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v1-periodic homotopy groups of the
Dwyer–Wilkerson space

Martin Bendersky and Donald M. Davis

Abstract. The Dwyer–Wilkerson space DI(4) is the only exotic 2-
compact group. We compute v−1

1 π∗(DI(4)), its v1-periodic homotopy
groups.
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1. Introduction

In [13], Dwyer and Wilkerson constructed a 2-complete space BDI(4),
so named because its F2-cohomology groups form an algebra isomorphic to
the ring of rank-4 mod-2 Dickson invariants. Its loop space, called DI(4),
has H∗(DI(4);F2) finite. In [14], they then defined a p-compact group to
be a pair (X,BX), such that X = ΩBX (hence X is redundant), BX is
connected and p-complete, and H∗(X;Fp) is finite. In [1], Andersen and
Grodal proved that (DI(4), BDI(4)) is the only simple 2-compact group not
arising as the 2-completion of a compact connected Lie group.

The p-primary v1-periodic homotopy groups of a topological space X,
defined in [12] and denoted v−1

1 π∗(X)(p) or just v−1
1 π∗(X) if the prime is

clear, are a first approximation to the p-primary homotopy groups. Roughly,
they are a localization of the portion of the actual homotopy groups detected
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by p-local K-theory. In [11], the second author completed a 13-year project,
often in collaboration with the first author, of determining v−1

1 π∗(X)(p) for
all compact simple Lie groups and all primes p.

In this paper, we determine the 2-primary groups v−1
1 π∗(DI(4)). Here

and throughout, ν(−) denotes the exponent of 2 in the prime factorization
of the absolute value of an integer.

Theorem 1.1. For any integer i, let ei = min(21, 4 + ν(i− 90627)). Then

v−1
1 π8i+d(DI(4)) ≈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Z/2ei ⊕ Z/2 d = 1
Z/2ei d = 2
0 d = 3, 4
Z/8 d = 5
Z/8 ⊕ Z/2 d = 6
Z/2 ⊕ Z/2 ⊕ Z/2 d = 7, 8.

Since every v1-periodic homotopy group is a subgroup of some actual
homotopy group, this result implies that exp2(DI(4)) ≥ 21, i.e., some homo-
topy group of DI(4) has an element of order 221. It would be interesting to
know whether this bound is sharp.

Our proof involves studying the spectrum Φ1DI(4) which satisfies

π∗(Φ1DI(4)) ≈ v−1
1 π∗(DI(4)).

We will relate Φ1DI(4) to the 2-completed K-theoretic pseudosphere TK/2
discussed in [8, 8.6]. We will prove the following surprising result, which
was pointed out by Pete Bousfield.

Theorem 1.2. There is an equivalence of spectra

Φ1DI(4) � Σ725019TK/2 ∧M(221),

where M(221) is a mod 221 Moore spectrum.

In Section 3, we will give the easy deduction of Theorem 1.1 from The-
orem 1.2. As an immediate corollary of 1.2, we deduce that the 221 bound
on π∗(Φ1DI(4)) is induced from a bound on the spectrum itself.

Corollary 1.3. The exponent of the spectrum Φ1DI(4) is 221; i.e., 2e1Φ1DI(4)

is null if and only if e ≥ 21.

In [5], Bousfield presented a framework that enables determination of the
v1-periodic homotopy groups of many simply-connected H-spaces X from
their united K-theory groups and Adams operations. The intermediate step
is KO∗(Φ1X). (All of our K∗(−) and KO∗(−)-groups have coefficients in
the 2-adic integers Ẑ2, which we omit from our notation.) Our first proof of
Theorem 1.1 used Bousfield’s exact sequence [5, 9.2] which relates v−1

1 π∗(X)
with KO∗(Φ1X), but the approach via the pseudosphere, which we present
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here, is stronger and more elegant. The insight for Theorem 1.2 is the
observation that the two spectra have isomorphic Adams modules KO∗(−).

In several earlier e-mails, Bousfield explained to the authors how the
results of [5] should enable us to determine KO∗(Φ1DI(4)). In Section 4, we
present our account of these ideas of Bousfield. We thank him profusely for
sharing his insights with us.

The other main input is the Adams operations in K∗(BDI(4)). In [18],
Osse and Suter showed that K∗(BDI(4)) is a power series algebra on three
specific generators, and gave some information toward the determination of
the Adams operations. In private communication in 2005, Suter expanded
on this to give explicit formulas for ψk in K∗(BDI(4)). We are very grateful
to him for sharing this information. In Section 2, we will explain these calcu-
lations and also how they then lead to the determination of KO∗(Φ1DI(4)).

2. Adams operations

In this section, we present Suter’s determination of ψk in K∗(BDI(4)) and
state a result, proved in Section 4, that allows us to determineKO∗(Φ1DI(4))
from these Adams operations.

Our first result, communicated by Suter, is the following determination
of Adams operations in K∗(BDI(4)). An element of K∗(X) is called real if
it is in the image of KO∗(X) c→ K∗(X).

Theorem 2.1 (Suter). There is an isomorphism of algebras

(2.2) K∗(BDI(4)) ≈ Ẑ2[[ξ8, ξ12, ξ24]]

such that the generators are in K0(−) and are real, ψ−1 = 1, and the ma-
trices of ψ2 and ψ3 on the three generators, mod decomposables, are

Ψ2 ≡
⎛⎝ 24 0 0
−2 26 0
0 −2 214

⎞⎠ , Ψ3 ≡
⎛⎝ 34 0 0

−33 36 0
36/527 −35 · 41/17 314

⎞⎠ .

Proof. The subscripts of the generators indicate their “filtration,” meaning
the dimension of the smallest skeleton on which they are nontrivial. A
standard property of Adams operations is that if ξ has filtration 2r, then
ψk(ξ) equals krξ plus elements of higher filtration.

The isomorphism (2.2) is derived in [18, p. 184] along with the additional
information that 4ξ24 − ξ212 has filtration 28, and

ξ12 = λ2(ξ8) + 8ξ8(2.3)

ξ24 = λ2(ξ12) + 32ξ12 + c1ξ
2
8 + c2ξ

3
8 + c3ξ8ξ12,

for certain explicit even coefficients ci.
The Atiyah–Hirzebruch spectral sequence easily shows that ξ8 is real,

since the 11-skeleton of BDI(4) equals S8. Since λ2(c(θ)) = c(λ2(θ)), and
products of real bundles are real, we deduce from (2.3) that ξ12 and ξ24 are
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also real. Since tc = c, where t denotes conjugation, which corresponds to
ψ−1, we obtain that the generators are invariant under ψ−1, and hence so
is all of K∗(BDI(4)).

We compute Adams operations mod decomposables, writing ≡ for equiv-
alence mod decomposables. Because 4ξ24 − ξ212 has filtration 28, we obtain

(2.4) ψk(ξ24) ≡ k14ξ24.

Here we use, from [18, p. 183], that all elements of K∗(BDI(4)) of filtration
greater than 28 are decomposable. Equation (2.4) may seem surprising,
since ξ24 has filtration 24, but there is a class ξ28 such that 4ξ24 − ξ212 = ξ28,
and we can have ψk(ξ24) ≡ k12ξ24 + αkξ28 consistently with (2.4).

Using (2.3) and that ψ2 ≡ −2λ2 mod decomposables, we obtain

ψ2(ξ8) ≡ 24ξ8 − 2ξ12(2.5)

ψ2(ξ12) ≡ 26ξ12 − 2ξ24,

yielding the matrix Ψ2 in the theorem.
Applying ψ2ψ3 = ψ3ψ2 to ψ3(ξ12) ≡ 36ξ12 + γξ24 yields −2 · 36 + 214γ =

26γ − 2 · 314, from which we obtain γ = −35 · 41/17. Applying the same
relation to ψ3(ξ8) = 34ξ8 + αξ12 + βξ24, coefficients of ξ12 yield −2 · 34 +
α · 26 = 24α − 2 · 36 and hence α = −33. Now coefficients of ξ24 yield
−2α+ 214β = 24β − 2γ and hence β = 36/527. �

Let Φ1(−) denote the functor from spaces to K/2∗-local spectra described
in [5, 9.1], which satisfies v−1

1 π∗X ≈ π∗τ2Φ1X, where τ2Φ1X is the 2-torsion
part of Φ1X. In Section 4, we will use results of Bousfield in [5] to prove the
following result. Aspects of Theorem 2.1, such as K∗(BDI(4)) being a power
series algebra on real generators, are also used in proving this theorem.

Recall that KO∗(−) has period 8.

Theorem 2.6. The groups KOi(Φ1DI(4)) are 0 if i ≡ 0, 1, 2 mod 8, and
K0(Φ1DI(4)) = 0. Let M denote a free Ẑ2-module on three generators,
acted on by ψ2 and ψ3 by the matrices of Theorem 2.1, with ψ−1 = 1. Let
θ = 1

2ψ
2 act on M . Then there are exact sequences

0 → 2M θ→ 2M → KO3(Φ1DI(4)) → 0 → 0 → KO4(Φ1DI(4)) →M/2
θ→M/2 → KO5(Φ1DI(4)) →M/2 θ→M/2 → KO6(Φ1DI(4)) →M

θ→M → KO7(Φ1DI(4)) → 0

and

0 →M
θ→M → K1(ΦDI(4)) → 0.

For k = −1 and 3, the action of ψk in KO2j−1(Φ1DI(4)), KO2j−2(Φ1DI(4)),
and K2j−1(ΦDI(4)) agrees with k−jψk in adjacent M -terms.
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In the remainder of this section, we use 2.1 and 2.6 to give explicit for-
mulas for the Adams module KOi(Φ1DI(4)). A similar argument works for
K∗(Φ1DI(4)). If g1, g2, and g3 denote the three generators of M , then the
action of θ is given by

θ(g1) = 8g1 − g2

θ(g2) = 25g2 − g3

θ(g3) = 213g3.

Clearly θ is injective on M and 2M . We have

KO7(Φ1DI(4)) ≈ coker(θ|M) ≈ Z/221

with generator g1; note that g2 = 23g1 in this cokernel, and then g3 = 28g1.
Similarly KO3(Φ1DI(4)) ≈ coker(θ|2M) ≈ Z/221. Also

KO4(Φ1DI(4)) ≈ ker(θ|M/2) = Z/2

with generator g3, while KO6(Φ1DI(4)) ≈ coker(θ|M/2) = Z/2 with gener-
ator g1. There is a short exact sequence

0 → coker(θ|M/2) → KO5(Φ1DI(4)) → ker(θ|M/2) → 0,

with the groups at either end being Z/2 as before. To see that this short

exact sequence is split, we use the map S7 f→ DI(4) which is inclusion of the
bottom cell. The morphism f∗ sends the first summand of KO5(Φ1DI(4))
to one of the two Z/2-summands of KO5(Φ1S

7), providing a splitting ho-
momorphism. Thus we have proved the first part of the following result.

Theorem 2.7. We have

Ki(Φ1DI(4)) ≈
{

0 i = 0
Z/221 i = 1,

KOi(Φ1DI(4)) ≈

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 i = 0, 1, 2
Z/221 i = 3, 7
Z/2 i = 4, 6
Z/2 ⊕ Z/2 i = 5.

For k = −1 and 3, we have ψk = 1 on the Z/2’s, and on KO2j−1(Φ1DI(4))
with j even and K2j−1(Φ1DI(4)), ψ−1 = (−1)j and

ψ3 = 3−j
(
34 − 33 · 23 + 36

52728
)
.

Completion of proof. To obtain ψ3 on the Z/2’s, we use the last part of
Theorem 2.6 and the matrix Ψ3 of Theorem 2.1. If ψ3 is as in Ψ3, then,
mod 2, ψ3 − 1 sends g1 	→ g2, g2 	→ g3, and g3 	→ 0. Thus ψ3 − 1 equals 0
on KO4(Φ1DI(4)) and KO6(Φ1DI(4)). Clearly ψ−1 = 1 on these groups.
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To see that ψk−1 is 0 on KO5(Φ1DI(4)), we use the commutative diagram

0 −−−−→ Z/2 i−−−−→ KO5(Φ1DI(4))
ρ−−−−→ Z/2 −−−−→ 0

≈
⏐⏐� f∗

⏐⏐� 0

⏐⏐�
0 −−−−→ Z/2 −−−−→ KO5(Φ1S

7) −−−−→ Z/2 −−−−→ 0.

We can choose generators G1 and G2 of KO5(Φ1DI(4)) ≈ Z/2 ⊕ Z/2 so
that G1 ∈ im(i), ρ(G2) �= 0, and f∗(G2) = 0. Since ψk − 1 = 0 on the
Z/2’s on either side of KO5(Φ1DI(4)), the only way that ψk − 1 could be
nonzero on KO5(Φ1DI(4)) is if (ψk − 1)(G2) = G1. However this yields the
contradiction

0 = (ψk − 1)f∗G2 = f∗(ψk − 1)G2 = f∗(G1) �= 0.

On KO2j−1(Φ1DI(4)) with j even and K2j−1(Φ1DI(4)), ψ3 sends the
generator g1 to

3−j
(
34g1 − 33g2 + 36

527g3
)

= 3−j
(
34 − 33 · 23 + 36

52728
)
g1,

and ψ−1(g1) = (−1)jg1 by Theorem 2.6. �

3. Relationship with pseudosphere

In this section, we prove Theorems 1.2 and 1.1.
Following [8, 8.6], we let T = S0 ∪η e2 ∪2 e

3, and consider its K/2-
localization TK/2. The groups π∗(TK/2) are given in [8, 8.8], while the Adams
module is given by

Ki(TK/2) =

{
Ẑ2 i even, with ψk = k−i/2

0 i odd;

KOi(TK/2) =

⎧⎪⎨⎪⎩
Ẑ2 i ≡ 0 mod 4, with ψk = k−i/2

Z/2 i = 2, 3, with ψk = 1
0 i = 1, 5, 6, 7.

Bousfield calls this the 2-completed K-theoretic pseudosphere. Closely re-
lated spectra have been also considered in [15] and [4].

Let M(n) = S−1 ∪n e0 denote the mod n Moore spectrum. Then, for
e > 1 and k odd,

Ki(TK/2 ∧M(2e)) =

{
Z/2e i even, with ψk = k−i/2

0 i odd;

KOi(TK/2 ∧M(2e)) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Z/2e i ≡ 0 mod 4, with ψk = k−i/2

Z/2 i = 1, 3, with ψk = 1
Z/2 ⊕ Z/2 i = 2, with ψk = 1
0 i = 5, 6, 7.

(3.1)
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Proof. Let Y = TK/2 ∧M(2e). Most of (3.1) is immediate from the exact
sequence

2e→ KOi(TK/2) → KOi(Y ) → KOi+1(TK/2)
2e→ .

To see that KO2(Y ) = Z/2 ⊕ Z/2 and not Z/4, one can first note that

(3.2) M(2e) ∧M(2) � Σ−1M(2) ∨M(2).

The exact sequence

(3.3) KO2(Y ) 2→ KO2(Y ) → KO2(Y ∧M(2)) → KO3(Y ) 2→
implies that if KO2(Y ) = Z/4, then |KO2(Y ∧M(2))| = 4. However, by
(3.2),

(3.4) KO2(Y ∧M(2)) ≈ KO2(TK/2 ∧M(2)) ⊕KO3(TK/2 ∧M(2)).

Also, there is a cofiber sequence

(3.5) T ∧M(2) → Σ−1A1 → Σ5M(2),

where H∗(A1;F2) is isomorphic to the subalgebra of the mod 2 Steenrod
algebra generated by Sq1 and Sq2, and satisfies KO∗(A1) = 0. Thus

KOi(TK/2 ∧M(2)) ≈ KOi(Σ4M(2)) ≈
{

Z/4 i = 2
Z/2 i = 3,

so that |KO2(Y ∧M(2))| = 8, contradicting a consequence of the hypothesis
that KO2(Y ) = Z/4.

We conclude the proof by showing that, for odd k, ψk = 1 on KO2(Y ).
First note that ψk = 1 on KO∗(M(2)). This follows immediately from the
Adams operations on the sphere, except for ψk on KO−2(M(2)) ≈ Z/4.
This is isomorphic to K̃O(RP 2), where ψk = 1 is well-known. Now use
(3.13) to deduce that ψk = 1 on KO∗(TK/2 ∧M(2)), and then (3.4) to see
that ψk = 1 on KO2(Y ∧M(2)). Finally, use (3.3) to deduce that ψk = 1
on KO2(Y ). �

Comparison of 2.7 and (3.1) yields an isomorphism of graded abelian
groups

(3.6) KO∗(Σ8L+3TK/2 ∧M(221)) ≈ KO∗(Φ1DI(4))

for any integer L. We will show that if L = 90627, then the Adams op-
erations agree too. By [9, 6.4], it suffices to prove they agree for ψ3 and
ψ−1.

Note that one way of distinguishing a K-theoretic pseudosphere from a
sphere is that in KO∗(sphere) (resp. KO∗(pseudosphere)) the Z/2-groups
are in dimensions 1 and 2 less than the dimensions in which ψ3 ≡ 1 mod
16 (resp. ψ3 ≡ 9 mod 16), and similarly after smashing with a mod 2e

Moore spectrum. Since 34 − 63 + 36
52728 ≡ 9 mod 16, the Z/2-groups in

KO∗(Φ1DI(4)) occur in dimensions 1, 2, and 3 less that the dimension in
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which ψ3 ≡ 9 mod 16, and so Φ1DI(4) should be identified with a suspension
of TK/2 ∧M(221) and not SK/2 ∧M(221).

In KO4t−1(Σ8L+3TK/2 ∧M(221)), ψ3 = 3−2(t−2L−1) and ψ−1 = 1. Thus
if L satisfies

(3.7) 34L+2 ≡ 34 − 63 + 36
52728 mod 221,

then KO∗(Σ8L+3TK/2 ∧M(221)) and KO∗(Φ1DI(4)) will be isomorphic Ad-
ams modules. Maple easily verifies that (3.7) is satisfied for L = 90627.

A way in which this number L can be found begins with the mod 218

equation
6∑
i=1

(2L−1
i

)
8i−1 ≡ 34L−2 − 1

8
≡ 1

9

(
27

527 − 3
) ≡ 192725,

where we use Maple at the last step. This easily implies L ≡ 3 mod 8, and
so we let L = 8b+ 3. Again using Maple and working mod 218 we compute

6∑
i=1

(
16b+5
i

)
8i−1 − 192725 ≡ 210u0 + 24u1b+ 210u2b

2 + 217b3,

with ui odd. Thus we must have b ≡ 64 mod 128, and so L ≡ 515 mod 210.
Several more steps of this type lead to the desired value of L.

Thus, in the terminology of 4.3, we have proved the following result.

Proposition 3.8. If L = 90627, then there is an isomorphism of Adams
modules

K∗
CR(Σ8L+3TK/2 ∧M(221)) ≈ K∗

CR(Φ1DI(4)).

Theorem 1.2 follows immediately from this using the remarkable [8, 5.3],
which says, among other things, that K/2-local spectra X having some
Ki(X) = 0 are determined up to equivalence by the Adams moduleK∗

CR(X).
Theorem 1.1 follows immediately from Theorem 1.2 and the following result.

Proposition 3.9. For all integers i,

π8i+d(TK/2 ∧M(221)) ≈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Z/2 ⊕ Z/2min(21,ν(i)+4) d = −2
Z/2min(21,ν(i)+4) d = −1
0 d = 0, 1
Z/8 d = 2
Z/2 ⊕ Z/8 d = 3
Z/2 ⊕ Z/2 ⊕ Z/2 d = 4, 5.

Proof. For the most part, these groups are immediate from the groups
π∗(TK/2) given in [8, 8.8] and the exact sequence

(3.10) 221−→ πj+1(TK/2) → πj(TK/2 ∧M(221)) → πj(TK/2)
221−→ .
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All that needs to be done is to show that the following short exact sequences,
obtained from (3.10), are split.

0 → Z/2 → π8i+3(TK/2 ∧M(221)) → Z/8 → 0(3.11)

0 → Z/2 ⊕ Z/2 → π8i+4(TK/2 ∧M(221)) → Z/2 → 0

0 → Z/2 → π8i+5(TK/2 ∧M(221)) → Z/2 ⊕ Z/2 → 0

0 → Z/2min(21,ν(i)+4) → π8i−2(TK/2 ∧M(221)) → Z/2 → 0.

Let Y = TK/2 ∧M(221). We consider the exact sequence for π∗(Y ∧M(2)),

(3.12) 2→ πi+1(Y ) → πi(Y ∧M(2)) → πi(Y ) 2→ .

If the four sequences (3.11) are all split, then by (3.12) the groups π8i+d(Y ∧
M(2)) for d = 2, 3, 4, 5,−2 have orders 23, 25, 26, 25, and 23, respectively,
but if any of the sequences (3.11) fails to split, then some of the orders
|π8i+d(Y ∧M(2))| will have values smaller than those listed here.

By (3.2),

πi(Y ∧M(2)) ≈ πi+1(TK/2 ∧M(2)) ⊕ πi(TK/2 ∧M(2)).

By (3.5), since localization preserves cofibrations and (A1)K/2 = ∗, there is
an equivalence

(3.13) Σ4MK/2 � TK/2 ∧M(2),

and hence

(3.14) πi(Y ∧M(2)) ≈ πi−3(MK/2) ⊕ πi−4(MK/2).

By [10, 4.2],

π8i+d(MK/2) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 d = 4, 5
Z/2 d = −2, 3
Z/2 ⊕ Z/2 d = −1, 2
Z/4 ⊕ Z/2 d = 0, 1.

This is the sum of two “lightning flashes,” one beginning in 8d− 2 and the
other in 8d− 1. Substituting this information into (3.14) yields exactly the
orders which were shown in the previous paragraph to be true if and only if
all the exact sequences (3.11) split. �

4. Determination of KO∗(Φ1DI(4))

In this section, we prove Theorem 2.6, which shows how ψk in K∗(BDI(4))
leads to the determination of KO∗(Φ1DI(4)). Our presentation here follows
suggestions in several e-mails from Pete Bousfield.

The first result explains how KO∗(BDI(4)) follows from K∗(BDI(4)).



388 Martin Bendersky and Donald M. Davis

Theorem 4.1. There are classes g8, g12, and g24 in KO0(BDI(4)) such
that c(gi) = ξi, with ξi as in 2.1, and

KO∗(BDI(4)) ≈ KO∗[[g8, g12, g24]].

The Adams operations ψ2 and ψ3 mod decomposables on the basis of gi’s are
as in 2.1.

Proof. In [2, 2.1], it is proved that if there is a torsion-free subgroup F ∗ ⊂
KO∗(X) such that F ∗ ⊗ K∗(pt) → K∗(X) is an isomorphism, then so is
F ∗ ⊗ KO∗(pt) → KO∗(X). The proof is a Five Lemma argument using
exact sequences in [17, p. 257]. Although the result is stated for ordinary
(not 2-completed) KO∗(−), the same argument applies in the 2-completed
context. If F ∗ is a multiplicative subgroup, then the result holds as rings.
Our result then follows from 2.1, since the generators there are real. A
similar proof can be derived from [5, 2.3]. �

Next we need a similar sort of result about KO∗(DI(4)). We could derive
much of what we need by an argument similar to that just used, using the
result of [16] about K∗(DI(4)) as input. However, as we will need this in a
specific form in order to use it to draw conclusions about KO∗(Φ1DI(4)),
we begin by introducing much terminology from [5].

The study of united K-theory begins with two categories, which will then
be endowed with additional structure. We begin with a partial definition of
each, and their relationship. For complete details, the reader will need to
refer to [5] or an earlier paper of Bousfield.

Definition 4.2 ([5, 2.1]). A CR-module M = {MC ,MR} consists of Z-
graded 2-profinite abelian groups MC and MR with continuous additive op-
erations

M∗
C

B−−−−→≈ M∗−2
C , M∗

R
BR−−−−→≈ M∗−8

R , M∗
C

t−−−−→≈ M∗
C ,

M∗
R

η−−−−→ M∗−1
R , M∗

R
c−−−−→ M∗

C , M∗
C

r−−−−→ M∗
R,

satisfying 15 relations, which we will mention as needed.

We omit the descriptor “2-adic,” which Bousfield properly uses, just as
we omit writing the 2-adic coefficients Ẑ2 which are present in all our K-
and KO-groups.

Example 4.3. For a spectrum or space X, the united 2-adic K-cohomology

K∗
CR(X) := {K∗(X),KO∗(X)}

is a CR-module, with complex and real Bott periodicity, conjugation, the
Hopf map, complexification, and realification giving the respective opera-
tions.
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Definition 4.4. A Δ-module N = {NC , NR, NH} is a triple of 2-profinite
abelian groups NC , NR, and NH with continuous additive operations

NC
t−−−−→≈ NC , NR

c−−−−→ NC , NC
r−−−−→ NR,

NH
c′−−−−→ NC , NC

q−−−−→ NH

satisfying nine relations.

Example 4.5. For a CR-module M and an integer n, there is a Δ-module
ΔnM = {Mn

C ,M
n
R,M

n−4
R } with c′ = B−2c and q = rB2. In particular, for

a space X and integer n, there is a Δ-module Kn
Δ(X) := ΔnK∗

CR(X).

Now we add additional structure to these definitions.

Definition 4.6 ([5, 4.3,6.1]). A θΔ-module is a Δ-module N together with
homomorphisms NC

θ→ NC , NR
θ→ NR, and NH

θ→ NR satisfying certain
relations listed in [5, 4.3]. An Adams Δ-module is a θΔ-module N together

with Adams operations N
ψk

−−−−→≈
N for odd k satisfying the familiar prop-

erties.

Example 4.7. In the notation of Example 4.5, K−1
Δ (X) is an Adams Δ-

module with θ = −λ2.

Definition 4.8 ([5, 2.6,3.1,3.2]). A special φCR-algebra {AC , AR} is a CR-
module with bilinear AmC × AnC → Am+n

C and AmR × AnR → Am+n
R and also

A0
C

φ→ A0
R and A−1

C

φ→ A0
R satisfying numerous properties.

Remark 4.9. The operations φ, which were initially defined in [7], are less
familiar than the others. Two properties are cφa = t(a)a and φ(a + b) =
φa + φb + r(t(a)b) for a, b ∈ A0

C . For a connected space X, K∗
CR(X) is a

special φCR-algebra.

The following important lemma is taken from [5].

Lemma 4.10 ([5, 4.5,4.6]). For any θΔ-module M , there is a universal
special φCR-algebra L̂M . This means that there is a morphism M

α→ L̂M
such that any morphism from M into a φCR-algebra factors as α followed by
a unique φCR-algebra morphism. There is an algebra isomorphism Λ̂MC →
(L̂M)C , where Λ̂(−) is the 2-adic exterior algebra functor.

In [5, 2.7], Bousfield defines, for a CR-algebra A, the indecomposable
quotient Q̂A. We apply this to A = K∗

CR(BDI(4)), and consider the Δ-
module Q̂K0

Δ(BDI(4)), analogous to [5, 4.10]. We need the following result,
which is more delicate than the K−1

Δ -case considered in [5, 4.10].

Lemma 4.11. With θ = −λ2, the Δ-module Q̂K0
Δ(BDI(4)) becomes a θΔ-

module.
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Proof. First we need that θ is an additive operation. In [7, 3.6], it is shown
that θ(x+ y) = θ(x) + θ(y) − xy if x, y ∈ KOn(X) with n ≡ 0 mod 4. The
additivity follows since we are modding out the product terms. (In the case
n ≡ −1 mod 4 considered in [5, 4.10], the additivity of θ is already present
before modding out indecomposables.)

There are five additional properties which must be satisfied by θ. That
θcx = cθx and θtz = tθz are easily obtained from [7, 3.4]. That θc′y = cθy
follows from [8, 6.2(iii),6.4]. That θqz = θrz follows from preceding [7, 3.10]
by c, which is surjective for us. Here we use that rc = 2 and q = rB2.
Finally, θrz = rθz for us, since c is surjective; here we have used the result
φcx = 0 given in [5, 4.3]. �

Now we obtain the following important description of the CR-algebra
K∗
CR(DI(4)).

Theorem 4.12. There is a morphism of θΔ-modules

Q̂K0
Δ(BDI(4)) → K̃−1

Δ (DI(4))

which induces an isomorphism of special φCR-algebras

L̂(Q̂K0
Δ(BDI(4))) → K∗

CR(DI(4)).

Proof. The map ΣDI(4) = ΣΩBDI(4) → BDI(4) induces a morphism

K0
Δ(BDI(4)) → K−1

Δ (DI(4))

which factors through the indecomposable quotient Q̂K0
Δ(BDI(4)). In [16,

1.2], a general result is proved which implies that K∗(DI(4)) is an exterior
algebra on elements of K1(DI(4)) which correspond to the generators of the
power series algebra K∗(BDI(4)) under the above morphism followed by the
Bott map. Thus our result will follow from [5, 4.9], once we have shown that
the θΔ-module M := Q̂K0

Δ(BDI(4)) is robust([5, 4.7]). This requires that
M is profinite, which follows as in the remark following [5, 4.7], together
with two properties regarding φ, where φz := θrz − rθz for z ∈MC . In our
case, c is surjective, and so φ = 0 as used in the previous proof.

One property is that M is torsion-free and exact. This follows from the
Bott exactness of the CR-module K∗

CR(BDI(4)) noted in [5, 2.2], and [5,
5.4], which states that, for any n, the Δ-module ΔnN associated to a Bott
exact CR-module N with Nn

C torsion-free and Nn−1
C = 0 is torsion-free. The

other property is ker(φ) = cMR + c′MH + 2MC . For us, both sides equal
MC since c is surjective and φ = 0. �

Our Theorem 2.6 now follows from [5, 9.5] once we have shown that the
Adams Δ-module M := Q̂K0

Δ(BDI(4)) is “strong.” ([5, 7.11]) This result
([5, 9.5]) requires that the space (here DI(4)) be an H-space (actually K/2∗-
durable, which is satisfied by H-spaces) and that it satisfies the conclusion
of our 4.12. It then deduces that KO∗(Φ1DI(4)) fits into an exact sequence
which reduces to ours providedMR = MC and MH = 2MC . These equalities
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are implied by Q̂K0
Δ(BDI(4)) being exact, as was noted to be true in the

previous proof, plus t = 1 and c surjective, as were noted to be true in 2.1.
Indeed, the exactness property, ([5, 4.2]), includes that cMR + c′MH =
ker(1 − t) and cMR ∩ c′MH = im(1 + t). Another perceptible difference is
that Bousfield’s exact sequence is in terms of M := M/φ, while ours involves
M , but these are equal since, as already observed, φ = 0 since c is surjective.

Note also that the Adams operations in M in the exact sequence of [5,
9.5], which reduces to that in our 2.6, are those in the Adams Δ-module
Q̂K0

Δ(BDI(4)), which are given in our 2.1. The morphism θ in [5, 9.5] or
our 2.6 is 1

2ψ
2, since this equals −λ2 mod decomposables.

Finally, we show that our M is strong. One of the three criteria for being
strong is to be robust, and we have already discussed and verified this.
The second requirement for an Adams Δ-module to be strong is that it be
“regular.” This rather technical condition is defined in [5, 7.8]. In [5, 7.9],
a result is proved which immediately implies that K̃−1

Δ (DI(4)) is regular.
By 4.12, our M injects into K̃−1

Δ (DI(4)), and so by [5, 7.10], which states
that a submodule of a regular module is regular, our M is regular.

The third requirement for M to be strong is that it be ψ3-splittable ([5,
7.2]), which means that the quotient map M →M/φ has a right inverse. As
we have noted several times, we have φ = 0, and so the identity map serves
as a right inverse to the identity map. This completes the proof that our M
is strong, and hence that [5, 9.5] applies to DI(4) to yield our Theorem 2.6.
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