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Koszul equivalences in A∞-algebras

Di Ming Lu, John H. Palmieri, Quan Shui Wu
and James J. Zhang

Abstract. We prove a version of Koszul duality and the induced de-
rived equivalence for Adams connected A∞-algebras that generalizes the
classical Beilinson–Ginzburg–Soergel Koszul duality. As an immediate
consequence, we give a version of the Bernštĕın–Gel’fand–Gel’fand cor-
respondence for Adams connected A∞-algebras.

We give various applications. For example, a connected graded alge-
bra A is Artin–Schelter regular if and only if its Ext-algebra Ext∗A(k, k)
is Frobenius. This generalizes a result of Smith in the Koszul case. If A
is Koszul and if both A and its Koszul dual A! are noetherian satisfying
a polynomial identity, then A is Gorenstein if and only if A! is. The
last statement implies that a certain Calabi–Yau property is preserved
under Koszul duality.
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Introduction

Koszul duality is an incredibly powerful tool used in many areas of math-
ematics. One aim of this paper is to unify some generalizations by using
A∞-algebras. Our version is comprehensive enough to recover the origi-
nal version of Koszul duality and the induced derived equivalences due to
Beilinson–Ginzburg–Soergel [7] and most of the generalizations in ring the-
ory and algebraic geometry. Although we will restrict ourselves to Adams
connected A∞-algebras (a natural extension of a connected graded algebras
— see Definition 2.1), we have set up a framework that will work for other
classes of algebras arising from representation theory and algebraic geome-
try.

We fix a commutative field k and work throughout with vector spaces
over k. We define A∞-algebras over k in Definition 1.1.

Similar to [24, Section 11] we define the Koszul dual of an A∞-algebra A
to be the vector space dual of the bar construction of A — see Section 2 for
details. This idea is not new and dates back at least to Beilinson–Ginzburg–
Schechtman [6] for graded algebras. Keller also took this approach in [19]
for differential graded algebras. Our first result is a generalization of [7,
Theorem 2.10.2].

Theorem A. Let A be an augmented A∞-algebra. Suppose that the Koszul
dual of A is locally finite. Then the double Koszul dual of A is A∞-isomorphic
to A.

This is proved as Theorem 2.4. A special case of the above theorem was
proved in [24, Theorem 11.2].

As in [7] we prove several versions of equivalences of derived categories
induced by the Koszul duality. Let D∞(A) be the derived category of right
A∞-modules over A. Let D∞

per(A) (respectively, D∞
fd (A)) denote the full

triangulated subcategory of D∞(A) generated by all perfect complexes (re-
spectively, all right A∞-modules whose homology is finite-dimensional) over
A. The next result is a generalization of [7, Theorem 2.12.6].
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Theorem B. Let A be an Adams connected A∞-algebra and E its Koszul
dual. If HE is finite-dimensional, then there is an equivalence of triangu-
lated categories D∞

per(A) ∼= D∞
fd (E).

This is proved as Corollary 7.2(b)
Other equivalences of triangulated categories can be found in Sections 4

and 5. If A is either Artin–Schelter regular (Definitions 9.1(c) and 9.2(c)) or
right noetherian with finite global dimension, then HE is finite-dimensional
and hence Theorem B applies.

Koszul duality has many applications in ring theory, representation the-
ory, algebraic geometry, and other areas. The next result is a generalization
of the Bernštĕın–Gel’fand–Gel’fand correspondence that follows from The-
orem B. Let D∞

fg (A) be the stable derived category of A∞-modules over A

whose homology is finitely generated over HA, and let D∞(projA) be the
derived category of the projective scheme of A. These categories are defined
in Section 10, and the following theorem is part of Theorem 10.2.

Theorem C. Let A be an Adams connected A∞-algebra that is noether-
ian Artin–Schelter regular. Let E be the Koszul dual of A. Then HE
is finite-dimensional and there is an equivalence of triangulated categories
D∞(projA) ∼= D∞

fg (E).

Applications of Koszul duality in ring theory are surprising and useful.
We will mention a few results that are related to the Gorenstein property.
In the rest of this introduction we let R be a connected graded associative
algebra over a base field k.

Corollary D. Let R be a connected graded algebra. Then R is Artin–
Schelter regular if and only if the Ext-algebra

⊕
i∈Z

Exti
R(kR, kR) is Frobe-

nius.

This result generalizes a theorem of Smith [32, Theorem 4.3 and Propo-
sition 5.10] that was proved for Koszul algebras. It is proved in Section 9.3.
Corollary D is a fundamental result and the project [25] was based on it.

The Gorenstein property plays an important role in commutative algebra
and algebraic geometry. We prove that the Gorenstein property is preserved
under Koszul duality; see Section 9.4 for details.

Corollary E. Let R be a Koszul algebra and let R! be the Koszul dual of
R in the sense of Beilinson–Ginzburg–Soergel [7]. If R and R! are both
noetherian having balanced dualizing complexes, then R is Gorenstein if and
only if R! is.

The technical hypothesis about the existence of balanced dualizing com-
plexes can be checked when the rings are close to being commutative. For
example, Corollary E holds when R and R! are noetherian and satisfy a
polynomial identity. This technical hypothesis is presented because we do
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not understand noncommutative rings well enough. We do not know any ex-
ample in which the technical hypothesis is necessary; however, Corollary E
does fail for nonnoetherian rings — for example, the free algebra R = k〈x, y〉
is Gorenstein, but R! ∼= k〈x, y〉/(x2, xy, yx, y2) is not.

Note that Koszul duality preserves the Artin–Schelter condition (Proposi-
tion 9.3). Under the technical hypothesis of Corollary E the Artin–Schelter
condition is equivalent to the Gorenstein property. Therefore Corollary E
follows. We can restate Corollary E for A∞-algebras in a way that may be
useful for studying the Calabi–Yau property of the derived category D∞(A)
(see the discussion in Section 9.4).

The following is proved in Section 9.4.

Corollary F. Let A be an Adams connected commutative differential graded
algebra such that RHomA(k,A) is not quasi-isomorphic to zero. If the Ext-
algebra

⊕
i∈Z

ExtiA(kA, kA) is noetherian, then A satisfies the Artin–Schelter
condition.

The hypothesis on RHomA(k,A) is a version of finite depth condition
which is very mild in commutative ring theory and can be checked under
some finiteness conditions. This is automatic if A is a finitely generated
associative commutative algebra. As said before, the Artin–Schelter condi-
tion is equivalent to the Gorenstein property under appropriate hypotheses.
Hence Corollary F relates the Gorenstein property of R with the noether-
ian property of R! and partially explains why Corollary E holds, and at
the same time it suggests that Corollary E should be a consequence of a
more basic statement that relates the noetherian property of R with the
Gorenstein property of R!. On the other hand, we believe that there should
be a version of Corollary E without using the noetherian property. As we
commented for Corollary E, Corollary F should hold in a class of noncom-
mutative rings R. Corollary F is also a variation of a result of Bøgvad and
Halperin about commutative complete intersection rings [9].

This paper is part four of our A∞-algebra project and is a sequel to
[24, 25, 26]. Some results were announced in [24]. For example, Theorem B
and Corollary D were stated in [24] without proof. We also give a proof of
[24, Theorem 11.4] in Section 5.

The paper is divided into three parts: Koszul duality for algebras, Koszul
duality for modules, and applications in ring theory.

Part I consists of Sections 1 and 2. Section 1 gives background material
on A∞-algebras and their morphisms. The reader may wish to skim it to
see the conventions and notation used throughout the paper. Theorem A is
proved in Section 2, and we use it to recover the classical Koszul duality of
Beilinson, Ginzburg, and Soergel. We also discuss a few examples.

Part II consists of Sections 3–8. Section 3 gives background material on
A∞-modules; most of this is standard, but the results on opposites are new.
Section 4 sets up a framework for proving equivalences of various derived
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categories of DG modules over a DG algebra. Section 5 uses this framework
to prove DG and A∞ versions of the results of Beilinson, Ginzburg, and
Soergel which establish equivalences between certain derived categories of
modules over a Koszul algebra and over its Koszul dual. The point of Section
6 is a technical theorem which allows us, in Section 7, to rederive the classical
results from the A∞-algebra results. Theorem B is proved in Section 7, also.
We discuss a couple of examples in Section 8.

Part III consists of Sections 9–10. Section 9 discusses Artin–Schelter
regular algebras and Frobenius algebras, from the A∞-algebra point of view,
and includes proofs of Corollaries D, E, and F. Section 10 gives an A∞-
version of the BGG correspondence; Theorem C is proved there.

Part I. Koszul duality for algebras

1. Background on A∞-algebras

In this section, we describe background material necessary for the rest of
the paper. There are several subsections: grading conventions and related
issues; A∞-algebras and morphisms between them; the bar construction;
and homotopy for morphisms of A∞-algebras.

1.1. Conventions. Throughout we fix a commutative base field k. Unless
otherwise stated, every chain complex, vector space, or algebra will be over
k. The unadorned tensor product ⊗ is over k also.

Vector spaces (and the like) under consideration in this paper are bi-
graded, and for any bihomogeneous element a, we write

deg a = (deg1(a),deg2(a)) ∈ Z×G

for some abelian group G. The second grading is called the Adams grading.
In the classical setting G is trivial, but in this paper we have G = Z; many
of the abstract assertions in this paper hold for any abelian group G. If V is
a bigraded vector space, then the degree (i, j) component of V is denoted by
V i

j . Usually we work with bihomogeneous elements, with the possibility of
ignoring the second grading. All chain complexes will have a differential of
degree (1, 0). The Koszul sign convention is in force throughout the paper,
but one should ignore the second grading when using it: when interchanging
elements of degree (i, s) and (j, t), multiply by (−1)ij .

Given a bigraded vector space V , we write V � for its graded dual. Its
suspension SV is the bigraded space with (SV )ij = V i+1

j : suspension shifts
the first grading down by one, and ignores the second grading. Write s :
V → SV for the obvious map of degree −1. If V has a differential dV , then
define a differential dSV on SV by dSV (sv) = −sdV (v). The Adams shift of
V is ΣV with (ΣV )ij = V i

j+1. If V has a differential, then there is no sign in
the differential for ΣV : dΣV is just the shift of dV .
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If (M,d) and (N, d) are complexes, so are Homk(M,N) and M ⊗ N(=
M ⊗k N), with differentials given by

d(f) = df − (−1)deg1(f)fd, ∀ f ∈ Homk(M,N),

d(m⊗ n) = dm⊗ n + (−1)deg1(m)m⊗ dn, ∀ m⊗ n ∈M ⊗N,

respectively.
If C is a category, we write C(X,Y ) for morphisms in C from X to Y . We

reserve Hom to denote the chain complex with differential as in the previous
paragraph.

1.2. A∞-algebras and morphisms. In this paper, we will frequently
work in the category of augmented A∞-algebras; in this subsection and
the next, we define the objects and morphisms of this category. Keller’s
paper [20] provides a nice introduction to A∞-algebras; it also has refer-
ences for many of the results which we cite here and in later subsections.
Lefèvre-Hasegawa’s thesis [23] provides more details for a lot of this; al-
though it has not been published, it is available online. Another reference
is [24] which contains some easy examples coming from ring theory. The
following definition is originally due to Stasheff [34].

Definition 1.1. An A∞-algebra over k is a Z × Z-graded vector space A
endowed with a family of graded k-linear maps

mn : A⊗n → A, n ≥ 1,

of degree (2−n, 0) satisfying the following Stasheff identities: for all n ≥ 1,

SI(n)
∑

(−1)r+stmu(1⊗r ⊗ms ⊗ 1⊗t) = 0,

where the sum runs over all decompositions n = r + s + t, with r, t ≥ 0 and
s ≥ 1, and where u = r + 1 + t. Here 1 denotes the identity map of A. Note
that when these formulas are applied to elements, additional signs appear
due to the Koszul sign rule.

A DG (differential graded) algebra is an A∞-algebra with mn = 0 for all
n ≥ 3.

The reader should perhaps be warned that there are several different sign
conventions in the A∞-algebra literature. We have chosen to follow Keller
[20], who is following Getzler and Jones [14]. Stasheff [34] and Lefèvre-
Hasegawa [23] use different signs: they have the sign (−1)rs+t in SI(n), and
this requires sign changes in other formulas (such as MI(n) below).

As remarked above, we work with bigraded spaces throughout, and this
requires a (very mild) modification of the standard definitions: ordinarily,
an A∞-algebra is singly graded and deg mn = 2−n; in our bigraded case, we
have put deg mn = (2−n, 0). Thus if one wants to work in the singly graded
setting, one can just work with objects concentrated in degrees (∗, 0) =
Z× {0}.
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Definition 1.2. An A∞-algebra A is strictly unital if A contains an element
1 which acts as a two-sided identity with respect to m2, and for n �= 2,
mn(a1 ⊗ · · · ⊗ an) = 0 if ai = 1 for some i.

In this paper we assume that A∞-algebras (including DG algebras) are
strictly unital.

Definition 1.3. A morphism of A∞-algebras f : A → B is a family of
k-linear graded maps

fn : A⊗n → B, n ≥ 1,
of degree (1−n, 0) satisfying the following Stasheff morphism identities: for
all n ≥ 1,

MI(n)
∑

(−1)r+stfu(1⊗r⊗ms⊗1⊗t) =
∑

(−1)wmq(fi1⊗fi2⊗· · ·⊗fiq),

where the first sum runs over all decompositions n = r + s + t with r, t ≥ 0,
s ≥ 1, and where we put u = r + 1 + t; and the second sum runs over all
1 ≤ q ≤ n and all decompositions n = i1 + · · ·+ iq with all is ≥ 1. The sign
on the right-hand side is given by

w = (q − 1)(i1 − 1) + (q − 2)(i2 − 1) + · · · + 2(iq−2 − 1) + (iq−1 − 1).

When A∞-algebras have a strict unit (as we usually assume), an A∞-
morphism between them is also required to be strictly unital, which means
that it must satisfy these unital morphism conditions: f1(1A) = 1B where
1A and 1B are strict units of A and B respectively, and fn(a1⊗· · ·⊗an) = 0
if some ai = 1A and n ≥ 2 (see [20, 3.5], [24, Section 4]).

As with A∞-algebras, we have modified the grading on morphisms: we
have changed the usual grading of deg fn = 1−n to deg fn = (1−n, 0). The
composite of two morphisms is given by a formula similar to the morphism
identities MI(n); see [20] or [23] for details.

Definition 1.4. A morphism f : A→ B of A∞-algebras is strict if fn = 0
for n �= 1. The identity morphism is the strict morphism f with f1 = 1.
A morphism f is a quasi-isomorphism or an A∞-isomorphism if f1 is a
quasi-isomorphism of chain complexes.

Note that quasi-isomorphisms of A∞-algebras have inverses: a morphism
is a quasi-isomorphism if and only if it is a homotopy equivalence — see
Theorem 1.16 below.

We write Alg for the category of associative Z × Z-graded algebras with
morphisms being the usual graded algebra morphisms, and we write Alg∞

for the category of A∞-algebras with A∞-morphisms.
Let A and B be associative algebras, and view them as A∞-algebras with

mn = 0 when n �= 2. We point out that there may be nonstrict A∞-algebra
morphisms between them. That is, the function

Alg(A,B)→ Alg∞(A,B),
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sending an algebra map to the corresponding strict A∞-morphism, need not
be a bijection. See Example 2.8 for an illustration of this.

The following theorem is important and useful.

Theorem 1.5 ([17]). Let A be an A∞-algebra and let HA be its cohomology
ring. There is an A∞-algebra structure on HA with m1 = 0 and m2 equal to
its usual associative product, and with the higher multiplications constructed
from the A∞-structure of A, such that there is a quasi-isomorphism of A∞-
algebras HA→ A lifting the identity of HA.

This theorem was originally proved for Z-graded A∞-algebras, and holds
true in our Z× Z-setting.

1.3. Augmented A∞-algebras. A strictly unital A∞-algebra A comes
equipped with a strict, strictly unital morphism η : k → A.

Definition 1.6. (a) A strictly unital A∞-algebra A is augmented if there
is a strictly unital A∞-algebra morphism ε : A→ k so that ε ◦ η = 1k.

(b) If A is an augmented A∞-algebra with augmentation ε : A → k, its
augmentation ideal is defined to be ker(ε1).

(c) A morphism of augmented A∞-algebras f : A → B must be strictly
unital and must respect the augmentations: εA = εB ◦ f .

We write Alg∞aug for the resulting category of augmented A∞-algebras.

Proposition 1.7 (Section 3.5 in [20]). The functor Alg∞aug → Alg∞ sending
an augmented A∞-algebra to its augmentation ideal is an equivalence of
categories. The quasi-inverse sends an A∞-algebra A to k ⊕ A with the
apparent augmentation.

Using this equivalence, one can translate results and constructions for
A∞-algebras to the augmented case. The bar construction is an application
of this.

1.4. The bar construction. The bar construction B(−) is of central im-
portance in this paper, since we define the Koszul dual of A to be the vector
space dual of its bar construction. In this subsection, we describe it. We
also discuss the cobar construction Ω(−), the composite Ω(B(−)), and other
related issues.

The following definition is a slight variant on that in [20, Section 3.6].

Definition 1.8. Let A be an augmented A∞-algebra and let I be its aug-
mentation ideal. The bar construction B∞

augA on A is a coaugmented differ-
ential graded (DG) coalgebra defined as follows: as a coaugmented coalge-
bra, it is the tensor coalgebra T (SI) on SI:

T (SI) = k ⊕ SI ⊕ (SI)⊗2 ⊕ (SI)⊗3 ⊕ · · · .
As is standard, we use bars rather than tensors, and we also conceal the
suspension s, writing [a1| · · · |am] for the element sa1 ⊗ · · · ⊗ sam, where



Koszul equivalences in A∞-algebras 333

ai ∈ I for each i. The degree of this element is

deg[a1| · · · |am] =
(∑

(−1 + deg1 ai),
∑

deg2 ai

)
.

The differential b on B∞
augA is the degree (1, 0) map given as follows: its

component bm : (SI)⊗m → T (SI) is given by

(1.9) bm([a1| · · · |am])

=
∑
j,n

(−1)wj,n [a1| · · · |aj |mn(aj+1, · · · , aj+n)|aj+n+1| · · · |am],

where mn = (−1)nmn and

wj,n =
∑

1≤s≤j

(−1 + deg1 as) +
∑

1≤t<n

(n− t)(−1 + deg1 aj+t).

That is, its component mapping (SI)⊗m to (SI)⊗u is∑
1⊗j ⊗ (s ◦mn ◦ (s−1)⊗n)⊗ 1⊗m−j−n,

where the sum is over pairs (j, n) with m ≥ j +n, and where u = m−n+1.
See [24, p. 115] for a discussion of the sign involved in mn.

If A is an augmented DG algebra, then the above bar construction is the
original bar construction and it is also denoted by BA.

Note that, with this definition, the bar construction of a bigraded algebra
is again bigraded.

Remark 1.10. In [20, 3.6], Keller describes the bar construction in the
nonaugmented situation. Aside from grading issues, the relation between
his version and ours is as follows: if we write B∞ for Keller’s version, then
B∞

aug is the composite

Alg∞aug → Alg∞ B∞−−→ DGC→ DGCcoaug,

where the first arrow is the equivalence from Proposition 1.7, and the last
arrow takes a coalgebra C to k ⊕ C, with the apparent coaugmentation.

The coderivation b encodes all of the higher multiplications of A into a
single operation. Keller [20, 3.6] notes that if A and A′ are augmented
A∞-algebras, then there is a bijection between Hom sets

(1.11) Alg∞aug(A,A′)←→ DGCcoaug(B∞
augA,B∞

augA
′).

(Again, he is working with nonaugmented A∞-algebras, but Proposition 1.7
allows us to translate his result to this setting.)

We briefly mention the cobar construction. In full generality, this would
probably take a coaugmented A∞-coalgebra as input, and produce an aug-
mented DG algebra. We have no interest in working with A∞-coalgebras,
though, and we do not need this generality.
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Definition 1.12. Given a coaugmented DG coalgebra C with coproduct
Δ and differential bC , the cobar construction ΩC on C is the augmented
DG algebra which as an augmented algebra is the tensor algebra T (S−1J)
on the desuspension of the coaugmentation coideal J = cok(k → C). It is
graded by putting

deg[x1| · · · |xm] =
(∑

(1 + deg1 xi),
∑

deg2 xi

)
.

Its differential is the sum d = d0 + d1 of the differentials

d0[x1| · · · |xm] = −
m∑

i=1

(−1)ni [x1| · · · |bC(xi)| · · · |xm],

and

d1[x1| · · · |xm] =
m∑

i=1

ki∑
j=1

(−1)ni+deg1 aij [x1| · · · |xi−1|aij |bij | · · · |xm]

where ni =
∑

j<i(1 + deg1 xj) and
∑ki

j=1 aij ⊗ bij = Δ(xi). Here Δ is the
induced coproduct on J .

Definition 1.13 ([23, Section 2.3.4]). If A is an augmented A∞-algebra,
then its enveloping algebra UA is defined to be the DG algebra UA :=
Ω(B∞

augA).

Thus the enveloping algebra of an augmented A∞-algebra is an augmented
DG algebra.

Proposition 1.14 ([23, 1.3.3.6 and 2.3.4.3]). There is a natural quasi-iso-
morphism of A∞-algebras A→ UA.

The map A → UA arises as follows: between the categories of DG coal-
gebras and DG algebras, the bar B and cobar Ω constructions are adjoint,
with Ω the left adjoint, and thus for any DG coalgebra C, there is a map
C → B(ΩC). In the case where C = B∞

augA, we get a map

B∞
augA→ B(Ω(B∞

augA)) = B∞
aug(Ω(B∞

augA)).

(One can view an augmented DG algebra R as an A∞-algebra with all higher
multiplications equal to zero. In this situation, the A∞-bar construction
B∞

augR reduces to the standard DG algebra bar construction B(R).) The
bijection (1.11) says that this corresponds to a map

A→ Ω(B∞
augA).

This is the map in Proposition 1.14. This proposition says that every aug-
mented A∞-algebra is quasi-isomorphic to an augmented DG algebra. A
similar result is also true in the nonaugmented case, although we will not
need this. The quasi-isomorphism between A and Ω(BA) is also a standard
result in the case when A itself is an augmented DG algebra, although the
natural map goes the other way in that setting; indeed, there is a chain
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homotopy equivalence ΩB(A) → A which is a map of DG algebras, but its
inverse need not be an algebra map. See [13, Section 19], for example. One
application of Proposition 1.14 is that in the DG case, there is a quasi-inverse
in the category Alg∞aug.

Also from [13, Section 19], we have the following result.

Lemma 1.15 ([13, Section 19]). Let R be an augmented DG algebra. As-
sume that R is locally finite. Then there is a natural isomorphism Ω(R�) ∼=
(B∞

augR)� = B�R.

In light of the lemma and Remark 1.10, we point out that if R is a locally
finite augmented associative algebra, then the homology of the dual of its
bar construction is isomorphic to Ext∗R(k, k) :=

⊕
i∈Z

ExtiR(k, k). This is
also true when R is an A∞-algebra; see [24, Lemma 11.1] and its proof.
Thus by Theorem 1.5, there is a quasi-isomorphism of A∞-algebras

Ext∗R(k, k)→ B�R.

The A∞-structure on Ext∗R(k, k) is studied in [26].

1.5. Homotopy. Earlier, we said that we work in the category of aug-
mented A∞-algebras. We also need the homotopy category of such algebras,
and so we need to discuss the notion of homotopy between A∞-algebra mor-
phisms. See [20, 3.7] and [23, 1.2.1.7] for the following.

Let A and A′ be augmented A∞-algebras, and suppose that f, g : A →
A′ are morphisms of augmented A∞-algebras. Let F and G denote the
corresponding maps B∞

augA → B∞
augA

′. Write b and b′ for the differentials
on B∞

augA and B∞
augA

′, respectively. Then f and g are homotopic, written
f � g, if there is a map H : B∞

augA→ B∞
augA

′ of degree −1 such that

ΔH = (F ⊗H + H ⊗G)Δ and F −G = b′ ◦H + H ◦ b.

One can also express this in terms of a sequence of maps hn : A⊗n → A′
satisfying some identities, but we will not need this formulation. See [23,
1.2.1.7] for details (but note that he uses different sign conventions).

Two A∞-algebras A and A′ are homotopy equivalent if there are mor-
phisms f : A→ A′ and g : A′ → A such that f ◦ g � 1A′ and g ◦ f � 1A.

We will use the following theorem.

Theorem 1.16 ([18], [29], [23, 1.3.1.3]). (a) Homotopy is an equivalence
relation on the set of morphisms of A∞-algebras A→ A′.

(b) An A∞-algebra morphism is a quasi-isomorphism if and only if it is a
homotopy equivalence.

By part (a), we can define the homotopy category HoAlg∞aug to be the
category of augmented A∞-algebras in which the morphisms are homotopy
classes of maps: that is,

HoAlg∞aug(A,A′) :=
(
Alg∞aug(A,A′)/ �)

.
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By part (b), in this homotopy category, quasi-isomorphisms are isomor-
phisms.

2. The Koszul dual of an A∞-algebra

Let A be an augmented A∞-algebra. Its A∞-Koszul dual, or Koszul
dual for short, is defined to be E(A) := (B∞

augA)�. By [24, Section 11
and Lemma 11.1], E(A) is a DG algebra model of the A∞-Ext-algebra⊕

i∈Z
ExtiA(kA, kA) where kA is the trivial right A∞-module over A, and

where, by definition, ExtiA(M,N) =
⊕

j∈Z
D∞(A)(M,SiΣj(N)) for any

right A∞-modules M and N . See Section 3 for the definitions of A∞-modules
and their derived categories.

In this section, we study some of the basic properties of A∞-Koszul dual-
ity, we connect it to “classical” Koszul duality, and we discuss a few simple
examples. The main result is Theorem A, restated as Theorem 2.4.

2.1. Finiteness and connectedness conditions. In this subsection, we
introduce some technical conditions related to finite-dimensionality and con-
nectivity of bigraded objects.

Definition 2.1. Let A be an augmented A∞-algebra and let I be its aug-
mentation ideal. We write Ii∗ for the direct sum Ii∗ =

⊕
j Ii

j , and similarly
I∗j =

⊕
i Ii

j. We say that A is locally finite if each bihomogeneous piece Ai
j of

A is finite-dimensional. We say that A is strongly locally finite if I satisfies
the following:
(1) Each bihomogeneous piece Ii

j of I is finite-dimensional (i.e., A is locally
finite).

(2) Either for all j ≤ 0, I∗j = 0; or for all j ≥ 0, I∗j = 0.
(3) Either for all j, there exists an m = m(j) so that for all i > m(j),

Ii
j = 0; or for all j, there exists an m′ = m′(j) so that for all i < m′(j),

Ii
j = 0.

We say that A is Adams connected if, with respect to the Adams grading, A
is (either positively or negatively) connected graded and locally finite. That
is:
• I∗j is finite-dimensional for all j.
• Either for all j ≤ 0, I∗j = 0, or for all j ≥ 0, I∗j = 0.

We say that a DG algebra A is weakly Adams connected if:
• The DG bar construction B(A;A) ∼= B(A)⊗A is locally finite.
• The only simple DG A-modules are k and its shifts.
• A is an inverse limit of a family of finite-dimensional left DG A-

bimodules.

Lemma 2.2. We have the following implications.
(a) Adams connected ⇒ strongly locally finite ⇒ weakly Adams connected.
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(b) A weakly Adams connected ⇒ E(A) locally finite.
(c) A strongly locally finite ⇒ E(A) strongly locally finite, and hence every

iterated Koszul dual of A is strongly locally finite.
(d) A Adams connected ⇒ E(A) Adams connected, and hence every iter-

ated Koszul dual of A is Adams connected.

Proof. The first implication in part (a) is clear. For the second implication,
if A is strongly locally finite, then for connectivity reasons, k and its shifts
will be the only simple modules. We defer the proof that B(A;A) is locally
finite until after the proof of part (c).

For the inverse limit condition, we assume that I∗j = 0 when j ≤ 0, and
that for each j, there is an m′(j) such that Ii

j = 0 when i < m′(j). The
other cases are similar. We will describe a sequence of two-sided ideals Jn

in A, n ≥ 1, so that A/Jn is finite-dimensional, and A = lim←−A/Jn. Define
Jn to be

Jn = I1
≥n ⊕ I2

≥n+m′(1) ⊕ I3
≥n+min(2m′(1),m′(2)) ⊕ · · ·

⊕ Is
≥n+minσ�n−1(

P
a∈σ m′(a)) ⊕ · · · ⊕ In

≥n+min(··· )
⊕ In+1

∗ ⊕ In+2
∗ ⊕ · · · .

The notation “σ � n − 1” means that σ partitions n − 1. The idea here is
that, for example, if J contains all of the elements in bidegrees (1,≥ n), and
since A has elements in bidegrees (1,≥ m′(1)), then for J to be an ideal, it
should contain all of the elements in bidegrees (2,≥ n + m′(1)).

Part (b) is clear: as graded vector spaces, B(A;A) and B(A) ⊗k A are
isomorphic; thus if B(A;A) is locally finite, so is B(A).

(c) Since E(A) is dual to the tensor coalgebra T (SI), we focus on T (SI).
If we suppose that I∗j = 0 when j ≤ 0, then for all j < n, we have (I⊗n)∗j = 0.
Shifting I by S does not change this: ((SI)⊗n)∗j will be zero if j < n.
Therefore, T (SI) satisfies condition (2) of Definition 2.1. Dualizing, we see
that E(A) satisfies the other version of condition (2): if J is its augmentation
ideal, then J∗

j = 0 when j ≥ 0. Similarly, if I∗j = 0 when j ≥ 0, then J∗
j = 0

when j ≤ 0.
So if I satisfies condition (2), then so does J .
Now suppose that I satisfies (1) and this version of condition (3): for each

j, there is an m′(j) such that Ii
j = 0 when i < m′(j). Then for fixed n and

j:
• (I⊗n)ij is zero if i is small enough.
• (I⊗n)ij is finite-dimensional for all i.

Therefore T (SI) satisfies condition (3). Furthermore, since for fixed j,
(I⊗n)∗j is zero for all but finitely many values of n, we see that T (SI) satis-
fies condition (1). Dualizing, we see that the augmentation ideal J of E(A)
satisfies (1) and (3), also (although J satisfies the “other version” of (3)).
This completes the proof of part (c).
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We return to part (a): if A is strongly locally finite, then by part (c), so
is the bar construction B(A); more precisely, A and B(A) will satisfy the
same version of condition (3). Hence it is easy to verify that their tensor
product will be locally finite. This completes the proof of (a).

(d) A being Adams connected is equivalent to I satisfying (1), (2), and
both versions of (3): for each j, there are numbers m(j) and m′(j) so that
Ii
j = 0 unless m′(j) ≤ i ≤ m(j). By the proof of (c), this implies that E(A)

satisfies the same conditions. �
Remark 2.3. One may interchange the roles of i and j in the definition
of strong local finiteness, but the presence of the shift S in E(A) = T (SI)
makes the situation asymmetric. Suppose that I satisfies the following:
(1′) Each bihomogeneous piece Ii

j of I of A is finite-dimensional.
(2′) Either for all i there exists an m = m(i) so that for all j ≥ m(i),

Ii
j = 0; or for all i there exists an m′ = m′(i) so that for all j ≤ m′,

Ii
j = 0.

(3′) Either for all i ≥ 1, Ii∗ = 0; or for all i ≤ 1, Ii∗ = 0.
Then by imitating the proof of part (c) of the lemma, one can show that
E(A) is locally finite; however, it may not satisfy (2′).

Suppose that I satisfies (1′), (2′), and the following:
(3′′) Either for all i ≥ 0, Ii∗ = 0; or for all i ≤ 1, Ii∗ = 0.
Then the same proof shows that the augmentation ideal of E(A) satisfies
(1′), (2′), and (3′′) as well, and hence the same holds for every iterated
Koszul dual of A.

2.2. A∞-Koszul duality. Here is the main theorem of this section, which
is a slight generalization of [24, Theorem 11.2]. This is Theorem A from the
introduction.

Theorem 2.4. Suppose that A is an augmented A∞-algebra with E(A)
locally finite. Then there is a natural quasi-isomorphism of A∞-algebras
A ∼= E(E(A)).

If A is weakly Adams connected, then essentially by definition (or see
Lemma 2.2), E(A) is locally finite. Hence by Lemma 2.2, E(A) is locally
finite if A is Adams connected or strongly locally finite. The summary of
the theorem’s proof is that the double Koszul dual is the enveloping algebra
UA of A (see Definition 1.13 and Proposition 1.14).

Proof. By definition, the double Koszul dual E(E(A)) is (B∞
aug((B∞

augA)�))�.
Apply Lemma 1.15 to the DG algebra E(A) = (B∞

augA)�, which is locally
finite. Then there are natural DG algebra isomorphisms

E(E(A)) = (B∞
aug((B

∞
augA)�))� ∼= Ω(((B∞

augA)�)�) ∼= Ω(B∞
augA).

Proposition 1.14 gives a natural A∞-isomorphism A
∼=−→ Ω(B∞

augA). �
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Koszul duality E(−) is a contravariant functor from A∞-algebras to DG
algebras, and since one can view a DG algebra as being an A∞-algebra,
there are functions

Alg∞aug(A,A′)
E(−)−−−→ DGAaug(E(A′), E(A)) −→ Alg∞aug(E(A′), E(A)),

for augmented A∞-algebras A and A′.

Corollary 2.5. Suppose that A and A′ are augmented A∞-algebras with
E(A), E(E(A)), E(A′), and E(E(A′)) locally finite.
(a) Then E(−) gives a bijection

Alg∞aug(A,A′) ∼−→ DGAaug(E(A′), E(A)).

(b) The composite

Alg∞aug(A,A′) ∼−→ DGAaug(E(A′), E(A)) → Alg∞aug(E(A′), E(A))

induces a bijection

HoAlg∞aug(A,A′) ∼−→ HoAlg∞aug(E(A′), E(A)).

(c) Hence every A∞-algebra map f : E(A′)→ E(A) is homotopic to a DG
algebra map.

Proof. (a) From (1.11) we have a bijection

Alg∞aug(A,A′) ∼−→ DGCcoaug(B∞
augA,B∞

augA
′).

We are assuming that B∞
augA and B∞

augA
′ are locally finite, so the vector

space duality maps

DGCcoaug(B∞
augA,B∞

augA
′)→ DGAaug((B∞

augA
′)�, (B∞

augA)�)

→ DGCcoaug(((B∞
augA)�)�, ((B∞

augA
′)�)�)

are bijections. Therefore so is

Alg∞aug(A,A′) ∼−→ DGAaug(E(A′), E(A)).

(b, c) The naturality of the quasi-isomorphism (= homotopy equivalence)
in Theorem 2.4 says that the function

HoAlg∞aug(A,A′)
E(E(−))−−−−−→ HoAlg∞aug(E(E(A)), E(E(A′)))

f �−→ E(E(f))

is a bijection. That is, the composite

HoAlg∞aug(A,A′)→ HoAlg∞aug(E(A′), E(A))

→ HoAlg∞aug(E(E(A)), E(E(A′)))

is a bijection. The first map here is induced by

Alg∞aug(A,A′) ∼−→ DGAaug(E(A′), E(A)) i−→ Alg∞aug(E(A′), E(A)),
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and the second by

Alg∞aug(E(A′), E(A)) ∼−→ DGAaug(E(E(A)), E(E(A′)))
j−→ Alg∞aug(E(E(A)), E(E(A′))).

Since both of the functions i and j are inclusions, the functions Ho i and
Ho j must be bijections. This proves (b) and (c). �

2.3. Classical Koszul duality. Classically, a Koszul algebra is a con-
nected graded associative algebra R which is locally finite, is generated in de-
gree 1, has quadratic relations, and has its ith graded Ext-group ExtiR(k, k)
concentrated in degree −i for each i; see [7, Theorem 2.10.1] or [32, Theo-
rem 5.9(6)], for example. (In those papers, ExtiR(k, k) is actually required
to be concentrated in degree i, but that is the result of different grading
conventions.) Its (classical) Koszul dual, also denoted by R!, is Ext∗R(k, k).
One can show that if R is a Koszul algebra, then so is R! — see [7, 2.9.1],
for example.

A standard example is an exterior algebra R = Λ(x1, . . . , xn) on genera-
tors xi each in degree 1; then its Koszul dual R! is the polynomial algebra
k[y1, . . . , yn], with each yi in degree (1,−1).

We want all of our algebras to be bigraded, though, and we want the
double Koszul dual to be isomorphic, as a bigraded algebra, to the original
algebra. Thus we might grade Λ(x1, . . . , xn) by putting each xi in degree
(0, 1), in which case R! = k[y1, . . . , yn]. The grading for R! is given as follows:
yi is represented in the dual of the bar construction for R by the dual of
[xi], and since deg[xi] = (−1, 1), yi has degree (1,−1). The double Koszul
dual is exterior on classes dual to [yi] in the bar construction on R!, each of
which therefore has degree (0, 1).

Note that these are graded in such a way that there are no possible nonzero
higher multiplications mn on them. This absence of higher multiplications is
typical for a Koszul algebra, as Keller [20, 3.3] and the authors [24, Section
11] point out. Conversely, if we grade our algebras in such a way that
there are no possible higher multiplications, we can recover classical Koszul
duality.

Definition 2.6. Fix a pair of integers (a, b) with b �= 0. A bigraded as-
sociative algebra A is an (a, b)-generated Koszul algebra if it satisfies these
conditions:

(a) A0,0 = k.
(b) A is locally finite.
(c) A is generated in bidegree (a, b).
(d) The relations in A are generated in bidegree (2a, 2b).
(e) For each i, the graded vector space ExtiA(k, k) is concentrated in degree

(i(a − 1),−ib).
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In fact, conditions (c) and (d) should follow from condition (e): one should
be able to imitate the proofs of [7, 2.3.1 and 2.3.2].

If A is a bigraded associative algebra, the classical Koszul dual of A, de-
noted by A!, is defined to be HE(A) — the homology of the A∞-Koszul dual
E(A) = (B∞

augA)�. Forgetting grading issues, A! is isomorphic to Ext∗A(k, k).
In classical ring theory, we often consider the classical Koszul dual as an as-
sociative algebra — an A∞-algebra with mn = 0 if n �= 2.

Corollary 2.7. Fix a pair of integers (a, b) with b �= 0. If A is an (a, b)-
generated Koszul algebra, then E(A) and E(E(A)) are quasi-isomorphic to
associative algebras A! and (A!)!, respectively, and there is an isomorphism
of bigraded algebras A ∼= (A!)!.

This result is known [7] so we only give a sketch of proof.

Sketch of proof of Corollary 2.7. By Theorem 1.5, the A∞-Koszul dual
E(A) is quasi-isomorphic to A! with some possible higher multiplications.
We need to show, among other things, that in this case, the higher multi-
plications on A! are zero.

Since b �= 0, both E(A) and E(E(A)) will be locally finite.
The bidegree (deg1 x,deg2 x) of a nonzero nonunit element x ∈ Ext∗A(k, k)

satisfies

(∗) deg1 x

deg2 x
= −a− 1

b
,

and this fraction makes sense since b �= 0. The same is true for any tensor
product of such elements. Since the higher multiplication mn has degree
(2 − n, 0), one can see that if n �= 2, the bidegree of mn(x1 ⊗ · · · ⊗ xn)
will not satisfy (∗), and so will be zero. Thus there is no nonzero higher
multiplications on A! which is compatible with the bigrading. This implies
that the A∞-algebra E(A) is quasi-isomorphic to the associative algebra A!.

Now we claim that A! is (1 − a,−b)-generated Koszul. There is an obvi-
ous equivalence of categories between Z-graded algebras and Z × Z-graded
algebras concentrated in degrees (na, nb) for n ∈ Z; under that equivalence,
(a, b)-generated Koszul algebras correspond to Koszul algebras in the sense
of [7]. Koszul duality takes Z-graded algebras generated in degree 1 to
Z × Z-graded algebras generated in degree (1,−1). It takes Z × Z-graded
algebras generated in degree (a, b) to Z × Z-graded algebras generated in
degree (1 − a,−b). The proof of [7, 2.9.1] carries over to show that since A
is (a, b)-generated Koszul, its dual A! is (1− a,−b)-generated Koszul.

Since A! is Koszul, its Koszul dual (A!)! is associative (or there is no
nonzero higher multiplications on (A!)!, by the first part of the proof). A
similar grading argument shows that any morphism f : A → (A!)! of A∞-
algebras must be strict; thus the isomorphism of A∞-algebras A→ (A!)! is
just an isomorphism of associative algebras. �
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2.4. Examples: exterior and polynomial algebras. In this subsection,
we consider some simple examples involving exterior algebras and polyno-
mial algebras. The first example shows that in the classical setting, it is
crucial that a Koszul algebra be generated in a single degree.

Example 2.8. Assume that the ground field k has characteristic 2, and
consider the exterior algebra Λ = Λ(x1, x2) with deg xi = (0, i): this is not
a classical Koszul algebra, nor is it an (a, b)-generated Koszul algebra, since
there are generators in multiple degrees. The same goes for Λ⊗Λ. The Ext-
algebra for Λ is the polynomial algebra Λ! = k[y1, y2] with deg yi = (1,−i).
Similarly, the Ext-algebra for Λ⊗Λ is isomorphic to Λ!⊗Λ!. Although it is
true that (Λ!)! ∼= Λ, there are naturality problems. In particular, the map

Alg(Λ,Λ⊗ Λ)→ Alg(Λ! ⊗ Λ!,Λ!)

is not injective: one can show that the following two maps induce the same
map on Ext:

f : x1 �→ x1 ⊗ 1 + 1⊗ x1, g : x1 �→ x1 ⊗ 1 + 1⊗ x1,

f : x2 �→ x2 ⊗ 1 + 1⊗ x2, g : x2 �→ x2 ⊗ 1 + 1⊗ x2 + x1 ⊗ x1.

(Indeed, any coassociative coproduct on Λ induces the Yoneda product on
Ext∗Λ(k, k).) This shows the importance of the requirement that Koszul
algebras be generated in a single degree.

Now, Theorem 2.4 and Corollary 2.5 apply here. The A∞-version of the
Koszul dual of Λ is quasi-isomorphic to Λ!: E(Λ) ∼= Λ! = k[y1, y2], where
the A∞-structure on Λ! is given by mn = 0 when n �= 2. Corollary 2.5 says
that there is a bijection

HoAlg∞aug(Λ,Λ⊗ Λ) ∼−→ HoAlg∞aug(Λ
! ⊗ Λ!,Λ!).

This fixes the flaw above; the two (strict) maps f and g correspond to A∞-
algebra morphisms E(f) and E(g), and while E(f)1 = E(g)1, the morphisms
must differ in some higher component. (Even though the algebras involved
here have A∞-structures with zero higher multiplications, there are nonstrict
A∞-algebra morphisms between them. Also, k[y1, y2] is quasi-isomorphic,
not equal, to the A∞-Koszul dual of Λ, so Corollary 2.5(c), which says that
every nonstrict map on Koszul duals is homotopic to a strict one, does not
apply here.)

Example 2.9. Let A = Λ(x) with deg x = (a, 0); Corollary 2.7 does not
apply in this case. The Koszul dual is E(A) = k[y] with deg y = (1 − a, 0)
and with mn = 0 for n �= 2. Assume that a �= 0, 1; then E(A) is locally
finite, as is E(E(A)) by Remark 2.3. Thus Corollary 2.5 says that there is
a bijection

HoAlg∞aug(Λ(x),Λ(x)) ∼−→ HoAlg∞aug(k[y], k[y]).
For degree reasons, every map Λ(x) → Λ(x) must be strict, so each map is
given by the image of x: x �−→ cx for any scalar c ∈ k.
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On the other hand, degree reasons do not rule out nonstrict maps k[y]→
k[y]. Strict maps will correspond to those from Λ(x) to itself, with the map
given by the scalar c corresponding to the map y �→ cy. Thus, as pointed out
in Corollary 2.5(c), if there are any nonstrict maps, then they are homotopic
to strict ones. In particular, one can see that if two A∞-algebra maps
f, g : k[y]→ k[y] are homotopic, then f1 = g1. So if f = (f1, f2, . . . ) is such
a map, then it will be homotopic to the strict map (f1, 0, 0, . . . ). None of this
is immediately clear from the morphism and homotopy identities, so Koszul
duality, in the form of Corollary 2.5, gives some insight into A∞-maps from
k[y] to itself.

Example 2.10. Now consider A = Λ(x) with deg x = (1, 0). As in the
previous example, every map Λ(x) → Λ(x) must be strict. In this case,
B∞

augA is the vector space spanned by the classes [x| · · · |x], all of which are
in bidegree (0, 0). Since B∞

augA is not locally finite, Theorem 2.4 does not
apply, and the Koszul dual E(A) ends up being the power series ring k[[y]]
instead of the polynomial ring k[y]. Consider the composite

Alg∞aug(A,A) ∼−→ DGCcoaug(B∞
augA,B∞

augA)→ DGAaug(E(A), E(A)).

The first map is a bijection by (1.11), but the second map is not, essentially
since the map is given by vector space duality and the vector spaces involved
are not finite-dimensional. Since strict A∞-maps are homotopic if and only
if they are equal, we get a proper inclusion

HoAlg∞aug(A,A)

=
↪→ HoAlg∞aug(E(A), E(A)).

Thus Corollary 2.5 fails here.

Example 2.11. We also mention the case when A = Λ(x) with deg x =
(a, b) with b �= 0. In this case, E(A) = k[y] with deg y = (1 − a,−b). Also,
A∞-morphisms Λ(x)→ Λ(x) and k[y]→ k[y] must be strict, and it is easy to
show that the strict maps are in bijection, as Corollary 2.5 says they should
be. Indeed in this case, classical Koszul duality (Corollary 2.7) applies, since
Λ(x) is (a, b)-generated Koszul with b �= 0.

Part II. Koszul duality for modules

3. Background on A∞-modules

Koszul duality relates not just to algebras, but also to modules over them.
In this section, we briefly review the relevant categories of modules over an
A∞-algebra. See Keller [20, 4.2] for a few more details, keeping in mind
that since he is not working in the augmented setting, a little translation
is required, especially in regards to the bar construction. The paper [24,
Section 6] also has some relevant information, as does Lefèvre-Hasegawa’s
thesis [23].
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There are several subsections here: the definition of A∞-module; the bar
construction; derived categories; and several sections about “opposites.”

3.1. A∞-modules. Let A be an A∞-algebra. A bigraded vector space M
is a right A∞-module over A if there are graded maps

mn : M ⊗A⊗n−1 →M, n ≥ 1,

of degree (2 − n, 0) satisfying the Stasheff identities SI(n), interpreted ap-
propriately. Similarly, a bigraded vector space N is a left A∞-module over
A if there are graded maps

mn : A⊗n−1 ⊗N → N, n ≥ 1,

of degree (2 − n, 0) satisfying the Stasheff identities SI(n), interpreted ap-
propriately.

Morphisms of right A∞-modules are defined in a similar way: a morphism
f : M →M ′ of right A∞-modules over A is a sequence of graded maps

fn : M ⊗A⊗n−1 →M ′, n ≥ 1,

of degree (1− n, 0) satisfying the Stasheff morphism identities MI(n). Mor-
phisms of left A∞-modules are defined analogously, and so are homotopies
in both the right and left module settings.

Now suppose that A is an augmented A∞-algebra. A right A∞-module
M over A is strictly unital if for all x ∈M and for all ai ∈ A, m2(x⊗1) = x
and

mn(x⊗ a2 ⊗ · · · ⊗ an) = 0, for all n ≥ 3
if ai = 1 for some i. A morphism f of such is strictly unital if for all n ≥ 2,
we have fn(x⊗ a2 ⊗ · · · ⊗ an) = 0 if ai = 1 for some i.

Given an augmented A∞-algebra A, let Mod∞(A) denote the category of
strictly unital right A∞-modules with strictly unital morphisms over A.

Suppose A is an augmented A∞-algebra. The morphism ε : A→ k makes
the vector space k into a left A∞-module over A. It is called the trivial left
A∞-module over A and is denoted by Ak. The trivial right A∞-module over
A is defined similarly, and is denoted by kA.

3.2. The bar construction for modules. The bar construction is as use-
ful for A∞-modules as it is for A∞-algebras: recall that the bar construction
on A is B∞

augA = T (SI). A strictly unital right A∞-module structure on a
bigraded vector space M gives a comodule differential on the right B∞

augA-
comodule

B∞
aug(M ;A) := SM ⊗ T (SI),

as in Definition 1.8. Also, morphisms of right modules M → M ′ are in bi-
jection with morphisms of right DG comodules B∞

aug(M ;A)→ B∞
aug(M ′;A)

as in (1.11), and the notion of homotopy translates as well.
Similarly, one has a bar construction for left A∞-modules, defined by

B∞
aug(A;N) := T (SI)⊗ SN,
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with the same formula for the differential.

3.3. Derived categories. Let D∞(A) be the derived category associated
to the module category Mod∞(A). By [20, 4.2] (see also [23, 2.4.2]), this
derived category is the same as the homotopy category of Mod∞(A): in the
homotopy category for A∞-modules, quasi-isomorphisms have already been
inverted. This statement is the module version of Theorem 1.16.

Given a DG algebra R, write ModR for the category of unital DG right
R-modules, and write D(R) for its derived category. A good reference for
the derived category D(R) is [19]; also see [21, 22]. See [23, 2.4.3 and 4.1.3]
and [24, 7.2 and 7.3] for the following.

Proposition 3.1. (a) Suppose that A and B are augmented A∞-algebras.
If f : A→ B is an A∞-isomorphism, then the induced functor

f∗ : D∞(B)→ D∞(A)

is a triangulated equivalence.
(b) Suppose that R is an augmented DG algebra. Then the inclusion

ModR ↪→ Mod∞(R) induces a triangulated equivalence

D(R)→ D∞(R).

(c) Hence if A is an augmented A∞-algebra and R is an augmented DG
algebra with an A∞-isomorphism A→ R, there is a triangulated equiv-
alence F : D(R) → D∞(A). Under this equivalence, F (kR) ∼= kA and
F (R) ∼= A.

Hence in the category D∞(A) one can perform many of the usual con-
structions, by first working in the derived category D(UA) of its enveloping
algebra and then applying the equivalence of categories D(UA) → D∞(A).
See Section 5 for an application of this idea. We note that the Adams shift
is an automorphism of D∞(A).

3.4. The opposite of a DG algebra. If A = (A,m1,m2) is a DG algebra
with differential m1 and multiplication m2, we define the opposite algebra
of A to be (Aop,mop

1 ,mop
2 ), where Aop = A, mop

1 = −m1, and

mop
2 (a⊗ b) = (−1)(deg a)(deg b)m2(b⊗ a).

That is, mop
2 = m2 ◦ τ , where τ is the twist function, which interchanges

tensor factors at the expense of the appropriate Koszul sign. One can verify
that this is a DG algebra: mop

1 and mop
2 satisfy a Leibniz formula. (Choosing

mop
1 = m1 also works, but is not compatible with the bar construction: see

below.)
If f : A → A′ is a map of DG algebras, define fop : Aop → (A′)op by

fop = f . Then fop is also a DG algebra map, so op defines an automorphism
of the category of DG algebras, and it is clearly its own inverse.
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Dually, given a DG coalgebra C = (C, d,Δ), we define its opposite coal-
gebra to be (Cop, dop,Δop), where Cop = C, dop = −d, and Δop = τ ◦ Δ.
With these definitions, for any DG algebra A there is an isomorphism

B(Aop) Φ−−→ B(A)op,

[a1| . . . |am] �−→ (−1)
P

i<j(−1+deg ai)(−1+deg aj)[am| . . . |a1],

of DG coalgebras. Note that, had we defined the differential mop
1 in Aop by

mop
1 = m1, this map Φ would not be compatible with the differentials, and

so would not be a map of DG coalgebras.
If F : (C, d,Δ) → (C ′, d′,Δ′) is a morphism of DG coalgebras, then define

F op to be equal to F . One can check that F op : Cop → (C ′)op is also a map
of DG coalgebras, making op into a functor op : DGC→ DGC. As above, it
is an automorphism which is its own inverse.

The definition of homotopy in Subsection 1.5 works in general for DG
coalgebra morphisms: if F and G are DG coalgebra morphisms C → C ′,
then a homotopy from F to G is a map H : C → C ′ of degree −1 such that

ΔH = (F ⊗H + H ⊗G)Δ, F −G = d′ ◦H + H ◦ d.

We write H = H(F → G) to indicate the “direction” of the homotopy. One
can check that, in this situation, the map H also defines a homotopy from
Gop to F op, as maps Cop → (C ′)op. Therefore, we may define Hop(Gop →
F op) to be H(F → G). As a consequence, op induces an automorphism on
the homotopy category of DG coalgebras.

3.5. The opposite of an A∞-algebra. Now we define a functor

op : Alg∞ → Alg∞

which generalizes the opposite functor on the category of DG algebras.
Given an A∞-algebra (A,m1,m2,m3, . . . ), define (Aop,mop

1 ,mop
2 ,mop

3 , . . . )
as follows: as a bigraded vector space, Aop is the same as A. The map
mop

n : (Aop)⊗n → Aop is defined by mop
n = (−1)ε(n)mn ◦ (twist), where

“twist” is the map which reverses the factors in a tensor product, with the
appropriate Koszul sign, and

ε(n) =

{
1, if n ≡ 0, 1 (mod 4),
0, if n ≡ 2, 3 (mod 4).

Equivalently, since only the parity of ε(n) is important, ε(n) =
(n+2

2

)
, or

ε(n) =
(
n
2

)
+ 1. Thus when applied to elements,

mop
n (a1 ⊗ · · · ⊗ an) = (−1)ε(n)+

P
i<j(deg ai)(deg aj)mn(an ⊗ · · · ⊗ a1).
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Lemma 3.2. The function ε satisfies the following additivity formula: for
any q ≥ 1 and any is ≥ 1, s = 1, 2, . . . , q,

∑
1≤s≤q

ε(is)+ε

⎛⎝ ∑
1≤s≤q

is − q + 1

⎞⎠+
∑

1≤s<t≤q

(is−1)(it−1) ≡ q+1 (mod 2).

Proof. The q = 1 case is trivial, the q = 2 case may be established by (for
example) considering the different congruence classes of i1 mod 4, and for
larger q, one can use a simple induction argument. �

Lemma 3.3. (Aop,mop
1 ,mop

2 ,mop
3 , . . . ) is an A∞-algebra.

Proof. We need to check that (Aop,mop
1 ,mop

2 ,mop
3 , . . . ) satisfies the Stasheff

identities. This is a tedious, but straightforward, verification, which we leave
to the reader. The q = 2 case of Lemma 3.2 is useful. �

We also need to specify what happens to morphisms. Given a morphism
f : A→ B, we define fop : Aop → Bop by defining

fop
n : (Aop)⊗n → Bop

to be fop
n = (−1)1+ε(n)fn ◦ (twist); that is,

fop
n (a1 ⊗ · · · ⊗ an) = (−1)1+ε(n)+

P
i<j deg ai deg ajfn(an ⊗ · · · ⊗ a1).

Lemma 3.4. The family fop = (fop
n ) is a morphism of A∞-algebras.

Proof. This is another tedious verification. Lemma 3.2 is used here. �

To complete this circle of ideas, we should consider the bar construction.
That is, consider the following diagram of functors:

Alg∞

B(−)

��

op

∼ �� Alg∞

B(−)

��
DGC

op

∼ �� DGC
∼? �� DGC

The horizontal arrows are equivalences of categories. The vertical arrows are
fully faithful embeddings. Starting with an A∞-algebra A in the upper left
corner, mapping down and then to the right gives B(A)op, while mapping
to the right and then down gives B(Aop). It would be nice if these two DG
coalgebras agreed, and indeed they do. The proof of the following is left to
the reader.

Lemma 3.5. For any A∞-algebra A, the map

Φ : B(Aop) −−→ B(A)op,

[a1| . . . |am] �−→ (−1)
P

i<j(−1+deg ai)(−1+deg aj)[am| . . . |a1]

is an isomorphism of DG coalgebras.
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Note that B(A)op is the opposite coalgebra to B(A), as defined in Sub-
section 3.4.

This result gives us a second way to prove Lemma 3.4, that the definition
fop

n = (−1)1+ε(n)fn ◦ (twist) defines a morphism of A∞-algebras: one just
has to check that if the A∞-algebra morphism f : A → A′ corresponds to
the DG coalgebra morphism B(f) : B(A)→ B(A′), then the composite

B(A)op Φ−1−−→∼= B(Aop)
B(fop)−−−−→ B((A′)op) Φ−→∼= B(A′)op

is equal to B(f)op = B(f). This is straightforward.
Once we know that the bar construction works well with opposites, we

can define the opposite of a homotopy between A∞-algebra maps in terms
of the bar construction. Thus op defines an automorphism on the homotopy
category of A∞-algebras.

3.6. The opposite of an A∞-module. Since modules over an A∞-alge-
bra are defined using exactly the same identities SI(n) as for A∞-algebras,
and since morphisms between modules satisfy only slight variants on the
identities MI(n), essentially the same proofs show that the opposite of a
right A-module is a left Aop-module, etc. That is, there are equivalences of
categories

(left A∞-modules over A)
op−→ Mod∞(Aop),

D∞(left A∞-modules over A)
op−→ D∞(Aop).

So whenever left A∞-modules arise, we may easily convert them to right
A∞-modules, and vice versa.

4. Adjunctions and equivalences

This section lays more groundwork: generalities for establishing equiv-
alences between categories via Auslander and Bass classes, results about
derived functors for DG modules, and ⊗-Hom adjointness. Two of the main
results of the section are Propositions 4.10 and 4.11, which describe when
certain subcategories of derived categories of DG-modules are equivalent.

4.1. Auslander and Bass classes. Let C and D be two categories. Let
F : C → D be left adjoint to a functor G : D → C. Then there are natural
transformations

η : 1C → GF,

ε : FG→ 1D.

We define two full subcategories as follows. The Auslander class associated
to (F,G) is the subcategory of C whose objects are

{M | ηM : M → GF (M) is an isomorphism}.
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The Auslander class is denoted by A. The Bass class associated to (F,G)
is the subcategory of D whose objects are

{N | εN : FG(N)→ N is an isomorphism}.
The Bass class is denoted by B. These definitions are abstractions of ideas
of Avramov and Foxby [2, Section 3]. The following lemma is proved by
imitating [2, Theorem 3.2].

Lemma 4.1. Let (F,G) be a pair of adjoint functors between C and D.
(a) The functors F and G restrict to an equivalence of categories between

A and B.
(b) If C and D are additive and F and G are additive functors, then A and

B are additive subcategories. If C and D are triangulated and F and G
are triangulated functors, then A and B are triangulated subcategories.

4.2. Derived functors over a DG algebra. The derived category and
derived functors over a DG algebra are well-understood constructions nowa-
days. See [33], [19], and [13], for example. We review some details in this
subsection. As with A∞-algebras and modules, every DG module in this
paper is Z× Z-graded.

Let R be a DG algebra and let M be a DG R-module. Then M is called
acyclic if HM = 0; it is called free if it is isomorphic to a direct sum of
shifts of R; and it is called semifree if there is a sequence of DG submodules

0 = M−1 ⊂M0 ⊂ · · · ⊂Mn ⊂ · · ·
such that M =

⋃
n Mn and that each Mn/Mn−1 is free on a basis of cycles.

Semifree modules are a replacement for free complexes over an associative
algebra.

Notation. If R is a DG algebra and M and N are DG R-modules, we write
HomR(M,N) for the DG k-module whose degree n elements are degree n
R-module maps M → N , ignoring the differential; see Subsection 1.1 for
the formula for the differential in HomR(M,N). Similarly, EndR(M) means
the complex HomR(M,M).

In DG homological algebra, K-projective and K-injective DG modules are
used to define derived functors. A DG R-module M is called K-projective
if the functor HomR(M,−) preserves quasi-isomorphisms, or equivalently,
HomR(M,−) maps acyclic DG R-modules to acyclic DG k-modules. For
example, a semifree DG R-module is always K-projective. A DG R-module
M is called K-flat if the functor M ⊗R − preserves quasi-isomorphisms;
every K-projective DG R-module is K-flat. A DG R-module N is called K-
injective if the functor HomR(−, N) preserves quasi-isomorphisms, or equiv-
alently, HomR(−, N) maps acyclic DG R-modules to acyclic DG k-modules.

Given a DG R-module M , a map f : L→ M is called a semifree (or K-
projective or K-flat, respectively) resolution of M if f : L → M is a quasi-
isomorphism and L is semifree (or K-projective or K-flat, respectively).



350 D.-M. Lu, J. H. Palmieri, Q.-S. Wu and J. J. Zhang

Similarly, a K-injective resolution of M is a quasi-isomorphism M → L
where L is K-injective. In all of these cases, we will also abuse notation
slightly and refer to L itself as the resolution, omitting mention of the map
f .

The right derived functor of HomR(−,−) is RHomR(−,−), defined by

RHomR(M,N) := HomR(P,N) or RHomR(M,N) := HomR(M, I)

where P is a K-projective resolution of M and I is a K-injective resolution
of N . The left derived functor of −⊗R − is −⊗L

R −, defined by

M ⊗L
R N := M ⊗R Q or M ⊗L

R N := S ⊗R N

where S is a K-flat resolution of M and Q is a K-flat resolution of N .

4.3. Tensor-Hom and Hom-Hom adjunctions. We discuss⊗-Hom and
Hom-Hom adjointness, both basic and derived. These are well-known, at
least in the case of modules over an associative algebra. The DG case may
not be as familiar, so we provide some details. Here is the basic version.

Lemma 4.2. Let A, B, C, and D be DG algebras.
(a) [Hom-Hom adjointness] Let ALC , DMB and ANB be DG bimodules.

Then

HomAop(ALC ,HomB(DMB , ANB)) ∼= HomB(DMB ,HomAop(ALC , ANB))

as DG (C,D)-bimodules.
(b) [⊗-Hom adjointness] Let DLB, BMA and CNA be DG bimodules. Then

HomA(DL⊗B MA, CNA) ∼= HomB(DLB,HomA(BMA, CNA))

as DG (C,D)-bimodules.

The isomorphism in part (a) gives a pair of adjoint functors

A-Mod � (ModB)op,

namely HomAop(−, ANB) (left adjoint) and HomB(−, ANB) (right adjoint).
This explains the label, “Hom-Hom adjointness.”

Proof. (a) The desired isomorphism

φ : HomAop(ALC ,HomB(DMB , ANB))

→ HomB(DMB ,HomAop(ALC , ANB))

is defined by the following rule. Let f ∈ HomAop(ALC ,HomB(DMB , ANB)),
and l ∈ L and m ∈ M , write f(l) ∈ HomB(DMB , ANB) and f(l)(m) ∈ N ;
then φ(f) : M → HomAop(ALC , ANB) is determined by

φ(f)(m)(l) = (−1)|l||m|f(l)(m)

for all l ∈ L,m ∈M . It is straightforward to check that φ is an isomorphism
of DG bimodules.
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The above construction is given in the unpublished manuscript [3, (3.4.2),
p. 27]. The isomorphism φ is called the swap isomorphism [3, Sect. 3.4].

(b) This is standard and a proof is given in [3, (3.4.3), p. 28]. A non-DG
version is in [31, Theorem 2.11, p. 37]. �

To get derived versions of these, we need information about bimodules,
semifree resolutions, K-projectives, etc.

Lemma 4.3. Let A and B be DG algebras. Let M and L be DG (B,A)-
bimodules, or equivalently, DG Bop ⊗A-modules.
(a) Let N be a DG A-module. If there is a sequence of DG submodules

0 = N−1 ⊂ N0 ⊂ · · · ⊂ Nn ⊂ · · ·
such that N =

⋃
n Nn, Cn := Nn/Nn−1 is K-projective, and the un-

derlying graded module Cn is projective, then N is K-projective.
(b) If M is semifree (B,A)-bimodule, then it is K-projective over A. As

a consequence, if M → L is a semifree resolution of L, then restricted
to the right-hand side, it is a K-projective resolution of LA.

(c) If M is K-injective (B,A)-bimodule, then it is K-injective over A.
As a consequence, if L → M is a K-injective resolution of L, then
restricted to the right-hand side, it is a K-injective resolution of LA.

Proof. (a) First consider the sequence

0→ N0 → N1 → C1 → 0

of DG A-modules. This is a split (hence exact) sequence after omitting the
differentials, as the underlying graded module C1 is projective. Let X be an
acyclic DG A-module. Then we have an exact sequence

0→ HomA(C1,X)→ HomA(N1,X)→ HomA(N0,X)→ 0.

If the two ends HomA(C1,X) and HomA(N0,X) are acyclic, so is the middle
term HomA(N1,X). This shows that if C0(= N0) and C1 are K-projective,
so is N1. By induction on n we see that Nn is K-projective and projective
for all n. Since every sequence

0→ Nn−1 → Nn → Cn → 0

splits, the map HomA(Nn,X)→ HomA(Nn−1,X) is surjective. This means
that the inverse system {HomA(Nn,X)}n satisfies Mittag-Leffler condition.
Since each HomA(Nn,X) is acyclic,

HomA(N,X) = lim←−HomA(Nn,X)

is acyclic by [37, Theorem 3.5.8].
(b) The second assertion follows from the first one.
By part (a) and the definition of a semifree module, we may assume M

is free. Since a free module is a direct sum of shifts of Bop ⊗ A, we may
assume M is a copy of Bop ⊗ A. Therefore M is free over A, and hence
K-projective over A.
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(c) The second assertion follows from the first one.
Let NA be an acyclic DG A-module. By ⊗-Hom adjointness (Lemma

4.2(b)), we have

HomA(N, BMA) = HomA(N,HomBop⊗A(Bop ⊗A, BMA))
∼= HomBop⊗A(N ⊗A (Bop ⊗A), BMA)
∼= HomBop⊗A(N ⊗Bop, BMA).

Since N is acyclic, so is N ⊗ Bop. Since BMA is K-injective, the above
formula implies that HomA(N,MA) is acyclic. Hence MA is K-injective. �

We can combine the previous two lemmas to get derived Hom-Hom and
⊗-Hom adjointness.

Lemma 4.4 (Derived Hom-Hom adjointness). Let A, B, C, and D be DG
algebras. Let ALB, BMC and AND be DG bimodules.

(a) There is an isomorphism of complexes

RHomAop(ALC ,RHomB(DMB , ANB))
∼= RHomB(DMB ,RHomAop(ALC , ANB))

in D(Cop ⊗D).
(b) There is an isomorphism of k-vector spaces

D(Aop)(AL,RHomB(MB , ANB)) ∼= D(B)(MB ,RHomAop(AL, ANB)).

Proof. (a) This follows from Lemmas 4.2 and 4.3, and by taking semifree
resolutions of the DG bimodules M and L.

(b) This follows from (a) by taking H0. �

Lemma 4.5 (Derived ⊗-Hom adjointness). Let A, B, C and D be DG
algebras. Let DLB, BMA and CNA be DG bimodules.

(a) There is an isomorphism of complexes

RHomA(DL⊗L
B MA, CNA) ∼= RHomB(DLB ,RHomA(BMA, CNA))

in D(Cop ⊗D).
(b) There is an isomorphism of k-vector spaces

D(A)(L⊗L
B MA, NA) ∼= D(B)(LB ,RHomA(BMA, NA)).

Proof. (a) This follows from Lemmas 4.2 and 4.3, and by taking semifree
resolutions of the DG bimodules M and L and a K-injective resolution of
the bimodule N .

(b) This follows from (a) by taking H0. �
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4.4. Balanced bimodules and equivalences. In this subsection we prove
Propositions 4.10 and 4.11, the main results in this section; these establish
a framework for proving the derived equivalences in Section 5.

Let A and E be two DG algebras. A DG A-module M is a DG (E,A)-
bimodule if and only if there is a map of DG algebras E → HomA(M,M).

Definition 4.6. Let B be a DG (E,A)-bimodule. We call B left balanced if
there is a quasi-isomorphism B → N of DG (E,A)-bimodules such that N
is K-injective over Eop ⊗ A and the canonical map E → HomA(N,N) is a
quasi-isomorphism of DG algebras. The right balanced property is defined
in a similar way, in terms of the map Aop → HomEop(N,N).

Lemma 4.7. Let B be a DG (E,A)-bimodule. Then the following conditions
are equivalent:

(i) B is left balanced.
(ii) If P → B is a quasi-isomorphism of DG (E,A)-bimodules with PA

being K-projective, then the canonical map E → HomA(P,P ) is a
quasi-isomorphism of DG algebras.

(iii) If B → I is a quasi-isomorphism of DG (E,A)-bimodules with IA be-
ing K-injective, then the canonical map E → HomA(I, I) is a quasi-
isomorphism of DG algebras.

Proof. (i)⇔ (ii). Suppose that there is a quasi-isomorphism B → N where
N is K-injective over Eop ⊗ A. (By a result of Spaltenstein [33, Corollary
3.9], there always is such a map.) By Lemma 4.3(c), N is K-injective over
A. The quasi-isomorphism f : P → B → N induces two maps

E
iN−→ HomA(N,N)

f∗
−→ HomA(P,N)

and
E

iP−→ HomA(P,P )
f∗−→ HomA(P,N)

of (E,E)-bimodules. Since N is K-injective over A and P is K-projective
over A, both g and h are quasi-isomorphisms. It is easy to see that f∗iN =
f∗iP : they both map e ∈ E to ef = fe ∈ HomA(P,N). Therefore iN is a
quasi-isomorphism if and only if iP is.

(ii) ⇔ (iii). This proof is similar. �
By the above lemma, we can construct plenty of left balanced bimodules.

For example, let M be a K-injective (or K-projective) DG A-module and
let E = HomA(M,M). It follows from the lemma that M becomes a left
balanced DG (E,A)-bimodule with its natural left E-module structure.

We now recall a few definitions.

Definition 4.8. An object M in an additive category C with infinite direct
sums is called small if C(M,−) commutes with arbitrary direct sums.

Let A be an A∞-algebra and M be a right A∞-module over A. Let
triang∞A (M) denote the triangulated subcategory of D∞(A) generated by
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M and its Adams shifts. (Recall that every subcategory in this paper is
full.) Let thick∞A (M) be the thick subcategory generated by triang∞A (M): the
smallest triangulated subcategory, closed under summands, which contains
triang∞A (M). Similarly, if R is a DG algebra and N is a DG R-module,
let triangR(N) denote the triangulated subcategory of D(R) generated by
N and its shifts, and let thickR(N) be the thick subcategory generated by
triangR(N). Let D∞

per(A) = thick∞A (A), and let Dper(R) = thickR(R). We
call objects in D∞

per(A) and Dper(R) perfect complexes. Let loc∞A (M) denote
the localizing subcategory (= triangulated and closed under arbitrary direct
sums) generated by triang∞A (M), and similarly for locR(N). We can also
define each of these with M or N replaced by a collection of modules. It is
well-known that locR(R) = D(R).

Lemma 4.9. (a) If R is a DG algebra and N is a right DG R-module,
then N is small in D(R) if and only if RHomR(N,−) commutes with
arbitrary colimits, and if and only if N ∈ Dper(R).

(b) If A is an A∞-algebra and M is a right A∞-module over A, then M
is small in D∞(A) if and only if M ∈ D∞

per(A).

Proof. (a) The equivalence that N is small if and only if N is in Dper(R)
is somewhat standard; see Keller [19, 5.3], for example. If RHomR(N,−)
commutes with arbitrary colimits, then since homology also commutes with
colimits, D(R)(N,−) = H RHomR(N,−) does as well, and so N is small.
Finally, RHomR(R,−) commutes with arbitrary colimits, and hence so does
RHomR(N,−) for any object N in Dper(R) = thickR(R).

(b) This follows from part (a) and Propositions 1.14 and 3.1(c). �

Let B be a DG (E,A)-bimodule. By Lemma 4.5(b),

FB := −⊗L
E B : D(E)→ D(A) and

GB := RHomA(B,−) : D(A)→ D(E)

form a pair of adjoint functors. Let AB and BB be the Auslander and Bass
classes associated to the pair (FB, GB). By Lemma 4.1, (FB, GB) induces a
triangulated equivalence between AB and BB.

The next two results are precursors of the derived equivalences in the next
section.

Proposition 4.10. Let A and E be DG algebras, and suppose that B is a
left balanced DG (E,A)-module. Define adjoint functors F = FB = −⊗L

E B
and G = GB = RHomA(B,−), as above.

(a) Then FB and GB induce an equivalence of categories AB ∼= BB. Fur-
thermore, EE ∈ AB, BA ∈ BB, and FB(EE) = BA.

(b) There is an equivalence of triangulated categories

triangE(E) ∼= triangA(B).
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(c) There is an equivalence of triangulated categories

Dper(E) = thickE(E) ∼= thickA(B).

(d) If BA is small, then there is an equivalence of triangulated categories

D(E) ∼= locA(B).

Proof. (a) The first assertion is Lemma 4.1. Without loss of generality, we
assume that B is K-injective over Eop ⊗A. Since B is left balanced,

E → HomA(B,B) ∼= RHomA(B,B) = RHomA(B, E ⊗L
E B) = GF (E)

is a quasi-isomorphism of DG A-modules. Hence E ∈ AB. Clearly F (E) = B
and G(B) = E. Consequently, B ∈ BB.

(b,c) These follow from (a).
(d) By definition, F commutes with arbitrary colimits. If B is small, G

commutes with arbitrary colimits. In this case, AB and BB have arbitrary
colimits. Since E ∈ AB, AB = D(E). Since F is an equivalence, BB =
locA(B). �

Now we consider two other functors F̃B = RHomEop(−,B) : D(Eop) →
D(A) and G̃B = RHomA(−,B) : D(A) → D(Eop). Both of them are
contravariant; however, if we view them as FB : D(Eop) → D(A)op and
GB : D(A)op → D(Eop), then they become covariant. By Lemma 4.4(a),
(FB, GB) is an adjoint pair. Let A

B and B
B be the Auslander and Bass

classes associated to the pair (FB, GB).

Proposition 4.11. Let A and E be DG algebras, and suppose that B is
a left balanced DG (E,A)-module. Define adjoint functors F = FB and
G = GB, as above.
(a) Then FB and GB induce an equivalence of categories A

B ∼= B
B. Fur-

thermore, EE ∈ BB, BA ∈ AB, and FB(EE) = BA.
(b) If B is also right balanced, then AA ∈ A

B, EB ∈ B
B, and FB(EB) =

AA.
(c) There is an equivalence of triangulated categories

triangEop(E) ∼= triangA(B)op.

If B is also right balanced, then

triangEop(E,B) ∼= triangA(A,B)op.

(d) There is an equivalence of triangulated categories

Dper(Eop) = thickEop(E) ∼= thickA(B)op.

If B is also right balanced, then

thickEop(E,B) ∼= thickA(A,B)op.
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(e) If EB is small and B is right balanced, then there is an equivalence of
triangulated categories

Dper(Eop) ∼= thickA(A,B)op = thickA(B)op.

As a consequence, A ∈ thickA(B)op.

Proof. (a) The first assertion follows from Lemma 4.1. We may assume
that B is K-injective over Eop ⊗A. Since B is left balanced,

GBFB(EE) = RHomA(RHomEop(E,B),B) = RHomA(B,B)←− E

is a quasi-isomorphism. This shows that E ∈ B
B. Since FB(E) = B, we

have B ∈ A
B.

(b) This is the right-hand version of (a).
(c,d,e) These follow from (a,b). �

Proposition 4.10 also implies the following easy fact.

Corollary 4.12. Let M be an object in D∞(A) for some A∞-algebra A.
Then thickA(M) is triangulated equivalent to Dper(E) for some DG algebra
E.

Proof. By Proposition 3.1 we may assume that A is a DG algebra, and
then we may replace D∞(A) by D(A). Hence we may assume that M is a
right DG A-module.

Let BA be a K-projective resolution of M and let E = EndA(BA). Then
B is a left balanced (E,A)-bimodule. Note that M ∼= B in D(A). The
assertion follows from Proposition 4.10(c). �

5. Koszul equivalences and dualities

In the setting of classical Koszul duality [7], there is an equivalence be-
tween certain subcategories of the derived categories of a Koszul algebra A
and of its Koszul dual; the subcategories consist of objects satisfying certain
finiteness conditions. In this section, we explore the analogous results for
non-Koszul algebras, DG algebras, and A∞-algebras. The main results are
Theorems 5.4 and 5.5 in the DG setting, and Theorems 5.7 and 5.8 in the
A∞ setting.

5.1. Koszul equivalence and duality in the DG case. Let A be an
augmented DG algebra and let E(A) = (B∞

augA)� be its Koszul dual, as
defined in Section 2.2. The usual bar construction B(A;A) [13, p. 269],
where the second A is viewed as a DG A-bimodule, agrees with the A∞-
module version B∞

aug(A;A) from Section 3.2. By [13, Proposition 19.2(b)],
B(A;A) is a semifree resolution of the right A-module k. Thus to define
derived functors we may replace kA with B(A;A)A.

The following lemma can be viewed as a dual version of [13, Proposition
19.2].
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Lemma 5.1. Let B = B(A;A) and let E = E(A).
(a) The natural embedding i : Ek → EB is a quasi-isomorphism of left DG

E-modules.
(b) If A is weakly Adams connected (Definition 2.1), then B is a K-injective

DG left E-module.

A left DG E-module is called semiinjective if it is an injective left graded
E-module and a K-injective left DG E-module.

Proof. (a) By [13, Proposition 19.2(a)], the augmentations in BA and A
define a quasi-isomorphism ε ⊗ ε : BA → kA of right DG A-modules. The
map i is a quasi-isomorphism because the composition k

i−→ B ε⊗ε−−→ k is the
identity. It is easy to see that the map i is a left DG E-module homomor-
phism.

(b) Let E� be the E-bimodule Homk(E, k). It follows from the ad-
junction formula in Lemma 4.2(b) that E� is semiinjective as a left and
a right DG E-module. If V is a finite-dimensional k-vector space, then
E�⊗V ∼= Homk(E,V ) and this is also semiinjective as a left and a right DG
E-module.

Since B(A;A) is locally finite, E = (BA)� is locally finite and E� =
(BA�)� ∼= BA. Hence B(A; Ak) ∼= BA is a semiinjective left DG E-module.
By induction one can easily show that if M is a finite-dimensional left DG
A-module, then the bar construction B(A;M) is a semiinjective left DG
E-module. Since A is weakly Adams connected, A = lim←−Nn where the
{Nn}n≥0 are finite-dimensional left DG A-modules. Since each Nn is finite-
dimensional, we may further assume that the map Nn → Nn−1 is surjective
for all n. By the assertion just proved, B(A;Nn) is a semiinjective left DG
E-module for each n, as is B(A;Nn/Nn−1).

Since A = lim←−Nn and since B(A;A) is locally finite,

B(A;A) = lim←−B(A;Nn).

A result of Spaltenstein [33, Corollary 2.5] says that such an inverse limit of
K-injectives is again K-injective, and this finishes the proof. (Spaltenstein’s
result is for inverse limits of K-injectives in the category of chain complexes
over an abelian category, but the proof is formal enough that it extends to
the category of DG modules over a DG algebra.) �
Remark 5.2. By the above lemma, EB is isomorphic to Ek in D(Eop). By
[13, Proposition 19.2(a)], BA is isomorphic to kA in D(A). However, B is
not isomorphic to k in D(Eop ⊗A) in general.

Lemma 5.3. Let B be the right DG A-module B(A;A) and let C = EndA(B).
(a) B is a left balanced (C,A)-bimodule.
(b) If E := E(A) is locally finite, then B is a left balanced (E,A)-bimodule

via the natural isomorphism E → C. As a consequence,

HE ∼= H RHomA(k, k).
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(c) If A is weakly Adams connected, then B is a right balanced (E,A)-
bimodule.

Proof. (a) Since B is semifree over A, the assertion follows from Lemma 4.7.
(b) The first assertion follows from Lemma 4.7 and the fact that E →

EndA(B) is a quasi-isomorphism [13, Ex 4, p. 272].
Since BA is a K-projective resolution of kA,

HE ∼= H EndA(B) ∼= H RHomA(k, k).

(c) By Lemma 5.1(b), B is a K-injective left DG E-module. To show
that B is right balanced, we must show that the canonical map φ : Aop →
EndEop(B) is a quasi-isomorphism. This canonical map sends a ∈ A to
the endomorphism y �→ ya. Since EB is K-injective, H EndEop(B) ∼=
H RHomEop(k, k). By part (b),

H RHomEop(k, k) ∼= H(E(E))op ∼= HAop,

where the last isomorphism follows from Theorem 2.4. Therefore, since
HA is locally finite, it suffices to show that Hφ is injective. Let a ∈ Aop

be a cocycle such that φ(a) = 0 in H EndEop(B). Then a �= 1 and there
is an f ∈ EndEop(B) such that φ(a) = d(f). Applying this equation to
x = [ ]⊗ 1 ∈ B = B(A;A), we obtain

[ ]⊗ a = φ(a)(x) = d(f)(x)

= (d ◦ f − (−1)deg1 ff ◦ d)(x)

= d ◦ f([ ]⊗ 1)± f ◦ d([ ]⊗ 1).

Since f is a left E-module homomorphism, f([ ] ⊗ 1) = [ ] ⊗ w for some
w ∈ A. By definition, d([ ]⊗ 1) = 0. Therefore

[ ]⊗ a = d ◦ f([ ]⊗ 1) = d([ ]⊗ w) = [ ]⊗ dw,

and hence a = dw as required. �
Here is a version of [7, 1.2.6] for DG algebras.

Theorem 5.4. Let A be an augmented DG algebra and let E = E(A)
be the Koszul dual of A. Assume that E is locally finite. The functors
RHomA(k,−) and −⊗L

E k induce the following equivalences.
(a) The category triangA(k) is triangulated equivalent to triangE(E).
(b) The category thickA(k) is triangulated equivalent to Dper(E).
(c) Suppose that kA is small in D(A). Then locA(k) is triangulated equiv-

alent to D(E).

Proof. Note that B = B(A;A) ∼= kA as a right DG A-module. Then the
assertions follow from Proposition 4.10 and Lemma 5.3(b). �
Theorem 5.5. Let A be an augmented DG algebra and let E = E(A) be the
Koszul dual of A. Assume that A is weakly Adams connected. The functors
RHomA(−, k) and RHomEop(−, k) induce the following equivalences.
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(a) triangA(k,A)op is triangulated equivalent to triangEop(E, k).
(b) thickA(k,A)op is triangulated equivalent to thickEop(E, k).
(c) Suppose that kA is small in D(A). Then

Dper(A)op = thickA(k,A)op ∼= thickEop(E, k) = thickEop(k).

Proof. This follows from Proposition 4.11 and Lemmas 5.1 and 5.3. �
Corollary 5.6. Let A be a weakly Adams connected augmented DG algebra
and let E = E(A) be its Koszul dual. If kA is small in D(A), then HE is
finite-dimensional.

Proof. By Theorem 5.5(c), E is in the thick subcategory generated by k,
and every object in thickEop(k) has finite-dimensional homology. �

See Corollary 6.2 for a related result for DG algebras, and Corollaries 5.9
and 7.2 for similar results about A∞-algebras.

5.2. Koszul equivalence and duality in the A∞ case. Now suppose
that A is an A∞-algebra. By Proposition 1.14, A is quasi-isomorphic to
the DG algebra UA, so by Proposition 3.1, the derived category D∞(A) is
equivalent to D(UA). We can use this to prove the following, which is a
version of [7, 1.2.6] for A∞-algebras.

Theorem 5.7. Let A be an augmented A∞-algebra and let E = E(A) be the
Koszul dual of A. Assume that A is strongly locally finite (Definition 2.1).
(a) The category triang∞A (k) is triangulated equivalent to triang∞E (E).
(b) The category thick∞A (k) is triangulated equivalent to D∞

per(E).
(c) Suppose that kA is small in D∞(A). Then loc∞A (k) is triangulated

equivalent to D∞(E).

Proof. We can replace A by UA and E by E(UA) = E(E(E(A))). The
assertions follow from Proposition 3.1 and Theorem 5.4. �

Similarly, Proposition 3.1 combined with 5.5 give the following.

Theorem 5.8. Let A be an augmented A∞-algebra and let E = E(A) be
the Koszul dual of A. Assume that A is strongly locally finite.
(a) triang∞A (k,A)op is triangulated equivalent to triang∞Eop(E, k).
(b) thick∞A (k,A)op is triangulated equivalent to thick∞Eop(E, k).
(c) Suppose that kA is small in D∞(A). Then

D∞
per(A)op = thick∞A (k,A)op ∼= thick∞Eop(E, k) = thick∞Eop(k).

Just as Theorem 5.5 implied Corollary 5.6, this result implies the follow-
ing.

Corollary 5.9. Let A and E be as in Theorem 5.8. If kA is small in D∞(A),
then HE is finite-dimensional.

See Corollary 7.2 for the converse of Corollary 5.9.
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Corollary 5.10. Via the equivalence in Theorem 5.8, there is an isomor-
phism of k-vector spaces

H i
j(RHomA(k,A)) ∼= H−i

−j(RHomEop(k,E))

for all i, j.

Proof. Again we may assume that A and E are DG algebras. The functor
GB in Proposition 4.11 is defined as GB = RHomA(−,B) ∼= RHomA(−, k),
and changes S to S−1 and Σ to Σ−1; hence the assertion follows from the
fact GB(kA) = EE and GB(AA) = Ek. �

Remark 5.11. One might hope to prove Theorems 5.7 and 5.8 directly,
working in the category D∞(A) rather than D(UA). Keller [20, 6.3] and
Lefèvre-Hasegawa [23, 4.1.1] have described the appropriate functors: A∞-

versions of RHomA(−,−) and −⊗L
E−, which they write as

∞
Hom•

A(−,−) and

−∞⊗
E
−. Although we fully expect these to satisfy all of the required properties

(such as adjointness), it was easier to use the more standard results in the
DG setting.

6. Minimal semifree resolutions

In this short section we consider the existence of a minimal semifree reso-
lution of a DG module over a DG algebra. The main result is Theorem 6.1;
this result is needed in several places. There are similar results in the liter-
ature — see, for example [4, Section 1.11] or [11, Lemma A.3] — but they
require that A be connected graded with respect to the first (non-Adams)
grading. We need to use this in other situations, though, so we include a
detailed statement and proof.

We say that A is positively connected graded in the second (Adams) grad-
ing if A∗

<0 = 0 and A∗
0 = k; negatively connected graded in the Adams grading

is defined similarly. Write m for the augmentation ideal of A; then a semifree
resolution F →M of a module M is called minimal if dF (F ) ⊂ Fm.

Theorem 6.1. Let A be a DG algebra and let M be a right DG A-module.
(a) Assume that A is positively connected graded in the second grading

and that HM∗
≤n = 0 for some n, or that A is negatively connected

graded in the second grading and that HM∗
≥n = 0 for some n. Then M

has a minimal semifree resolution L → M with L∗
≤n = 0 (respectively

L∗
≥n = 0).

(b) Assume further that HA and HM are both bounded on the same side
with respect to the first grading: assume that for each j, there is an
m so that (HA)≤m

j = 0 and (HM)≤m
j = 0, or (HA)≥m

j = 0 and
(HM)≥m

j = 0. If HA and HM are locally finite (respectively, locally
finite with respect to the second grading), then so is L.
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Proof. Without loss of generality, we assume that A∗
<0 = 0 and HM∗

≤n = 0
for some n. After an Adams shift we may further assume that n = −1, that
is, HM = HM∗

≥0. We will construct a sequence of right DG A-modules
{Lu}u≥0 with the following properties:
(1) 0 = L−1 ⊂ L0 ⊂ · · · ⊂ Lu ⊂ · · · .
(2) Lu/Lu−1 is a free DG A-module generated by a cycles of Adams-degree

u.
(3) Lu ⊗A k has a trivial differential; that is, dLu(Lu) ⊂ Lum.
(4) There is a morphism of DG A-modules εu : Lu → M such that the

kernel and coker of H(εu) have Adams degree at least u + 1.
If A and M satisfy the hypotheses in part (b), then each Lu will also satisfy
(5) Lu is locally finite (respectively, locally finite with respect to the second

grading).
Let L−1 = 0. We proceed to construct Lu inductively for u ≥ 0, so

suppose that {L−1, L0, · · · , Lu} have been constructed and satisfy (1)–(4),
and if relevant, (5).

Consider the map H(εu) : HLu → HM ; let C be its cokernel and let K
be its kernel. We will focus on the parts of these in Adams degree u + 1.
Choose an embedding i of Cu+1 into the cycles in M , and let Pu be the free
DG A-module Cu+1⊗A on Cu+1, equipped with a map f : Pu →M , sending
x⊗1 to i(x) for each x ∈ Cu+1. Since A is positively connected graded in the
Adams grading, the map f induces an isomorphism in homology in Adams
degrees up to and including u+1. Similarly, let Qu be the free DG A-module
on Ku+1, mapping to Lu by a map g̃ inducing a homology isomorphism in
degrees less than or equal to u + 1. Then let Lu+1 be the mapping cone of

Qu
g−→ Lu ⊕ Pu,

where g maps Qu to the first summand by the map g̃. Since Qu is free
and since the composite (εu + f)g induces the zero map on homology, this
composite is null-homotopic. Therefore there is a map εu+1 : Lu+1 → M .
In more detail, since Lu+1 is the mapping cone of g : Qu → Ju := Lu ⊕ Pu,
it may be written as Lu+1 = S(Qu)⊕ Ju, with differential given by

d(q, l) = (−dQu(q), g(q) + dJu(l)).

The null-homotopy gives an A-module homomorphism θ : Qu →M of degree
(−1, 0) such that

θdQu + dMθ = δug

where δu = εu + f . The A-module homomorphism εu+1 : Lu+1 → M is
defined by

εu+1(q, l) = θ(q) + δu(l) ∀q ∈ Qu and l ∈ Ju.

One can check that εu+1 commutes with the differentials and hence is a
morphism of DG A-modules. The morphism εu+1 is an extension of εu + f ,
hence εu is the restriction of εu+1 to Lu.
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Now we claim that the kernel and cokernel of H(εu+1) are in Adams
degree at least u + 2. There is a long exact sequence in homology

· · · → H i
j(Qu)

H(g)−−−→ H i
j(Lu ⊕ Pu)→ H i

j(Lu+1)
δ−→ H i+1

j (Qu)→ · · · .
In Adams degrees less than u + 1, Qu and Pu are zero, so Lu and Lu+1 are
isomorphic. In Adams degree u + 1, H∗(Qu) maps isomorphically to Ku, a
vector subspace of H(Lu⊕Pu), so the boundary map δ is zero, and the above
long exact sequence becomes short exact. Indeed, there is a commutative
diagram, where the rows are short exact:

0 �� H i(Qu)≤u+1
��

��

H i(Lu ⊕ Pu)≤u+1
��

��

H i(Lu+1)≤u+1
��

H(εu+1)
��

0

0 �� 0 �� H i(M)≤u+1
�� H i(M)≤u+1

�� 0

The snake lemma immediately shows that H(εu+1) has zero kernel and zero
cokernel in Adams degree ≤ u + 1, as desired. This verifies property (4) for
Lu+1.

With property (4), and the fact that Li/Li−1 has a basis of cycles in
Adams degree i, (1) and (2) are easy to see. To see (3) we use induction on u.
It follows from the construction and induction that dLu(Lu) ⊂ mLu + Lu−1.
Since the semibasis of Lu−1 has Adams degree no more than u − 1 and
the semibasis of Pu ⊕ Qu has Adams degree u, we see that dLu(Lu) ⊂
mLu + mLu−1 = mLu.

Let L be the direct limit lim−→Lu. Then L is semifree and there is a map
φ : L → M such that the kernel and cokernel of H(φ) are zero. Such an L
is a semifree resolution of M . Property (3) implies that L is minimal.

If the hypotheses of part (2) are satisfied, then the construction of Lu

shows that (5) holds. Since Li
j = (Lu)ij for u � 0, L is also locally finite

(respectively, locally finite with respect to the Adams grading). �
We are often interested in the complex RHomA(k, k) or in its homology,

namely, the Ext-algebra, Ext∗A(k, k). As noted in Section 4.2, to compute
this, we replace k by a K-projective resolution P , and then RHomA(k, k) =
HomA(P, k). Since semifree implies K-projective, we can use a minimal
semifree resolution, as in the theorem. The construction of L gives the
following: for each u, there is a short exact sequence of DG A-modules

0→ Lu−1 → Lu → Lu/Lu−1 → 0.

where Lu/Lu−1 is a free DG A-module, and this leads to a short exact
sequence

0→ HomA(Lu/Lu−1, k)→ HomA(Lu, k)→ HomA(Lu−1, k)→ 0.

We see that HomA(Lu/Lu−1, k)i = 0 when i < u, and therefore

HomA(Lu, k)u ∼= HomA(Lu/Lu−1, k)u ∼= (B�)−u,
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where B is a graded basis for the free DG module Lu/Lu−1. Note that B
is concentrated in degrees (∗, u), so its graded dual B� is in degrees (∗,−u).
Again by the short exact sequence, by induction on u, HomA(Lu−1, k)i = 0
when i ≥ u, so we see that

RHomA(k, k)u ∼= HomA(L, k)u ∼= HomA(Lu, k)u ∼= (B�)−u.

Furthermore, since Lu/Lu−1 is free on a basis of cycles, or alternatively
because the resolution L is minimal, we see that

ExtA(k, k)u ∼= (B�)−u.

This leads to the following corollary; see Corollary 5.6 for a related result.

Corollary 6.2. Let A be a DG algebra which is connected graded, either
positively or negatively, in the second grading, and let E = E(A) be its
Koszul dual.

(a) Then HE = Ext∗A(k, k) is finite-dimensional if and only if kA is small
in D(A).

(b) If HE is finite-dimensional (or if kA is small in D(A)), then HA is
Adams connected.

Proof. (a) If HE = Ext∗A(k, k) is finite-dimensional, then by the above
computation, the minimal semifree resolution L of k is built from finitely
many free pieces, and so L is a perfect complex: it is in thickA(k). Therefore
kA is small in D(A).

Conversely, if kA is small, then it is isomorphic in D(A) to a perfect
complex, and we claim that if X is a perfect complex, then H RHomA(X, k)
is finite-dimensional as a vector space: this is true if X = A, and therefore it
is true for every object in the thick subcategory generated by A. Therefore
kA small implies that HE is finite-dimensional.

(b) Now suppose that HE is finite-dimensional. Without loss of gener-
ality, suppose that A is positively graded connected in the second grading.
We claim that for each i, (HA)∗i is finite-dimensional.

Note that in the construction of the minimal semifree resolution for k,
the first term L0 is equal to A, and the map L0 → k is the augmentation.
Consider the short exact sequence

0→ Lu−1 → Lu → Lu/Lu−1 → 0,

for u ≥ 1. Since Lu/Lu−1 is free on finitely many classes in Adams degree u,
then in Adams degree i, H(Lu/Lu−1)i is isomorphic to a finite sum of copies
of HAi−u. Therefore if i ≤ u, then this is finite-dimensional. Therefore when
i ≤ u, H(Lu−1)i is finite-dimensional if and only if H(Lu)i is. For i fixed and
u sufficiently large, H(Lu)i stabilizes and gives H(L)i. But HL ∼= k, since
L is a semifree resolution of k. Thus H(L0)i = (HA)i is finite-dimensional
for each i, as desired. �
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7. Towards classical Koszul duality

In this section we recover the classical version of the Koszul duality given
by Beilinson–Ginzburg–Soergel [7]. First we give some useful results about
A∞-algebras with finite-dimensional cohomology, and then we use these to
recover classical Koszul duality, in Theorem 7.5.

7.1. Finite-dimensional A∞-algebras. Let A be an A∞-algebra. Let
D∞

fd (A) denote the thick subcategory of D∞(A) generated by all A∞-modules
M over A such that HM is finite-dimensional.

Lemma 7.1. Let A be a strongly locally finite A∞-algebra. For parts (b) and
(c), assume that A is Adams connected and that HA is finite-dimensional.
(a) thick∞A (k) = D∞

fd (A).
(b) A is quasi-isomorphic to a finite-dimensional Adams connected DG

algebra.
(c) thick∞A (k) = D∞

fd (A) ⊇ D∞
per(A) and loc∞A (k) = D∞(A).

Proof. (a) Clearly thick∞A (k) ⊂ D∞
fd (A). To show the converse, we may

replace A by the DG algebra UA ∼= E(E(A)) (Proposition1.14). Since A
is strongly locally finite, so is E(E(A)), by Lemma 2.2. So we may as-
sume that A is a strongly locally finite DG algebra. In this case every
1-dimensional right DG A-module M is isomorphic to a shift of the triv-
ial module k. As a consequence, M ∈ thick∞A (k). Induction shows that
M ∈ thick∞A (k) if M is finite-dimensional. If M is a right DG A-module
with HM being finite-dimensional, then the minimal semifree resolution L
of M is Adams locally finite by Theorem 6.1. Thus M is quasi-isomorphic
to a finite-dimensional right DG A-module by truncation: replace L by⊕

−N≤s≤N L∗
s for N sufficiently large. Therefore M is in thick∞A (k). This

shows that thick∞A (k) = D∞
fd (A).

(b) By Theorem 2.4, A is quasi-isomorphic to B := E(E(A)). Since A is
Adams connected, so is B. Since HA ∼= HB, H(B∗

≥n) = 0 for some n. Hence
B is quasi-isomorphic to C := B/B∗

≥n. Therefore A is quasi-isomorphic to
the Adams connected finite-dimensional DG algebra C.

(c) By part (b) we may assume that A is finite-dimensional, which implies
that A is in D∞

fd (A) = thick∞A (k) ⊆ loc∞A (k). Therefore

loc∞A (A) = D∞(A) ⊆ loc∞A (k) ⊆ D∞(A).

This proves the last statement. �

Corollary 7.2. Let A be an augmented A∞-algebra and let E = E(A).
(a) Suppose that A is strongly locally finite. kA is small in D∞(A) if and

only if HE is finite-dimensional.
(b) Suppose that A is Adams connected. If kA is small in D∞(A) (or if

HE is finite-dimensional), then D∞
per(A) ∼= D∞

fd (E).
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Proof. (a) If kA is small, then by Corollary 5.9, HE is finite-dimensional.
Conversely, suppose that HE is finite-dimensional. By Proposition 1.14,

A is quasi-isomorphic to the augmented DG algebra UA ∼= E(E(A)), so by
Proposition 3.1, kA is small in D∞(A) if and only if kUA is small in D(UA).
According to Corollary 6.2, kUA is small if and only if HE(UA) is finite-
dimensional. Since A is strongly locally finite, so is E, and we have a quasi-
isomorphism E(E(E)) ∼= E. This means that HE(UA) ∼= HE(A) = HE.

(b) This follows from Theorem 5.7(b) (switching A and E) and Lemma
7.1(a) (for E). (Since A is Adams connected, then by Lemma 2.2, E is
Adams connected and strongly locally finite, so these results hold for E.) �

Part (b) is Theorem B from the introduction.

7.2. Twisting the grading. To recover the classical derived equivalences
induced by Koszul duality, we need to twist the grading of E(A). Recall
that if A is Adams connected and is concentrated in degrees {0} × N, then
E(A) is in degrees {(n,−n)|n ≥ 0}. The aim of this section is to change the
grading of E(A), to put it in degrees {0} × N.

Let A be a DG algebra with zero differential (there are some problems if
d �= 0). Let A be the DG algebra with zero differential such that:
(a) A = A as ungraded associative algebras.
(b) A

i
j = Ai+j

−j (so Ai
j = A

i+j
−j ).

Note that the sign before j is not essential; for example, we can define a
different A by A

i
j = Ai−j

j or A
i
j = Ai−j

−j or A
i
j = Ai+j

+j . Since A is a DG
algebra with zero differential, so is A. If A is Koszul, then A! = HE(A) =
HE(A) which lives in degrees {0} × Z.

Remark 7.3. If A is a DG algebra with nonzero differential d, then we
don’t know how to make A into a DG algebra naturally. That is, we don’t
see a good way of defining a differential for A.

For any right DG A-module M , we define a corresponding right DG A-
module M by:
(a) M = M as ungraded right A-modules.
(b) M

i
j = M i+j

−j .

One can easily check that M with the differential of M is a right DG A-
module.

The following is routine.

Lemma 7.4. The assignment M �→ M defines an equivalence between
ModA and ModA which induces a triangulated equivalence between D(A)
and D(A). If further A is finite-dimensional, then Dfd(A) ∼= Dfd(A).

We now reprove [7, Theorem 2.12.6] (in a slightly more general setting).
Let D∞

fg (A) denote the thick subcategory of D∞(A) generated by all A∞-
modules M over A such that HM is finitely generated over HA. If A is a
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DG algebra, Dfg(A) is defined in a similar way. Note that D∞
fg (A) = D∞

fd (A)
if and only if HA is finite-dimensional.

Theorem 7.5. Suppose A is a connected graded finite-dimensional Koszul
algebra. Let A! = HE(A).
(a) D(A) ∼= locA!(k).
(b) If A! is right noetherian, then Dfg(A) = Dfd(A) ∼= Dper(A!) = Dfg(A!).

Proof. Note that A! is quasi-isomorphic to E(A). It follows from Lemma 7.4
that we can replace A! by E := E(A)

(a) This follows from Theorem 5.4(b) (switching A and E).
(b) By Corollary 7.2(b) (again switching A and E), Dper(E) ∼= Dfd(A).

Since A is finite-dimensional, Dfd(A) = Dfg(A). Note that A! is concen-
trated in degrees {0} × N. Since A! is right noetherian and has finite
global dimension (because A is finite-dimensional Koszul), it is clear that
Dper(A!) = Dfg(A!). �

8. Some examples

Example 8.1. Let Λ = Λ(x1, x2) with deg xi = (0, i). As noted in Exam-
ple 2.8, this is not a classical Koszul algebra; nonetheless, it satisfies many
of the same derived equivalences as Koszul algebras. Let Λ! denote the Ext
algebra Ext∗Λ(k, k) ∼= k[y1, y2], where deg yi = (1,−i); this is an A∞-algebra
with no higher multiplications. Then E(Λ) is quasi-isomorphic to the asso-
ciative algebra Λ!, so there is a triangulated equivalence D∞(E(Λ)) ∼= D(Λ!).
Similarly, we have D∞(Λ) ∼= D(Λ). Since the homology of E(Λ!) ∼= E(E(Λ))
is isomorphic to Λ, which is finite-dimensional, the trivial module kΛ! is
small in D(Λ!). So Theorems 5.7 and 5.8 give triangulated equivalences

thickΛ(k) ∼= Dper(Λ!), thickΛ(k,Λ)op ∼= thickΛ!(Λ!, k),

thickΛ!(k) ∼= Dper(Λ), Dper(Λ!)op ∼= thickΛ(k),

locΛ!(k) ∼= D(Λ).

Compare to the classical Koszul equivalences of Theorem 7.5: part (b) of
that theorem is the first of these equivalences, while part (a) of the theorem
is the last of these.

Slightly more generally, the results of Theorem 7.5 hold for exterior al-
gebras on finitely many generators, as long as they are graded so as to be
Adams connected: Λ(x1, . . . , xn), graded by setting deg xi = (ai, bi) with
each bi positive, or each bi negative.

Example 8.2. We fix an integer p ≥ 3 and define two A∞-algebras, B(0)
and B(p), each with m1 = 0. As associative algebras, they are both isomor-
phic to Λ(y) ⊗ k[z] with deg y = (1,−1) and deg z = (2,−p). The algebra
B(0) has no higher multiplications, while B(p) has a single nonzero higher
multiplication mp. This map mp satisfies mp(y⊗p) = z; more generally,
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mp(a1 ⊗ · · · ⊗ ap) is zero unless each ai has the form ai = yzji for some
ji ≥ 0, and

mp(yzj1 ⊗ · · · ⊗ yzjp) = z1+
P

ji .

See [24, Example 3.5] for more on B(p).
We claim that kB(0) is not small in D∞(B(0)) ∼= D(B(0)), while kB(p)

is small in D∞(B(p)). The Ext algebra Ext∗B(0)(k, k) is isomorphic to the
associative algebra k[u] ⊗ Λ(v) with deg u = (0, 1) and deg v = (1, p). In
particular, this algebra is not finite-dimensional, so by Corollary 7.2, kB(0) is
not small in D(B(0)). In contrast, by [24, Proposition 12.6], the Koszul dual
of B(p) is A∞-isomorphic to the associative algebra A(p) = k[x]/(xp), where
deg x = (0, 1). Since A(p) is finite-dimensional, kB(p) is small in D∞(B(p)).
This verifies the claim.

Part III. Applications in ring theory

9. The Artin–Schelter condition

In this section we prove Corollaries D, E and F. We start by discussing
Artin–Schelter regularity, for both associative algebras and A∞-algebras.
The Eilenberg–Moore spectral sequence is a useful tool for connecting results
about modules over HA to modules over A, if A is a DG algebra or an A∞-
algebra. Then we discuss Frobenius algebras and prove Corollary D, and
we discuss dualizing complexes and prove Corollary E. At the end of the
section, we prove Corollary F.

9.1. Artin–Schelter regularity.

Definition 9.1. Let R be a connected graded algebra.
(a) R is called Gorenstein if injdimRR = injdim RR <∞.
(b) R is called Artin–Schelter Gorenstein if R is Gorenstein of injective

dimension d and there is an integer l such that

ExtiR(k,R) ∼= ExtiRop(k,R) ∼=
{

0 i �= d,

Σl(k) i = d.

(c) R is called Artin–Schelter regular if R is Artin–Schelter Gorenstein
and has global dimension d.

Artin–Schelter regular algebras have been used in many ways in noncom-
mutative algebraic geometry.

Now we consider analogues for A∞-algebras. When A is an unbounded
A∞-algebra, there is no good definition of global or injective dimension, so
we only consider a version of condition (b) in Definition 9.1.

Definition 9.2. Let A be an augmented A∞-algebra and let k be the trivial
module.
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(a) We say A satisfies the right Artin–Schelter condition if there are inte-
gers l and d such that

ExtiA(k,A) ∼=
{

0 i �= d,

Σl(k) i = d.

If further kA is small in D∞(A), then A is called right A∞-Artin–
Schelter regular, or just right Artin–Schelter regular, if the context is
clear.

(b) We say A satisfies the left Artin–Schelter condition if there are integers
l and d such that

ExtiAop(k,A) ∼=
{

0 i �= d,

Σl(k) i = d.

If further Ak is small in D∞(Aop), then A is called left A∞-Artin–
Schelter regular (or just left Artin–Schelter regular).

(c) We say A satisfies the Artin–Schelter condition if the conditions in
parts (a) and (b) hold for the same pair of integers (l, d). If further kA

is small in D∞(A), then A is called A∞-Artin–Schelter regular (or just
Artin–Schelter regular).

(d) Finally, if A is A∞-Artin–Schelter regular, we say that A is noetherian
if D∞

fg (A) = D∞
per(A).

Suppose that R is a connected graded algebra. If R is Artin–Schelter reg-
ular as an associative algebra, then R is A∞-Artin–Schelter regular. Con-
versely, if R is A∞-Artin–Schelter regular, then one can use Corollary 6.2
to show that R is Artin–Schelter regular.

Also, if R is a connected graded algebra, then the cohomology of ev-
ery object in Dfg(R) is bounded (with respect to the homological grad-
ing), and we see that Dfg(R) = Dper(R) if and only if R is noetherian of
finite global dimension; this motivates our definition of “noetherian” for
A∞-Artin–Schelter regular algebras.

It is easy to see that A satisfies the left A∞-Artin–Schelter condition if
and only if Aop satisfies the right A∞-Artin–Schelter condition. We con-
jecture that the left A∞-Artin–Schelter condition is equivalent to the right
A∞-Artin–Schelter condition. We verify this, with some connectedness and
finiteness assumptions, in Theorems 9.8 and 9.11.

Proposition 9.3. Let A be an augmented A∞-algebra and let E = E(A) be
the Koszul dual of A.
(a) Assume that A is strongly locally finite. Then A satisfies the right

Artin–Schelter condition if and only if E satisfies the left Artin–Schelter
condition.

(b) Assume that E is strongly locally finite. Then A satisfies the left Artin–
Schelter condition if and only if E satisfies the right Artin–Schelter
condition.
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Proof. (a) By Corollary 5.10 A satisfies the right Artin–Schelter condition
if and only if E satisfies the left Artin–Schelter condition.

(b) Switch A and E and use the fact that A → E(E(A)) is a quasi-
isomorphism: the assertion follows from part (a). �
9.2. The Eilenberg–Moore spectral sequence. In this subsection we
recall the Eilenberg–Moore spectral sequence [22, Theorem III.4.7] and [13,
p. 280]. This helps to translate homological results for modules over HA to
similar results for modules over A.

Suppose that A is a DG algebra and that M and N are right DG A-
modules. Because of the Z×Z-grading on A, M , and N , Ext∗HA(HM,HN)
is Z

3-graded, and we incorporate the gradings into the notation as follows:

ExtpHA(HM,HN)qs.

On the other hand, Ext∗A(M,N) is Z
2-graded, since it is defined to be the

homology of RHomA(M,N). That is,

Exti
A(M,N)j := D(A)(M,SiΣjN) ∼= H(RHomA(M,SiΣjN)).

Because of this, each Er-page of the Eilenberg–Moore spectral sequence is
Z

3-graded, while the abutment is Z
2-graded.

Theorem 9.4 ([22, Theorem III.4.7]). Let A be a DG algebra, and let M
and N be right DG A-modules. Then there is a spectral sequence of the form

(E2)p,q
s
∼= ExtpHA(HM,HN)qs ⇒ Extp+q

A (M,N)s,

natural in M and N . All differentials preserve the lower (Adams) grading
s.

This is a spectral sequence of cohomological type, with differential in the
Er-page as follows:

dr : (Er)p,q
s → (Er)p+r,q−r+1

s .

Ignoring the Adams grading, the E2-term is concentrated in the right half-
plane (i.e., p ≥ 0), and it converges strongly if for each (p, q), dr : Ep,q

r →
Ep+r,q−r+1

r is nonzero for only finitely many values of r.
There is also a Tor version of this spectral sequence, which we do not use.

See [22, Theorem III.4.7] and [13, p. 280] for more details.
Note that the above theorem also holds for A∞-algebras; see [22, Theorem

V.7.3]. Another way of obtaining an A∞-version of this spectral sequence is
to use the derived equivalence between D∞(A) and D(UA).

Corollary 9.5. Let A be an A∞-algebra. If HA satisfies the left (respec-
tively, right) Artin–Schelter condition, then so does A.

Proof. We may assume that A is a DG algebra. Let M = k and N = A.
Note that Hk = k. Since HA satisfies the left Artin–Schelter condition,⊕

p,q ExtpHA(HM,HN)q is 1-dimensional. By Theorem 9.4,
⊕

n ExtnA(k,A)
is 1-dimensional. Therefore A satisfies the left Artin–Schelter condition. �



370 D.-M. Lu, J. H. Palmieri, Q.-S. Wu and J. J. Zhang

One naive question is if the converse of Corollary 9.5 holds.

9.3. Frobenius A∞-algebras. In this subsection we define Frobenius DG
algebras and Frobenius A∞-algebras and then prove Corollary D.

Definition 9.6. An augmented DG algebra A is called left Frobenius (re-
spectively, right Frobenius) if:
(a) HA is finite-dimensional.
(b) There is a quasi-isomorphism of left (respectively, right) DG A-modules

α : SlΣd(A)→ A� for some integers l and d.
An augmented DG algebra A is called Frobenius if it is both left and right
Frobenius.

Lemma 9.7. Suppose A is a DG algebra such that there is a quasi-isomor-
phism of left DG A-modules α : SlΣd(A) → A� for some integers l and
d.
(a) There is a quasi-isomorphism of right DG A-modules β : SlΣd(A) →

A� for the same integers l and d.
(b) If A is connected graded with respect to some grading which is compati-

ble with the Z
2-grading — see below — then HA is finite-dimensional.

(c) If HA is finite-dimensional, then HA is Frobenius as an associative
algebra.

(d) A satisfies the left Artin–Schelter condition and RHomA(k,A) is quasi-
isomorphic to S−lΣ−d(k).

The compatibility requirement for the grading in part (b) means that
there should be numbers a and b so that the nth graded piece is equal to⊕

ai+bj=n Ai
j.

Proof. (a) Let β = SlΣd(α�).
(b) Since SlΣd(A)→ A� is an quasi-isomorphism,

(HA)n−l
m−d

∼= (HA�)−n
−m
∼= ((HA)nm)�

for all n,m. This implies that HA is locally finite. If A is connected graded
with respect to some compatible grading, then so is HA. Then the above
formula implies that HA is finite-dimensional.

(c) The quasi-isomorphism α gives rise to an isomorphism

H(α) : SlΣd(HA)→ (HA)�.

If HA is finite-dimensional, then HA is Frobenius.
(d) Since A→ S−lΣ−dA� is a K-injective resolution of A, we can compute

RHomA(k,A) by HomA(k, S−lΣ−d(A�)), which is S−lΣ−d(k). �
By Lemma 9.7 above, A is left Frobenius if and only if it is right Frobenius.

So we can omit both “left” and “right” before Frobenius. It is therefore easy
to see that A is Frobenius if and only if Aop is. We show that the Frobenius
property is a homological property.
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Theorem 9.8. Let A be an Adams connected DG algebra such that HA is
finite-dimensional. Then the following are equivalent.
(a) A is Frobenius.
(b) HA is Frobenius.
(c) A satisfies the left Artin–Schelter condition.
(d) A satisfies the right Artin–Schelter condition.

Proof. By Lemma 7.1, we may assume that A is finite-dimensional.
(a) ⇒ (b): Use Lemma 9.7(c).
(b) ⇒ (a): Since HA is Frobenius, there is an isomorphism of right HA-

modules f : SlΣd(HA) → HA�. Pick x ∈ ZA� so that the class of x
generates a submodule of HA� that is isomorphic to SlΣd(HA). Hence the
map a→ xa is a quasi-isomorphism A→ A�.

(a) ⇒ (d): By vector space duality,

RHomAop(k,A) ∼= RHomA(A#, k) ∼= RHomA(SlΣd(A), k) = S−lΣ−d(k).

Hence A satisfies the right Artin–Schelter condition.
(d) ⇒ (a): Suppose RHomAop(k,A) ∼= S−lΣ−d(k) by the right Artin–

Schelter condition. Since HA is locally finite, by vector space duality, we
obtain that RHomA(A#, k) is quasi-isomorphic to S−lΣ−d(k). By Theo-
rem 6.1 A� has a minimal semifree resolution, say P → A�. Since P is min-
imal, it has a semifree basis equal to (

⊕
i ExtiA(A#, k))# = Σd(k). Hence

P ∼= SlΣd(A) for some l and d. Thus SlΣd(A)→ A� is a quasi-isomorphism
and A is left Frobenius. By Lemma 9.7, A is Frobenius.

Thus we have proved that (a), (b) and (d) are equivalent. By left-right
symmetry, (a), (b) and (c) are equivalent. �

We obtain an immediate consequence.

Corollary 9.9. Let f : A→ B be a quasi-isomorphism of Adams connected
DG algebras. Assume that HA ∼= HB is finite-dimensional. Then A is
Frobenius if and only if B is.

Since finite-dimensional Hopf algebras are Frobenius, every finite-dimen-
sional DG Hopf algebra is Frobenius.

Suggested by the DG case, we make the following definition.

Definition 9.10. An A∞-algebra A is called Frobenius if HA is finite-di-
mensional and there is a quasi-isomorphism of right A∞-modules SlΣd(A)→
A� for some l and d.

The following is similar to Theorem 9.8 and the proof is omitted.

Theorem 9.11. Let A be an Adams connected A∞-algebra such that HA
is finite-dimensional. The following are equivalent.
(a) A is Frobenius.
(b) HA is Frobenius.
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(c) A satisfies the left Artin–Schelter condition.
(d) A satisfies the right Artin–Schelter condition.

Now we are ready to prove Corollary D from the introduction. We restate
it for the reader’s convenience.

Corollary D. Let R be a connected graded algebra. Then R is Artin–
Schelter regular if and only if the Ext-algebra

⊕
i∈Z

Exti
R(kR, kR) is Frobe-

nius.

Proof. Note that R is right Artin–Schelter regular if and only if kR is
small and R satisfies the right A∞-Artin–Schelter condition [35, Proposition
3.1]. Now we assume, temporarily, that R is Adams connected; by Lemma
2.2, this means that E(R) is, as well. Then the above conditions are in
turn equivalent to: HE(R) =

⊕
i Exti(kR, kR) is finite-dimensional and

E(R) satisfies the left Artin–Schelter condition. By Theorem 9.11, this is
equivalent to HE(R) being Frobenius.

Now, we use Corollary 6.2 to justify the Adams connected assumption: if
R is Artin–Schelter regular, then kR is small, which implies that R = HR
is Adams connected. Conversely, if HE(R) is Frobenius, then it is finite-
dimensional, which also implies that R is Adams connected. �

This proof in fact shows that (for associative algebras) left Artin–Shelter
regularity is equivalent to right Artin–Shelter regularity.

9.4. Dualizing complexes and the Gorenstein property. The bal-
anced dualizing complex over a graded ring B was introduced by Yekutieli
[38]. We refer to [38] for the definition and basic properties. Various noe-
therian graded rings have balanced dualizing complexes; see [36, 39].

Lemma 9.12. Suppose R is a noetherian connected graded ring with a bal-
anced dualizing complex. Then R satisfies the right Artin–Schelter condition
if and only if R is Gorenstein. In this case, R will be Artin–Schelter Goren-
stein.

Proof. Let B be the balanced dualizing complex over R. Then the func-
tor F := RHomR(−, B) induces an equivalence Dfg(R) ∼= Dfg(Rop)op and
satisfies F (kR) = Rk. By the right Artin–Schelter condition,

RHomR(k,R) ∼= SlΣd(k)

for some l and d. Applying the duality functor F , we have

RHomRop(B, k) = RHomRop(F (R), F (k)) ∼= RHomR(k,R) ∼= SlΣd(k).

Therefore RB is quasi-isomorphic to S−lΣ−d(R). Since RB has finite in-
jective dimension by definition, RR has finite injective dimension. Also it
follows from RB ∼= S−lΣ−d(R) that BR

∼= S−lΣ−d(R) by the fact that
Rop = RHomRop(B,B). So since BR has finite injective dimension, so does
RR.
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For the converse, note that both H RHomR(k,R) and H RHomRop(k,R)
are finite-dimensional since the existence of B implies that R satisfies the
χ-condition. The assertion follows from the proof of [40, Lemma 1.1]. �

Now we restate and prove Corollary E.

Corollary E. Let R be a Koszul algebra and let R! be the Koszul dual of R.
If R and R! are both noetherian having balanced dualizing complexes, then
R is Gorenstein if and only if R! is.

Proof. By Lemma 9.12 the Artin–Schelter condition is equivalent to the
Gorenstein property. The assertion follows from Proposition 9.3. �

We say a connected graded algebra A has enough normal elements if every
nonsimple graded prime factor ring A/P contains a homogeneous normal
element of positive degree. A noetherian graded ring satisfying a polynomial
identity has enough normal elements.

Corollary 9.13. Let R be a Koszul algebra and let R! the Koszul dual of
R. If R and R! are both noetherian having enough normal elements, then R
is (Artin–Schelter) Gorenstein if and only if R! is.

Proof. By [39, Theorem 5.13], R and R! have balanced dualizing complexes.
By [40, Proposition 2.3(2)], under the hypothesis, the Artin–Schelter Goren-
stein property is equivalent to the Gorenstein property. The assertion follows
from Corollary E. �

Let Re = R ⊗ Rop. Following the work of Van den Bergh [36], Ginzburg
[15] and Etingof–Ginzburg [10], an associative algebra R is called twisted
Calabi–Yau if

ExtiRe(R,Re) ∼=
{

φR1 if i = d

0 if i �= d

for some d (note that we do not require R to have finite Hochschild dimen-
sion). If the above equation holds for φ = IdR, then A is called Calabi–Yau.
If R is connected graded, then φR1 should be replaced by Σl(φR1) for some
integer l. It follows from Van den Bergh’s result [36, Proposition 8.2] that
if R is connected graded noetherian and Artin–Schelter Gorenstein, then R
is twisted Calabi–Yau. It is easy to see that if R has finite global dimen-
sion and Re is noetherian, then Artin–Schelter regularity is equivalent to
the twisted Calabi–Yau property. It is conjectured that the Artin–Schelter
Gorenstein property is equivalent to the twisted Calabi–Yau property for all
connected graded noetherian rings.

We end this section with a proof of Corollary F.

Corollary F. Let A be an Adams connected commutative differential graded
algebra such that RHomA(k,A) is not quasi-isomorphic to zero. If the Ext-
algebra

⊕
i∈Z

ExtiA(kA, kA) is noetherian, then A satisfies the Artin–Schelter
condition.
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Proof. Since A is commutative, its Ext algebra H = HE(A) = Ext∗A(k, k)
is a graded Hopf algebra which is graded cocommutative [12, p. 545]. By hy-
pothesis, H is noetherian, so it satisfies [12, (1.1)]. Since RHomA(k,A) �= 0,
Corollary 5.10 implies that RHomEop(k,E) �= 0 where E = E(A). By The-
orem 9.4 RHomHop(k,H) �= 0. Since Hop ∼= H, we have RHomH(k,H) �= 0
which says that H has finite depth. By [12, Theorem C], the noetherian
property of H implies that H is elliptic, and elliptic Hopf algebras are clas-
sified in [12, Theorem B]. It is well-known that the Hopf algebras in [12,
Theorem B] are Artin–Schelter Gorenstein. By Corollary 9.5, E(A) satisfies
the Artin–Schelter condition, and therefore by Proposition 9.3, A does as
well. �

10. The BGG correspondence

The classical Bernštĕın–Gel’fand–Gel’fand (BGG) correspondence states
that the derived category of coherent sheaves over P

n is equivalent to the
stable derived category over the exterior algebra of (n + 1)-variables [8,
Theorem 2]. Some generalizations of this were obtained by Baranovsky [5],
He–Wu [16], Mori [27] and so on. In this section we prove a version of the
BGG correspondence in the A∞-algebra setting, as a simple application of
Koszul duality.

If R is a right noetherian ring, then the stable bounded derived cat-
egory over R, denoted by Db

fg(R), is defined to be the Verdier quotient
Dfg(R)/Dper(R). With R concentrated in degrees {0} × Z, every complex
in Dfg(R) is bounded. When R is a finite-dimensional Frobenius algebra,
then the stable module category over R is equivalent to the stable bounded
derived category over R [30].

Recall from Sections 7.1 and 7.2, respectively, that

D∞
fd (A) = thick∞A (M |M ∈ ModA, dimk HM <∞),

D∞
fg (A) = thick∞A (M |M ∈ ModA, HM finitely generated over HA).

If HA is finite-dimensional, then by Lemma 7.1(a), D∞
fd (A) = thick∞A (k),

which is also equal to thick∞A (k,A). Modelled on the definition of Db
fg(R),

we define the stable derived category of an A∞-algebra A to be

D∞
fg (A) = D∞

fg (A)/D∞
per(A)

where the right-hand side of the equation is a Verdier quotient. Boundedness
of complexes does not make sense here since A itself may not be bounded, but
for a weakly Adams connected A∞-algebra we have the following variation.
The small stable derived category of a weakly Adams connected A∞-algebra
A is defined to be

D∞
sm(A) = thick∞A (k,A)/D∞

per(A)
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where the right-hand side of the equation is a Verdier quotient. If HA is
finite-dimensional, then

D∞
sm(A) = D∞

fd (A)/D∞
per(A) = D∞

fg (A).

In general, D∞
sm(A) ⊂ D∞

fg (A). It is arguable whether or not D∞
sm(A) is a

good definition. One reason we use the above definition is to make the BGG
correspondence easy to prove.

It is easy to see that D∞
sm(A) = 0 if and only if kA is small (see Defini-

tion 4.8 and Lemma 4.9(b)). In this case we call A regular. This is consistent
with terminology for associative algebras: Orlov called the triangulated cat-
egory Db

fg(R) the derived category of the singularity of R [28].
Given any connected graded ring R, we define the projective scheme over

R to be the quotient category

ProjR := ModR/Tor R

where Tor R is the Serre localizing subcategory generated by all finite-dimen-
sional graded right R-modules [1]. When R is right noetherian, we denote
its noetherian subcategory by projR. The bounded derived category of
projR is Db(projA) which is modelled by the derived category of coherence
sheaves over a projective scheme. When A is an A∞-algebra, we can define
the derived category directly without using ProjA. The derived category of
projective schemes over A is defined to be

D∞(ProjA) = D∞(A)/loc∞A (k);

the derived category of finite projective schemes over A is defined to be

D∞(projA) = D∞
fg (A)/thick∞A (k);

and the derived category of small projective schemes over A is defined to be

D∞
sm(projA) = thick∞A (k,A)/thick∞A (k).

If A is right noetherian and regular (e.g., A is a commutative polynomial
ring), then D∞(projA) = D∞

sm(projA) and this is equivalent to the derived
category of the (noncommutative) projective scheme projA [1].

Lemma 10.1. Let A be an A∞-algebra satisfying the Artin–Schelter condi-
tion. Then D∞

sm(A)op ∼= D∞
sm(Aop).

Proof. First of all we may assume A is a DG algebra. Let B be the
(A,A)-bimodule A. Clearly B is a balanced (A,A)-bimodule. The equiv-
alences given in Proposition 4.10 are trivial, but Proposition 4.11 is not
trivial. By Proposition 4.11(a), A

B ∼= B
B and FB(AA) = AA ∈ A

B. By
the Artin–Schelter condition, FB(Ak) = RHomAop(k,A) = SlΣd(k) and
GB(SlΣd(k)) = S−lΣ−d(GB(k)) = k. So Ak ∈ A

B and FB(Ak) = SlΣd(k).
This implies that FB induces an equivalence between thick∞Aop(k,A)op and
thick∞A (k,A) which sends AA to AA. The assertion follows from the defini-
tion of D∞

sm(A). �
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The next theorem is a version of the BGG correspondence.

Theorem 10.2. Let A be a strongly locally finite A∞-algebra and let E be
its Koszul dual.
(a) There is an equivalence of triangulated categories

D∞
sm(projA)op ∼= D∞

sm(Eop).

(b) If A is Adams connected graded noetherian right Artin–Schelter regular,
then there is an equivalence of triangulated categories

D∞(projA) ∼= D∞
fg (E).

Proof. (a) By Theorem 5.8(b) there is an equivalence of triangulated cat-
egories

thick∞A (k,A)op ∼= thick∞Eop(k,E)

which maps kA to E. Therefore we have

D∞
sm(projA)op = (thick∞A (k,A)/thick∞A (k))op

∼= thick∞Eop(k,E)/thick∞Eop(E) = D∞
sm(Eop).

(b) Since A is AS regular, Corollary D says that E is Frobenius and hence
HE is finite-dimensional. By Lemma 10.1, D∞

sm(Eop) ∼= D∞
sm(E)op. Since

HE is finite-dimensional, D∞
sm(E) = D∞

fg (E). Since A is connected graded
Artin–Schelter regular, kA is small, so

thick∞A (k,A) = thick∞A (A) = D∞
per(A).

By the definition of noetherian (Definition 9.2), D∞
fg (A) = D∞

per(A). There-
fore D∞(projA) = D∞

sm(projA). The assertion follows from part (a). �

Theorem C is part (b) of the above theorem.
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