a cycle c in T , define MT (T, c)
by replacing every domino D(l, T ) ∈ c by the corresponding domino D′(l, T ).
It follows that MT (T, c) is domino tableau, and in general, the shape of
MT (T, c) will either equal the shape of T , or one square will be removed
(or added to the core) and one will be added [4](1.5.27). A cycle c is called
closed in the former case and open in the latter. We will write OC(T ) for the
set of open cycles in T . For c ∈ OC(T ), we will write Sb(c) for the square
that is either removed from the shape of T or added to the core of T by
moving through c. Similarly, we will write Sf (c) for the square that is added
to the shape of T . Note that Sb(c) and Sf (c) are always variable squares.
Consistent with Garfinkle’s notation in [5], we will write OC∗(T ) for the set
of noncore open cycles in T , that is, cycles for which both Sb(c) and Sf (c)
lie in HC∗(p) with p = shapeT . For a cycle in OC∗(T ), Sb(c) ∈ C∗(p) and
Sf (c) ∈ H∗(p), or Sb(c) ∈ H∗(p) and Sf (c) ∈ C∗(p).
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Let C be a set of cycles in a domino tableau T of rank r. According
to [4](1.5.29), moving through disjoint cycles in a domino tableau are in-
dependent operations, allowing us to unambiguously write MT (T, C) for
the domino tableau obtained by simultaneously moving-through all of the
cycles in the set C. If C ⊂ OC∗(T ), then MT (T, C) is another domino
tableau of rank r, C ⊂ OC∗(MT (T, C)), and MT (MT (T, C), C) = T . If
C = OC(T )\OC∗(T ), then MT (T, C) can be interpreted as a domino tableau
of rank r+1 and comes endowed with new sets of fixed and variable squares
and consequently, cycles.

Definition 2.10. For a standard domino tableau of rank r, we define the
cycle structure set of T as the set of ordered pairs cs(T ) consisting of the
beginning and final squares of every cycle in T and cs∗(T ) as the restriction
of this set to noncore open cycles. That is:

cs(T ) = {(Sb(c), Sf (c)) | c ∈ OC(T )}, and

cs∗(T ) = {(Sb(c), Sf (c)) | c ∈ OC∗(T )}.
Finally, write c̃s(T ) and c̃s∗(T ) for the sets obtained from the above by
changing their underlying ordered pairs into unordered pairs.

We would like a similar notion for partitions that does not directly rely on
an underlying tableau. First note that if p = shapeT , then HC(p) consists
exactly of the κp beginning and κp final squares of noncore open cycles of T ,
the γp final squares of core open cycles of T , and the r+1−γp empty squares
adjacent to the core of Yp; consequently, we have |HC(p)| = 2κp + r + 1.

Definition 2.11. Consider p ∈ Pr. A cycle structure set σ for p, or alter-
nately, for HC(p), is a pairing of squares in H∗(p) with squares in C∗(p) for
which:

(1) Exactly γp squares remain unpaired.
(2) Every square c ∈ HC∗(p) which lies between a and b for a pair {a, b} ∈

σ must be paired with another square which lies between a and b.

Example 2.12. The partition (4, 32, 1) of rank r = 2 admits exactly four
cycle structure sets: {{s15, s24}}, {{s24, s33}}, {{s33, s42}}, and {{s42, s51}}.

Note that a cycle structure set for p contains exactly κp pairs. Cycle
structure sets for tableaux and partitions are closely related. Given a stan-
dard domino tableau T of rank r, the set σ = c̃s∗(T ) is a cycle structure
set for the partition p = shape(T ) ∈ Pr by elementary properties of open
cycles. Conversely, as detailed in the following proposition, a cycle structure
set for an arbitrary partition p always arises as a cycle structure set for some
domino tableau.

Proposition 2.13. If p ∈ Pr and σ is a cycle structure set for p, then there
exists a standard domino tableau T of rank r with c̃s∗(T ) = σ.
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Proof. We proceed by induction on the number of pairs in σ. If σ is empty,
then any T ∈ SDTr(p) suffices. Otherwise, consider a pair {s, s′} ∈ σ.
By Definition 2.11(2), s and s′ can be chosen in such a way that they are
adjacent in HC(p). Lemma 3.4 of [11] implies that there exists a standard
domino tableau T ′ of rank r and a noncore open cycle c in T ′ with Sb(c) = s
and Sf (c) = s′ whose dominos form a rim ribbon R of T ′. If R contains t
dominos, then by the proof of [11](3.4), T ′ can be chosen in such a way that
the dominos in T ′\R are labeled by elements of the set {1, 2, . . . , n−t}. Now
by Definition 2.11(2), σ \ {s, s′} is either empty or contains a pair {s′′, s′′′}
adjacent in HC(shape(T ′ \R)) and the proposition follows by induction. �
Proposition 2.14. If p ∈ Pr and S is a subset of HC∗(p) consisting of κp

elements, then there exists a cycle structure set σ for p where each pair in
σ contains exactly one element of S.

Proof. When |S| = κp = 0, the only cycle structure set for p is empty.
Assuming that |S| = κp ≥ 1, Fact 2.1 implies HC(p) = HC∗(p). Therefore,
we can find a pair {s, t} of squares adjacent in HC(p) with s ∈ S and t /∈ S.
Again by Fact 2.1, C(p) and H(p) alternate with increasing row number and
consequently one of s and t must lie in C∗(p) and the other in H∗(p). Working
recursively, this pair can be extended to a pairing of elements of H∗(p) with
elements of C∗(p) which satisfies the properties of a cycle structure set. �

2.4. Symbols. A symbol of defect s is an array of numbers of the form

Λ =
(

λ1 λ2 . . . λN+s

μ1 μ2 . . . μN

)
where {λi} and {μi} are, perhaps empty, strictly increasing sequences of
nonnegative integers. Define an equivalence relation on the set of symbols
of defect s by letting Λ be equivalent to the symbol

Λ′ =
(

0 λ1 + 1 λ2 + 2 . . . λN+s + N + s
0 μ1 + 1 . . . μN + N

)
.

We will write Syms for the set of equivalence classes of symbols of defect s.
It is possible to define a map from partitions to symbols via the following
procedure. Given a partition p = (p1, p2, . . . , pk), form an extended partition
p� = (p1, p2, . . . , pk′) by adding an additional zero term to p if the rank of
p has the same parity as k. The set {pi + k′ − i}k′

i=1 can be divided into
odd and even parts {2μi + 1}N

i=1 and {2λi}N+s
i=1 from which the symbol Λp

corresponding to p can be constructed by arranging the λi and μi as above.
We will write p̃i for the entry of Λp determined from the part pi of p�.

Let P2 be the set of ordered pairs of partitions, and write P2(n) for the
subset of P2 where the sum of parts of both partitions sum to n. Given
a symbol of defect s, it is also possible to construct an ordered pair of
partitions. With Λ as above, let dΛ = {λi−i+1}N+s

i=1 and fΛ = {μi−i+1}N
i=1.

The following is an immediate consequence of [12](2.7).



Cells and constructible representations 419

Theorem 2.15. The maps p → Λp and Λ → (dΛ, fΛ) define bijections

Pr → Symr+1 → P2

for all values of r. Furthermore, the composition of these two maps yields a
bijection between Pr(n) and P2(n).

Since the set P2(n) parameterizes the irreducible representations of the
Weyl group Wn of type Bn, the above can be used to identify irreducible
Wn-modules with symbols of fixed defect, as in [15], or with partitions of
fixed rank. It is the latter interpretation that we employ in the following
sections. We will write [p] and [Λ] for the irreducible Wn-modules associated
to the partition p and the symbol Λ in this manner.

We would like to understand the correspondence of Theorem 2.15 in
slightly greater detail. For a symbol Λ, we write Z1(Λ) for the set of en-
tries that appear once among its rows, and Z2(Λ) for the set of entries that
appear twice.

Lemma 2.16. The set Z1(Λp) of single entries of the symbol Λp can be
identified with the parts of p� whose rows in the Young diagram Yp end
in a, perhaps empty, square of HC(p). This establishes a bijective map
Z1(Λp) ↔ HC(p).

Proof. We first show that elements of Z2(Λp) arise from the rows of Yp

which do not terminate in a square of HC(p). Note that z ∈ Z2(Λp) implies
z = p̃i = p̃i+1 for some i, and furthermore pi must equal pi+1. A parity
argument shows that if the row of pi in Yp ends in a fixed square, p̃i will
differ from p̃i+1. Hence every z ∈ Z2(Λp) must correspond to a pair of
consecutive equal parts pi, pi+1 of p� where the row of pi in Yp ends in a
variable square. It is easy to check that p̃i = p̃i+1 for such a pair. Hence
elements of Z2(Λp) correspond to pairs of consecutive equal rows of Yp, the
first of which ends in a variable square. Such pairs yield precisely the rows of
Yp which do not terminate in a square of HC(p) and the lemma follows. �

3. Combinatorial cells

This section examines equivalence relations on the Weyl group of type Bn

defined via a Robinson–Schensted algorithm and standard domino tableaux.
As stated more explicitly in the next section, the equivalence classes which
they define are expected to coincide with unequal parameter Kazhdan–
Lusztig cells in type Bn.

3.1. Robinson–Schensted algorithms. The Weyl group Wn of type Bn

is the group of permutations of the set {±1,±2, . . . ,±n} which commute
with the involution i → −i. Generalized Robinson–Schensted maps Gr :
Wn → SDTr(n) × SDTr(n) defined in [4] and [22] construct bijections be-
tween elements of the Weyl group of type Bn and same-shape pairs of stan-
dard domino tableaux of rank r for each nonnegative integer r. We will
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write Gr(w) = (Sr(w), Tr(w)) for the image of an element w and refer to
the components of the ordered pair as the rank r left and right tableaux of
w.

There is a natural description of the relationship between the bijections
Gr for differing r described in terms of the moving though map for open
cycles, see [18]. We also point out that for r sufficiently large, Gr recov-
ers another generalization of the Robinson–Schensted algorithm for hype-
roctahedral groups defined in [21] and [17]. See [19] for a more detailed
description.

3.2. Combinatorial left, right, and two-sided cells.

Definition 3.1. Consider x, y ∈ Wn of type Bn and fix a nonnegative
integer r. We will say:

(1) x ≈L y if their right tableaux of rank r are related by moving through
some set of noncore open cycles, that is, iff Tr(x) = MT (Tr(y), C) for
some C ⊂ OC∗(Tr(y)).

(2) x ≈R y iff x−1 ≈L y−1.
(3) Write x ≈LR y for the relation generated by ≈L and ≈R.

Defined in this way, we will call the equivalence classes of ≈L, ≈R, and
≈LR in Wn reducible combinatorial left, right, and two-sided cells of rank
r. Within this paper, we will generally omit the adjective “reducible” of
this definition. Although we suppress it in the notation, the cells depend
on the choice of parameter r. By [22](4.2), the map w → w−1 on Wn

carries combinatorial left cells to combinatorial right cells and preserves
combinatorial two-sided cells. As seen in Figures 1 and 2, combinatorial cells
do not behave simply with respect to a change in r, although it is possible
to describe a precise relationship [18]. When r > n − 2, the situation is
somewhat simpler. There are no noncore open cycles, implying both, that
combinatorial left cells are determined simply by right tableaux, and by the
main result of [18], that for these values of r, all combinatorial cells are
actually independent of r.

The main result of [19] shows that combinatorial left cells admit the fol-
lowing alternate description. A similar characterization holds for combina-
torial right cells.

Theorem 3.2 ([19]). Combinatorial left cells in the Weyl group of type Bn

are generated by the equivalence relations of having the same right tableau
in either rank r or rank r + 1.

Proposition 3.3. Consider x, y ∈ Wn, fix a nonnegative integer r, and let
p and p′ be the shapes of Tr(x) and Tr(y) respectively. Then x ≈LR y iff
HC(p) = HC(p′) and p and p′ differ only in the choice of filled squares in
HC(p).
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Figure 1. Combinatorial left cells in W3. Black represents
cells for rank r = 0, green represents r = 1, and red rep-
resents r ≥ 2. The cells are not successive refinements for
increasing values of the partition rank parameter r.

Proof. Suppose x ≈LR y. Note that if either x′ ≈L x′′ or x′ ≈R x′′, then
Tr(x′) and Tr(x′′) or Sr(x′) and Sr(x′′) differ by moving through a, perhaps
empty, set of noncore open cycles. Since moving through noncore open cycles
acts on the level of partitions by only changing which squares are filled in
HC(p), the forward direction of the above follows.

For the other direction, first note that two elements whose tableaux are
of the same shape are necessarily in the same combinatorial two-sided cell:
if T and S are two standard dominos of the same shape, then

G−1
r (X,T ) ≈L G−1

r (T, T ) ≈R G−1
r (S, T ) ≈L G−1

r (S, S) ≈R G−1
r (Y, S)

for all X and Y of the same shape. The rest of the proof follows as in
[11](3.5). �
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Figure 2. Combinatorial double cells in W3. Black repre-
sents cells for rank r = 0, green represents r = 1, and red
represents r ≥ 2. The cells are not successive refinements for
increasing values of the partition rank parameter r.

3.3. Tableau shapes of elements within combinatorial cells. We ex-
amine more closely the sets of partitions that appear among shapes of
tableaux of elements in combinatorial cells. Fix a combinatorial left cell
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C and a combinatorial two-sided cell D of rank r. Write π(C) and π(D) for
the sets of partitions that appear among tableaux shapes of their elements.

It is clear that the rank r right tableaux of the elements of C share a
common cycle structure set and π(C) consists exactly of those partitions
derived from a choice of a filled square in each of its constituent pairs. If
kC is the number of noncore open cycles in the tableaux of the elements of
C, then |π(C)| = 2kC . The partitions in π(D) can be determined via the
following observations.

(1) According to Proposition 3.3, the sets HC(p), H(p), and C(p) are
constant among p ∈ π(D). We will emphasize this by writing HCD,
HD, and CD for these sets.

(2) The number of filled squares in HCD is constant on π(D). We will
denote this number by κD. It is equal to κp for any p ∈ π(D).

From Proposition 3.3, partitions in π(D) are determined by choices of κD

filled squares among HCD. Consequently, π(D) contains exactly
(
|HCD |

kD

)
partitions. The next proposition points out a fundamental difference in the
relationship between the sets π(C) and π(D) in the two cases when r = 0 or
r > n − 2, and when 0 < r ≤ n − 2.

Proposition 3.4. Consider a combinatorial two-sided cell D. The inter-
section

ID =
⋂

C⊂D

π(C)

is nonempty iff κD = 0 or κD = |HD|, in which case it contains a unique
partition. In particular, this occurs for all combinatorial two-sided cells of
rank r = 0 and r > n − 2.

Proof. We first claim that if p ∈ ID, then all filled squares of HC(p) must
lie in H∗(p). This is trivially true if κp = 0, so assume otherwise and
note that by Fact 2.1, HC(p) = HC∗(p). Suppose c ∈ C(p) = C∗(p). Since
|HC(p)| = 2κp +r+1 and |H(p)| ≤ |C(p)|, we can choose a set of κp elements
of C∗(p) which excludes c. By Proposition 2.14, there is a cycle structure set
for p which leaves c unpaired and by Proposition 2.13, there is a standard
domino tableau T with c̃s∗(T ) = σ. If we let C be the combinatorial left
cell associated to T , then no partition in π(C) has the square c filled, and
consequently all filled squares of HC(p) must lie in H∗(p).

Armed with this observation, suppose first that κD = |HD| �= 0 so that
HCD = HC∗D. Every cycle structure set on HCD must pair all of the κD

squares within HD, implying that the partition with precisely all squares
of HD filled lies in π(C) for all cells C ⊂ D. Furthermore, this partition is
unique in ID: any partition in π(D) must have exactly κD filled squares in
HCD and, as observed above, for partitions in ID these must lie in HD.

When kD < |HD|, Proposition 2.14 can be used to construct a cycle
structure set σ on HCD which leaves an arbitrary h ∈ HD unpaired. We can
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associate a combinatorial left cell C to σ as above and note that h is empty
in every partition of π(C). Since h was arbitrary, any partition appearing in
ID must have all h ∈ HD empty. Hence unless κD = 0, ID is empty. When
kD = 0, π(D) consists of a unique partition and |ID| = 1. Finally, we note
that if r = 0, kD = |HD| and if r > n − 2, kD = 0. �

Remark 3.5. In the case r = 0, the unique partition in ID is called special
and corresponds to Lusztig’s notion of special representation of Wn under
the map defined by Theorem 2.15 (see [13]). A consequence of the above
proposition is that similarly distinguished partitions do not exist for a range
of values of r. When interpreted in terms of the conjectures describing the
Kazhdan–Lusztig cells in type Bn stated in the next section, and combined
with the results of [20], this precludes the existence of distinguished repre-
sentations of Wn in the general unequal parameter case.

Example 3.6. Consider the partition p = (4, 32, 1) of rank 2. Elements
of W4 whose tableaux have shape p lie in a combinatorial two-sided cell
D. The set HCD = HC∗

D equals {s15, s24, s33, s42, s51}, with only the square
s33 filled, hence κD = 1. Consequently, listing the partitions of π(D) entails
deciding which square of HCD is filled. The possible partitions are (5, 3, 2, 1),
(42, 2, 1), (4, 32, 1), (4, 3, 22), and (4, 3, 2, 12).

The shapes of elements in combinatorial left cells contained in this com-
binatorial two-sided cell fall into the following four categories:

{(5, 3, 2, 1), (42 , 2, 1)}, {(42, 2, 1), (4, 32 , 1)},
{(4, 32, 1), (4, 3, 22)}, {(4, 3, 22)}, (4, 3, 2, 12)},

each corresponding to a choice of a cycle structure set on HCD. In particular,
it is clear that no partition is common to all of these sets.

Remark 3.7. For every combinatorial left cell C, π(C) admits a natural
structure of an elementary abelian 2-group. Since the right tableau of any
element in C ⊂ D is of the form MT (T, C) for some C ⊂ OC∗(T ), π(C) is
determined entirely by the positions of each of the κD noncore open cycles of
T , and corresponds to the choices of a filled square within each pair of c̃s∗(T ).
Because the moving-through operations on cycles in T are independent, a
choice of a distinguished partition in π(C) defines a natural structure of an
elementary abelian 2-group of order 2κD . For r = 0, this is described in [16].

4. Kazhdan–Lusztig cells and constructible
representations

We examine the relationship of Kazhdan–Lusztig cells and combinatorial
cells in type Bn and reconcile Lusztig’s description of constructible repre-
sentations with combinatorial cells. We restrict our attention to the case
where the defining parameter s is an integer, focusing on the case when the
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conjectured cells and constructible representations are not irreducible. The
key will be the results of Section 2 relating partitions and symbols.

4.1. Cells in type Bn. We restrict the setting to the Weyl group of type
Bn with generators as in the following diagram:

�

t
� � �� � �

s1 s2 sn−1

Suppose the weight function L is defined by L(t) = b and L(si) = a for all
i. We will examine the case when b

a ∈ N, and set s = b
a . The following is a

conjecture of Bonnafé, Geck, Iancu, and Lam, and appears as Conjecture B
in [3]:

Conjecture 4.1 ([3]). Consider a Weyl group of type Bn with a weight
function L and parameter s defined as above. Kazhdan–Lusztig left, right,
and two-sided cells for parameter s ∈ N coincide with combinatorial left,
right, and two-sided cells of rank s − 1.

This conjecture is well-known to be true for s = 1 by work of Garfinkle [5],
and has been verified when s > n−1 by Bonnafé and Iancu, [2] and Bonnafé
[1]. It has also been shown to hold for all values of s when n ≤ 6 (see [3]).
The above is restated more explicitly as Conjecture D in [3]. It implicitly
assumes the existence of a partition which is distinguished in the sense of
Remark 3.5 within the partitions arising among tableaux of elements of a
two-sided cell. However, in light of Proposition 3.4 such a partition does not
exist in general and the characterization of Kazhdan–Lusztig two-sided cells
in Conjecture D must be rephrased using the description of combinatorial
two-sided cells of Proposition 3.3.

4.2. Constructible representations. The set of constructible represen-
tations Con(W ) of a Weyl group W is the smallest class of representations
which contains the trivial representation and is closed under truncated in-
duction and tensoring with the sign representation, see [15](22.1). Although
this is not clear from the notation, this set depends on the weight func-
tion chosen to define H. For the results of this section, we assume that
Lusztig’s conjectures (P1)–(P15) of [15](14.2) are true. Under this assump-
tion, M. Geck has described the relationship between constructible repre-
sentations and Kazhdan–Lusztig left cells:

Proposition 4.2 ([6]). Consider a finite Coxeter group W with a weight
function L and let C be a Kazhdan–Lusztig left cell in W defined from L.
Then:

(1) [C] is a constructible W -module.
(2) Every constructible W -module can be obtained in this way.

Let us again restrict the setting to the Weyl group of type Bn with weight
function L defining a parameter s. We begin our description of constructible
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representations by first recalling the one of Lusztig [15](22.6). Let Λ be a
symbol of defect s and let Z1 = Z1(Λ) and Z2 = Z2(Λ). If Y ⊂ Z1, define a
new symbol

ΛY =
(

Z2 � Z1 \ Y

Z2 � Y

)
.

We would like to restrict the set of subsets Y for which this construction
will be carried out.

Definition 4.3. An involution ι : Z1 → Z1 is admissible iff:
(1) It contains exactly s fixed points.
(2) Whenever z′ ∈ Z1 lies strictly between z and ι(z) for any z ∈ Z1, then

z′ is not a fixed point and ι(z′) lies strictly between z and z′.

Given an admissible involution ι, define a set Sι consisting of subsets of
Z1 by letting Y ∈ Sι iff it contains exactly one element from each orbit of ι.
Recalling the parametrization of Wn-modules by symbols of defect s from
Section 2.4, define a Wn-module by

c(Λ, ι) =
⊕
Y ∈Sι

[ΛY ].

The modules c(Λ, ι) and c(Λ′, ι′) are equal iff Λ and Λ′ have the set of entries
and also ι = ι′.

Proposition 4.4 ([15](22.23)). Consider a symbol Λ together with an ad-
missible involution ι. Then:

(1) c(Λ, ι) is a constructible Wn-module.
(2) Every constructible Wn-module can be obtained in this way.

Now consider a partition p ∈ Ps−1. If Y is a subset of HC(p), let pY be the
partition obtained from the heart of p by filling exactly the squares of HC(p)
which correspond to Y . Given a cycle structure set σ for p, define a set Sσ

consisting of subsets of HC(p) by letting Y ∈ Sσ iff Y contains exactly one
element from each pair in σ. Recalling the parametrization of Wn-modules
by partitions of rank s − 1 from Section 2.4, we define a Wn-module by

c(p, σ) =
⊕

Y ∈Sσ

[pY ].

The modules c(p, σ) and c(p′, σ′) are equal iff p and p′ have the same heart
and σ = σ′ . The Wn-modules obtained in this way are precisely the con-
structible ones.

Theorem 4.5. Consider a partition p ∈ Ps−1 and a cycle structure set σ
for p. Then:

(1) c(p, σ) is a constructible Wn-module.
(2) Every constructible Wn-module can be obtained in this way.
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Proof. Construct Λp, a symbol of rank s, as in Theorem 2.15. We first
show that c(p, σ) = c(Λp, ι) for some admissible involution ι. When HC(p) �

HC∗(p), we have |HC(p)| = s and Definition 2.11(1) implies that the only
cycle structure set σ on p is trivial. Hence c(p, σ) = [p]. By Lemma 2.16,
the corresponding symbol Λp will have |Z1(Λp)| = s, implying that the only
admissible involution ι on Z1 is trivial. Hence c(Λp, ι) = [Λp] = [p] = c(p, σ).

Thus we assume HC(p) = HC∗(p) and write Z1 = Z1(Λp) and Z2 =
Z2(Λp). We describe a bijection between the cycle structure sets for p and
admissible involutions ι : Z1 → Z1. Images of the orbits of ι under the
map of Lemma 2.16 form a pairing σι on the squares of HC(p). Noting that
the squares in HC(p) alternate between H(p) and C(p) with increasing row
number, Definition 4.3(2) implies that σι is in fact a pairing between squares
of H(p) and C(p). Furthermore, it follows directly from the definition that
σι is in fact a cycle structure set for p. This process is easily reversed,
establishing the desired bijection. Write ισ for the admissible involution
associated with the cycle structure set σ.

We would like to show that c(p, σ) = c(Λp, ισ). Lemma 2.16 establishes
a bijection between Sισ and Sσ. If Ỹ represents the image of Y ∈ Sισ , it is
sufficient to show that the symbol (Λp)Y = Λp

eY
for all Y ∈ Sισ . It is clear

that Z1((Λp)Y ) = Z1(Λp
eY
) and Z2((Λp)Y ) = Z2(Λp

eY
). Consider a square

sij ∈ Ỹ and write ιij for the corresponding element of Y ⊂ Z1. It is enough
to show show that ιij appears in the bottom row of the symbol Λp

eY
. With

k′ defined as in Section 2.4, note that j + k′ − i is odd. By the definition
of the map p → Λp and Lemma 2.16, ιij must equal j+k′−i−1

2 and hence
appears in the bottom row of Λp

eY
, as desired.

Finally, since the map of Theorem 2.15 is a bijection and we’ve established
a bijection between cycle structure sets and s-admissible involutions, every
constructible Wn-module appears as c(p, σ) for some p and σ, since it appears
as c(Λ, ι) for some Λ and ι. �

The above theorem can easily be restated in terms of tableaux. To each
tableau T ∈ SDTr(n) we associate a Wn-module [T ] in the following manner.
For each family of open cycles C in T define pC to be the shape of the tableau
MT (T, C) obtained from T by moving through C. Let

[T ] =
⊕

C⊂OC∗(T )

[pC ].

The partitions which can be obtained by moving through noncore open
cycles in a tableau depend only on the cycle structure of the tableau, hence
the modules [T ] and [T ′] are equal iff the underlying partitions have the
same heart and c̃s∗(T ) = c̃s∗(T ′). The Wn-modules obtained in this way
are precisely the constructible ones.

Corollary 4.6. Consider a standard domino tableau T . Then:
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(1) [T ] is a constructible Wn-module.
(2) Every constructible Wn-module can be obtained in this way.

Proof. The module [T ] is precisely c(shape(T ), c̃s∗(T )), and hence con-
structible. Conversely, a constructible module c(p, σ) equals [T ] for some
tableau T by Proposition 2.13. �

Given a Coxeter system (W,S) with weight function L, a family of par-
titions is an equivalence class defined by the transitive closure of the rela-
tion linking p and p′ iff [p] and [p′] appear as simple components of some
constructible representation of W . The following relates families and the
partitions appearing in combinatorial two-sided cells. It is a version of the
result of [6](4.3).

Proposition 4.7. Consider W is of type Bn with a weight function L and
parameter s and let D be a combinatorial two-sided cell. Then the family of
p ∈ π(D) is precisely π(D).

Proof. If p, p′ lie in the same family, then they must have the same heart,
implying p, p′ ∈ π(D). We show the converse. If kD = 0, then |π(D)| = 1,
and we are done. Otherwise, note that HC(p) = HC∗(p) and we can let p⇑
be the partition with the same heart as p but with the top-most kD squares
of HC(p) filled. We will show that p and p⇑ = p′⇑ lie in the same family,
implying the result.

If p �= p⇑, order elements of HC(p) by their row number, and let s be the
greatest empty square of HCD preceding the greatest filled square in HCD.
Let t be the least filled square following s in HCD. The pair {s, t} can be
extended to a cycle structure set for p via Proposition 2.14. Let p↑ be the
partition obtained from p by filling s and emptying t. Then by Corollary 4.6,
p and p↑ lie in the same family. This process can be repeated successively
producing a sequence p, p↑, (p↑)↑, . . . of partitions in the same family which
terminates in p⇑. �
Example 4.8. Consider the symbol

Λ =
(

0 1 3 4
2

)
of defect s = 3. Its set of singles has four 3-admissible involutions (0, 1),
(1, 2), (2, 3), and (3, 4) which, according to the above proposition, produce
the constructible representations

S(0,1) :
[(

1 2 3 4
0

)]
⊕

[(
0 2 3 4

1

)]
S(1,2) :

[(
0 2 3 4

1

)]
⊕

[(
0 1 3 4

2

)]

S(2,3) :
[(

0 1 3 4
2

)]
⊕

[(
0 1 2 4

3

)]
S(3,4) :

[(
0 1 2 4

3

)]
⊕

[(
0 1 2 3

4

)]
.

By using the identification from Section 2.4, we can rephrase this list in
terms of partitions of rank r = s− 1 = 2. The symbol Λ corresponds to the
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partition (4, 32, 1) and the constructible representations can be rewritten in
terms of partitions as

S(0,1) : [(4, 3, 2, 12)] ⊕ [(4, 3, 22)] S(1,2) : [(4, 3, 22)] ⊕ [(4, 32, 1)]

S(2,3) : [(4, 32, 1)] ⊕ [(42, 2, 1)] S(3,4) : [(42, 2, 1)] ⊕ [(5, 3, 2, 1)].
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