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Rank-one group actions with simple mixing
Z-subactions

Blair Madore

Abstract. Let G be a countable Abelian group with Zd as a subgroup so
that G/Zd is a locally finite group. (An Abelian group is locally finite if
every element has finite order.) We can construct a rank one action of G so
that the Z-subaction is 2-simple, 2-mixing and only commutes with the other
transformations in the action of G.

Applications of this construction include a transformation with square roots
of all orders but no infinite square root chain, a transformation with countably
many nonisomorphic square roots, a new proof of an old theorem of Baxter and
Akcoglu on roots of transformations, and a simple map with no prime factors.
The last example, originally constructed by del Junco, was the inspiration for
this work.
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1. Introduction and results

Ornstein’s rank-one mixing argument [Orn67] has been refined over the years,
and its ideas are used often in the literature to construct interesting examples.
Notably, del Junco [Jun98] constructed a measure preserving action of Z⊕

⊕∞
i=1 Z2.

Using an Ornstein style argument along with a joinings argument, he showed the
transformation T corresponding to the Z-subaction was weak mixing, simple and
commuted only with the other transformations in the action. del Junco was then
able to argue that T was a simple map with no prime factors. This paper provides
an extension of del Junco’s construction to a certain class of abelian groups.

Recall that if every element of an abelian group G has finite order then G is a
locally finite group.

Theorem 1 (Main Result). Let G be a countable abelian group with subgroup Zd

(d ≥ 1), such that G/Zd is a locally finite group. Then there exists a rank-one
action of G so that the transformation T corresponding to (1, 0, 0, . . . , 0) in Zd is
mixing, simple, and only commutes with the other transformations in the group,
i.e., C(T ) = G.

We note that, in particular, the theorem is valid for groups G = Zd ⊕ H where
H is a locally finite group, possibly finite, or even the trivial group. The theorem
is proved in Section 3.

The main theorem allows the construction of simple transformations T with
centralizer C(T ) prescribed in advance. Since T is simple, this gives us some control
over the roots and factors of T . We’ll detail some examples, new and previously
known, that can be constructed in this way. First, and most significantly we answer
a question posed by King in [Kin00].

1.1. A transformation with square roots of all orders but no infinite
square root chain. Let S and T be measure preserving transformations on the
same space. If S2 = T we say S is a square root of T and write T → S. If S2n

= T
(T has a 2nth root, S) we can find a square root chain for T of length n:

T → S2n−1 → S2n−2 → · · · → S.

J. King has been investigating the problem of embedding the generic transforma-
tion into actions of the rationals [Kin00]. A significant obstruction to embedding
the generic transformation in an action of the dyadic rationals is the necessity of
existence of an infinite square root chain,

T → T
1
2 → T

1
4 → T

1
8 → · · · .

In [Kin00] King asked: “Is there a transformation with square roots of all orders
but no infinite square root chain?” We answer this question affirmatively using an
appropriate group.
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Definition 1 (Carry group of r). Let r = {ri}∞i=1 be any countable sequence of
natural numbers. Define G, the carry group of r, to consist of the elements of the
Cartesian product

Z × Zr1 × Zr2 × · · · ,

where all but finitely many entries are zero, together with an operation +G defined
by

(aZ, a1, a2, . . . ) +G (bZ, b1, b2, . . . ) :=(
aZ + bZ +

∞∑
i=1

⌊
ai + bi

ri

⌋
, a1 +r1 b1, a2 +r2 b2, . . .

)
.

That is, addition in the Z coordinate and addition modulo ri in the Zri coordinate
with a possible carry of 1 into the Z coordinate.

Let G be the carry group of r = (2, 4, 8, 16, . . . , 2n, . . . ), a group discussed by
King in [Kin00]. Note that G/Z is a locally finite group. Apply Theorem 1 to this
group to obtain a transformation T , with G as its centralizer. T is the transforma-
tion in the action corresponding to the element (1, 0, 0, . . . ). The transformation T
has square roots of all orders, since the group element (0, 0, . . . , 0, 1, 0, . . . ), where
the 1 is in the Z2n coordinate, is a 2nth root of (1, 0, 0, . . . ). There are, however,
no infinite square root chains in G. An infinite square root chain in G must have
some nonzero values in a coordinate other than Z, say the Z2n coordinate. The
values in that coordinate would form a nontrivial infinite square root chain in Z2n

which does not exist.(One easy way to prove this is by induction). Thus, T answers
King’s question.

Analogously we can produce transformations with qth roots of all orders but no
infinite qth root chains, where q is any positive integer except 1.

1.2. A simple map with no prime factors. Applying Theorem 1 to G = Z ⊕⊕∞
i=1 Z2 we obtain a simple map with no prime factors as originally constructed

by del Junco. See [Jun98] for details.

1.3. A transformation with C(T ) = Q or Zd. Each application of our theo-
rem produces a transformation with countable but (usually) nontrivial centralizer.
When G = Z we have constructed Ornstein’s rank-one mixing transformation that
only commutes with its powers [Orn67]. When G = Zd we obtain a transforma-
tion with centralizer Zd, and when G = Q, the transformation has the rationals as
centralizer. The latter is possible because Q/Z is a locally finite group.

1.4. Transformations with a fixed set of roots.

Question 1. Can you construct a transformation with only a specified set of roots?

Akcoglu and Baxter [AB69] published an interesting theorem on this topic in
1969. We offer an alternate proof, using Theorem 1.

Theorem 2 (Akcoglu and Baxter). Let P be any set of primes. There exists a
weak mixing transformation T , so that T has a pth root if and only if all prime
factors of p are in P .
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Proof. Consider the set H of rational numbers (in lowest form) whose denominator
is 1 or has all its prime factors in P . H is a subgroup of Q that includes Z. Apply
Theorem 1 to obtain a transformation T which has a pth root if and only if 1/p is
in H, that is, if all prime divisors of p are in P . �

The transformation T we constructed in this proof is actually mixing. Also
notice our T will have an infinite number of roots. Define T

p→ S to mean S is a
pth root of T . Then T also has infinite root chains. For example, if p ∈ P , the
following is a pth root chain:

T
p→ T 1/p p→ T 1/p2 p→ T 1/p3 · · ·

One could also use Theorem 1 and a carry group to construct a transformation that
satisfies Theorem 2 yet has no infinite root chains.

1.5. A transformation with countably many nonisomorphic square roots.
Let G be the root group of r = {2, 2, 2, 2, 2, . . . }. Apply the main theorem to G to
obtain a simple mixing transformation T corresponding to (1, 0, . . . ) in G. T has
countably many square roots, each corresponding to an element (0, . . . , 1, 0, . . . ) in
G. Let S and Q be two distinct square roots of T . Assume φ is an isomorphism
between S and Q. Then φS = Qφ which implies that φS2 = Q2φ, and thus
φT = Tφ. Since φ commutes with T it is in C(T ), which is isomorphic to the
commutative group G. S and Q are also in this commutative group C(T ) so
φS = Qφ implies S = Q. This contradicts the assumption that S and Q were
distinct. Thus any two square roots of T are nonisomorphic.

1.6. Future directions. Here are a few of the many natural questions arising
from this work.

Question 2. Is the full rank-one group action, constructed in Theorem 1, a mixing
action?

In separate work [Mad] we constructed rank-one mixing Zd actions so that all
times are simple. It is possible to extend our main theorem to ensure the Zd-
subaction is mixing with all times simple.

Question 3. Given a group G and subgroup H can you construct an action G so
that the H-subaction is simple and only commutes with the entire group action?

Our theorem gives an answer for the case H = Z and a certain class of countable
abelian groups G. A more general construction, especially when G is nonabelian,
could produce very interesting examples. del Junco outlines several in [Jun98].

Question 4. Which groups have rank-one mixing actions?

Our techniques could lead us to a class of countable abelian groups which have
such actions. Can this be extended to any nonabelian groups? To solvable groups?

Acknowledgements. This paper is based on research which is part of the author’s
University of Toronto Ph.D. Thesis, written under Andres del Junco. Thanks are
also due to Mustafa Akcoglu and Jonathan King.
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2. Definitions and preliminaries

We use := to indicate definition (or assignment). All our transformations are on
X := ([0, 1), β, µ) which is isomorphic to the unit interval with the Borel σ-algebra
and Lebesgue measure. Use |A| to denote absolute value when A is a number and
cardinality when A is a finite set. Denote the set of integers {0, 1, 2, . . . , n} by [0, n].
Similarly [0, n) denotes {0, 1, 2, . . . , n − 1}. Any other notations are introduced as
needed. Unnumbered definitions are in italics.

2.1. Joinings and simplicity. Let T be a measure preserving transformation on
the measure space X. If λ is a T × T invariant measure on (X2, β2) such that for
all A ∈ β,

λ(X × A) = λ(A × X) = µ(A),
then λ is a self-joining of T . Every transformation has self-joinings such as product
measure, µ × µ, or µ lifted onto the diagonal, denoted ∆. More precisely, ∆ :=
µ ◦ J−1 where J : X → X × X and J(x) = (x, x). If S is any measure preserving
transformation that commutes with T then (I × S)∆ is also a self-joining. These
are called graph joinings, because (I × S)∆ is µ lifted onto the graph of S.

We say T is simple if the only ergodic self-joinings of T are product measure or
graph joinings.

These definitions in the literature are properly named 2-fold self-joinings, and
2-simple. As we will not discuss higher-order joinings we have opted for the simpler
names.

2.2. Rank-one group actions. We follow the definitions and notations for group
actions as in [Jun98], [PR91] and [YJ00]. All our groups are amenable, countable
and have the discrete topology. In our main theorem G is also abelian, though
definitions in this subsection do not assume the group is commutative. Let £ be
a homomorphism from the group G into the set of invertible measure preserving
transformations on X.

£ : G → M(X)
g → £g.

We call £ a measure preserving action of the group G. The range of £ is denoted
times(£). An individual transformation £g is called a time of the action. Let C(£)
denote the centralizer, that is, all invertible measure-preserving transformations
that commute with all of the times of the action.

Originally, towers of rank-one transformations were indexed by intervals in Z.
Ferenczi, in [Fer85], credits Thouvenot with the idea that towers could be indexed
by other sets. Ferenczi used a special Følner sequence in Z to define a Z action and
called it funny rank-one. Generalizing this idea to other groups we have rank-one
group actions.

Definition 2 (Rank-one group action). £ is called rank-one (with respect to a
Følner sequence {An} in G) if:

1. For all n ∈ N there is a partition Pn of X, Pn = {En
g | g ∈ An} ∪ {X\Xn},

where Xn = ∪g∈AnEn
g .

2. µ(X\Xn) n−→ 0.
3. Pn

n−→ ε.
4. £gE

n
h = En

gh when h ∈ An ∩ g−1An.
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Pn
n−→ ε means that given measurable B in X, for all n there is a set Bn made up

of a union of sets in Pn and µ(B�Bn) n−→ 0. For each g ∈ An, En
g is an interval of

length an where an|An|
n−→ 1.

2.3. Cutting and stacking rank-one actions. We will describe a cutting and
stacking style of construction that produces a rank-one action £ of G, given a
special kind of Følner sequence in G called almost-tiling. It is not known if all
rank-one actions can be obtained in this manner.

Definition 3 (Almost-tiling Følner sequences). An almost-tiling Følner sequence
consists of two sequences of sets ({An}, {Cn}) in G such that:

1. An is a Følner sequence.
2. AnCn = ∪c∈CnAnc is a disjoint union.
3. AnCn ⊂ An+1.
4.

∏∞
n=1

|An+1|
|AnCn| < ∞.

This is an inductive construction. At stage n (also called time-n) of the con-
struction, the n-tower consists of |An| levels, each a distinct interval in the real
line that is left-closed and right-open. Levels are indexed by An and all have equal
length. An individual level is denoted En

a , the ath level (a ∈ An) of the n-tower.
The action £ is defined partially at time-n by the n-tower. For g ∈ AnAn

−1, £g

translates Ea onto Eb if g = ba−1. Thus £g is defined on the levels of the n-tower
indexed by (g−1An) ∩ An. Since An is a Følner sequence, as n → ∞, £g becomes
defined a.e. To build the (n + 1)-tower from the n-tower, each level En

a is divided
into |Cn| equal intervals, each closed on the left and open on the right. We assume
Cn is ordered {c1, c2, c3, . . . } and label our new intervals from left to right as

En+1
ac1

, En+1
ac2

, En+1
ac3

. . . .

The (n + 1)-tower is formed by these intervals, together with some additional in-
tervals, En+1

b for all b in An+1\AnCn. The additional intervals were called spacers
in the classical rank-one construction. Because of property three of the almost-
tiling Følner sequence, we only introduce a finite amount of measure in the whole
construction.

It’s not hard to see that the partially defined action on the (n + 1)-tower is
consistent with the partially defined action on the n-tower. By normalizing we can
assume the action is defined on [0, 1) with probability Lebesgue measure µ.

2.4. Some notations for rank-one actions. The entire space on which the
action takes place is called X. The subset of X that is the n-tower is called Xn.
The n-tower is composed of left-closed, right-open intervals labeled En

a , where a is
in An. Let En

s := X/ Xn. The s stands for spacer.
The partition Pn divides X into levels En

i of the n-tower and the complement En
s .

View Pn as a function from X to A∗
n := An ∪ {s}, defined by Pn(x) = j if x ∈ En

j

for j ∈ A∗
n. Define Pn

k : A∗
n → A∗

k by Pn
k (u) = v if En

u ⊂ Ek
v . This corresponds to

the natural map, based on inclusion, from the n-tower to the k-tower (n > k). The
value Pn

k (u) is the Pk name of a level u in the n-tower. Thus, Pn
k ◦ Pn = Pk.

Definition 4 (P -name of x). Let be P be a partition on X, so that P : X → A,
and x ∈ X. Then the function G → A defined by g → P (£gx) is the P -name of x.
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Definition 5 (n-block). Given a Pk-name of x (for k < n) and a fixed c ∈ G, if for
all u ∈ An we find that Pk(£ucx) = Pn

k (u) then {Pk(£ucx) | u ∈ An} is an n-block
indexed by Anc.

The set Cn determines how n-blocks are situated in the (n + 1)-tower.
We often compare names of different points x and y. If the function from G to

A × A is given by g → (P (£gx), P (£gy)), then this function is the P × P name of
(x, y). We refer to the symbols in the first coordinate as upper and the symbols in
the second coordinate as lower.

Definition 6 (Overlap of n-blocks). If an n-block occurs at Anc in the Pk name
of x and an n-block occurs at Anc′ in the Pk name of y then Anc ∩ Anc′ indexes
an n-block overlap in the Pk × Pk name of (x, y). The overlap is given by

{(Pk(£hx), Pk(£hy)) | h ∈ Anc ∩ Anc′}.

2.5. Comparing measures on finite sets. If f is a map from a probability
space (A, µ, α) to a finite set B, then Dista∈A f(a) denotes the probability measure
on B given by Dista∈A f(a) := α ◦ f−1.

For C ⊂ A, the conditional measure is defined by αC(U) := α(U ∩ C)/α(C). If
C is a measurable subset of A define Dista∈C f(a) := αC ◦ f−1. We also denote
this by Dist(f(a) | a ∈ C). For convenience and readability we also use

Dista∈C(f(a)|g(a) = k)

in place of
Dist{a∈C|g(a)=k} f(a).

For finite A the normalized counting measure on A is denoted Unif A.

Example. Define a measure λ on An by Distx∈Xn
(Pn(x)). So if En

p is a level of
the n-tower then

λ(p) = µXn
(P−1

n (p)) =
µ(Xn ∩ En

p )
µ(Xn)

=
1
m

.

Thus Distx∈Xn(Pn(x)) = Unif An.

Example. Let Xi : Ω → A for i = 1, 2, 3, . . . be a countable family of independent
random variables each with uniform distribution over a finite alphabet A. Then for
fixed w ∈ Ω, µ := Dist(Xi(w) | i ∈ [1, m]) is a measure on A. Precisely,

µ(a) =
|{i ∈ [1, m] | Xi(w) = a}|

m
.

To compare two probability measures, p, q, on a finite set A, use the norm

‖p − q‖ :=
∑
a∈A

|p(a) − q(a)|.

The following five lemmas about finite measures, which we use repeatedly, are
stated without proof.

Lemma 3. If p and q are probability measures on A and ρ : A → B then

‖p ◦ ρ−1 − q ◦ ρ−1‖ ≤ ‖p − q‖.
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Lemma 4. If C ⊂ A and p(C) ≥ 1 − ε, then ‖p − pC‖ ≤ 2ε.

Let Π : A×B → A be the projection. If p is a probability measure on A×B, then
the marginal measure p := Π(p) is the projection of p onto A. So p(a) =

∑
b p(a, b).

For a ∈ A define the fibre measure pa as p conditioned on Π−1(a). So

pa(b) =
p(a, b)
p(a)

.

Lemma 5. If p and q are probability measures on A × B and p = q, then

‖p − q‖ =
∑

a

p(a) ‖pa − qa‖.

A more useful version of Lemma 5 when p is not exactly equal to q is:

Lemma 6. If p and q are probability measures on A × B then

‖p − q‖ ≤
∑

a

p(a)‖pa − qa‖ + ‖p − q‖.

Note that Lemma 5 is a special case of this lemma. When the marginals on A
are close and the fibre measures over A are close, Lemma 6 implies the measures
will be close.

Conversely, the distance between the measures gives a bound on the distance
between the fibre measures.

Lemma 7. If p and q are probability measures on A × B then for a fixed a ∈ A,

‖pa − qa‖ ≤ 2
p(a)

‖p − q‖.

2.6. Special application of the ergodic theorem. The following is a standard
consequence of the mean and pointwise Ergodic Theorems:

Lemma 8. Suppose (X, β, T, µ) is ergodic, P is a measurable finite partition of X,
ε > 0, and α > 0. Then for µ-almost all x in X, there exists N (depending on x)
so that if E = l + ∪M

m=0[mn, mn + L] where:
1. n ≥ N ,
2. M ∈ N,
3. αn ≤ L ≤ n, and
4. −n ≤ l ≤ n,

then ∥∥Disti∈E P (T ix) − Dist P
∥∥ < ε.

Lemma 8 shows the Ergodic Theorem is valid on sets other than initial segments
of the integers. The conclusion of this lemma holds even if E is

l +
M⋃

m=0

[mn + δm, mn + δm + L],

where δm satisfies 0 ≤ δm ≤ (1−α)n. The case δm = 0, however, when the intervals
of length L are regularly spaced, is sufficient for our needs.



Rank-one group actions with simple mixing Z-subactions 183

3. Main proof

Theorem 9 (Main result). Let G be a countable abelian group with Zd (d ≥ 1) as
a subgroup so that G/Zd is a locally finite group. There exists a rank-one action
of G so that the transformation T corresponding to (1, 0, 0, . . . , 0) in Zd is mixing,
simple, and only commutes with the other times of the action, that is, C(T ) = G.

We prove this theorem in three parts: the construction of the group action in
Subsection 3.1, the proof that T is mixing in Subsection 3.2, and the proof that T
is simple and C(T ) = G in Subsection 3.3.

3.1. Constructing a rank-one action of G. Let H := G/Zd. H is a locally
finite group. The proof when H is finite or even trivial is an easy modification
of the proof given, the case when H is infinite. As H is countable there exists a
sequence of finite groups Hn, so that

H1 ⊂ H2 ⊂ H3 . . .

and

H =
∞⋃

n=1

Hn.

Our group G has a special structure that we will identify. Consider the cosets
of Zd in G and for each coset select a unique element in the coset. Use ψ(g) to
denote the unique element in the coset g + Zd. So ψ maps from G into G but is
not a homomorphism since ψ(g1 + g2) need not be equal to ψ(g1) + ψ(g2).

Since G/Zd is isomorphic to H, the projection ΠH : G → H is a homomorphism
that has Zd as its kernel. Define φ : H → G so that φ ◦ ΠH = ψ. Then we can
define an operation, also denoted +, on Zd × H as follows:

(u, h1) + (v, h2) := (u + v + φ(h1) + φ(h2) − φ(h1 + h2), h1 + h2) .

We think of this as addition in each coordinate with a carry from the H coordinate
into the Zd coordinate. The carry, φ(h1) + φ(h2)−φ(h1 + h2), is an element of Zd.
Why? If g1 and g2 are two elements of G so that ΠH(g1) = h1 and ΠH(g2) = h2

then

φ(h1) + φ(h2) − φ(h1 + h2) = φ(ΠH(g1)) + φ(ΠH(g2)) − φ(ΠH(g1) + ΠH(g2))

= ψ(g1) + ψ(g2) − φ(ΠH(g1 + g2))

= ψ(g1) + ψ(g2) − ψ(g1 + g2).

Since ψ(g1) ∈ g1 + Zd and ψ(g2) ∈ g2 + Zd, then ψ(g1) + ψ(g2) ∈ (g1 + g2) + Zd.
Yet, ψ(g1 + g2) is also in (g1 + g2)+ Zd, so ψ(g1)+ψ(g2)−ψ(g1 + g2) is an element
of Zd.

Claim 10. With this operation, Zd × H is isomorphic to G.



184 Blair Madore

Proof. Define an isomorphism Φ : G → Zd × H as Φ(g) := (g − ψ(g), ΠH(g)) .
Then

Φ(g1) + Φ(g2) = (g1 − ψ(g1), ΠH(g1)) + (g2 − ψ(g2), ΠH(g2))

= (g1 − ψ(g1) + g2 − ψ(g2) + φ(ΠH(g1)) + φ(ΠH(g2))

− φ(ΠH(g1) + ΠH(g2)), ΠH(g1) + ΠH(g2))

= (g1 − ψ(g1) + g2 − ψ(g2) + ψ(g1) + ψ(g2)

− φ(ΠH(g1 + g2)), ΠH(g1 + g2))

= (g1 + g2 − ψ(g1 + g2), ΠH(g1 + g2))

= Φ(g1 + g2).

Thus Φ is a homomorphism. Each g ∈ G can be uniquely written as (g − ψ(g)) +
ψ(g). Since g − ψ(g) ∈ Zd and ψ(g) corresponds to ΠH(g) ∈ H, it is clear that Φ
is injective and surjective. �

For the reminder of our proof we consider our group G to be presented as Zd×H
with the special operation +, where we add in each coordinate and carry from the
H coordinate into the Zd coordinate. An element in G is uniquely represented by
(v, g), where v is in Zd and g is in H; sometimes denoted v + g.

For notational convenience:

1. u denotes (u1, u2, . . . , ud) a vector in Zd.
2. ‖u‖ is max(|u1|, |u2|, . . . , |ud|).
3. av is the usual scalar multiplication.
4. ei represents the ith standard basis vector in Zd.
5. For an integer m, m denotes (m, m, m, . . . , m).

Thus, me1 denotes the Zd vector (m, 0, 0, . . . , 0). For u = (u1, u2, . . . ud) and
v = (v1, v2, . . . vd), if ui ≤ vi for all i, define [u,v] to be the set

[u1, v1] × [u2, v2] × · · · × [ud, vd].

Define the projection from G onto Zd by ΠZd(v, g) := v. Although ΠH is a homo-
morphism, ΠZd is not.

Hn+1 is composed of kn := |Hn+1/Hn| cosets of Hn. Choose elements of Hn+1,
one from each coset, to form Γn = {g1, g2, . . . , gkn}. Then

Hn+1 = (g1 + Hn) ∪ (g2 + Hn) ∪ · · · ∪ (gkn
+ Hn).

To construct a rank-one action of G we specify an almost-tiling Følner sequence
({An}, {Cn}). Our Følner sequence will be defined by An := [0, hn)d × Hn. More
precisely define:

1. Spacer length sn := nhn−1.
2. Window length wn := hn + sn + 2θn+1.
3. New block length hn+1 := Nnwn.
4. The maximum norm of the carry:

θn := sup
g,g′∈Hn

‖ΠZd((0, g) + (0, g′))‖.

This is the Zd norm, as the carry is in Zd.



Rank-one group actions with simple mixing Z-subactions 185

.

.

.

.

.

.

.

.

.

.

.

. ........

........

........

........

Zd

(Nn-1)wn
Nnwn3wn2wnwn

g2+Hn

g1+Hn

gk+Hn

H

Figure 1. Windows in An+1.

The value of Nn will be specified later. The (n + 1)-tower An+1 has windows

[wni, wn(i + 1)] × (g + Hn),

where i ∈ [1, Nn]d and g ∈ Γn. A window is identified by its order (i, g). Figure 1
illustrates the case d=1, but is sufficient to envision the general case.

To almost-tile An+1 we place a copy of An centrally in each window, with a
“random perturbation”. More precisely, a spacer function ηn is used to place the
copies of An in windows of An+1, that is,

ηn : [1, Nn]d × Γn −→ [0, sn]d × Hn,

and is defined to be nearly random as detailed later. Now the set of translators Cn

is given by

Cn :=
{
(wni, g) + (θn+11, 0) + ηn(i, g) | i ∈ [1, Nn]d, g ∈ Γn

}
.

For c ∈ Cn, we describe exactly how cAn appears in its window. The n-tower, as
seen in Figure 2, is composed of many rows of the form [0, hn)d×r, for r ∈ Hn. The
translation of An by c has two components. The Zd component called the shift,

ΠZd(c) = wni + θn+11 + ΠZd (ηn(i, g)) ,

and the H component called the shuffle,

ΠH(c) = g + ΠH (ηn(i, g)) .

What is the effect of the shift on An? It shifts the entire n-block to the center of
the window (i, 0) and a further small translation due to the spacer sequence. If we
now apply the shuffle what effect does it have? The shuffle “rotates” the rows of An

as it places them in the window (i, g). It also introduces a small Zd translation for
each row, less than θn+1 in any of the d directions. So the definition of wn ensures
the shuffled n-block is inside the window. Figure 3 illustrates the case d = 1.
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Figure 3. Shuffling an n-block into a window of An+1. Here y = ΠZd(c).

When d = 2, cAn could look like a loosely shuffled deck of cards. For any c and
c′ in Cn,the n-blocks cAn and c′An are inside their respective windows and thus
disjoint.

Let m be a positive integer and let (i, g) and (i′, g′) be two starting windows in
An+1.

Definition 7 (Admissibility). The triple (m, (i, g), (i′, g′)) is called admissible if:
1. i, i′, i + me1, and i′ + me1 are in [1, Nn]d.
2. (i, g) is not equal to (i′, g′).

3. m ≥ Nn

n2
.

Spacer functions ηn must satisfy a uniformity condition: for all admissible triples
(m, (i, g), (i′, g′)), starting at windows (i, g) and (i′, g′) in An+1, and looking in
the m consecutive windows in the positive Z direction, there is a jointly uniform
distribution of spacers. Let εn =

(
(sn)d|Hn|

)−2 which clearly n−→ 0. Then we
require∥∥∥Distk∈[0,m] (ηn(i + ke1, g), ηn(i′ + ke1, g

′)) − Unif
(
[0, sn]d × Hn

)2
∥∥∥ ≤ εn.(1)

Why do we want m ≥ Nn/n2? The ratio of m to the number of windows in a
block required to see uniformity must decrease to zero as n goes to infinity. Yet, m
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must increase to infinity to make uniformity possible. Choosing m > Nn/n2 is one
way to accomplish this.

The condition (1) on ηn may appear very restrictive. How can we be sure such
functions exist? The length of the spacer sequence, Nn, is not yet fixed. As the
length of a sequence of random letters from a finite alphabet grows, it is exponen-
tially more likely that its letters are uniformly distributed. From this fact we can
construct ηn.

Our spacer sequence ηn will be a realization of a sequence of Nn independent
random variables each uniformly distributed over the alphabet A = ([0, sn]d×Hn)2.
We show that for large enough Nn there is a high probability that (1) is satisfied.

Lemma 11 (Exponential convergence of random sequences to uniformity). Given
a probability space (Ω, P ), let X1, X2, X3, . . . be independent random variables each
with uniform distribution over a finite alphabet A. Specifically, Xi : Ω −→ A and
P{Xi = a} = 1

|A| for all a in A. Then for all ε > 0, there exists M and a constant
c so that if m ≥ M then

P{‖Dist(Xi | i ∈ [0, m]) − Unif A‖ ≥ ε} < e−cm.(2)

Proof. This is a consequence of the Central Limit Theorem. See [Orn67] for an
elementary proof or [Rud79] for a proof using Stirling’s Formula. �

Each admissible triple (m, (i, g), (i′, g′)) imposes a constraint on the spacer se-
quence. Apply Lemma 11 with A = ([0, sn]d ×Hn)2 and ε = εn to determine c and
M . If g is not equal to g′, then clearly the m windows to the right of these starting
windows are distinct. So by Lemma 11, if m > M then the probability that (1) is
not satisfied is less than e−cm.

If g equals g′, then it may be that the m windows to the right of the starting
points do overlap. If so, divide [0, m] into two sets A and B, where |A| and |B| are
both greater than m/3, and so that the sets {i + ke1|k ∈ A} and {i′ + ke1|k ∈ A}
are disjoint. Similarly for B, {i + ke1|k ∈ B} and {i′ + ke1|k ∈ B} are disjoint.
Then the probability that∥∥∥Distk∈A (ηn(i + ke1, g), ηn(i′ + ke1, g

′)) − Unif
(
[0, sn]d × Hn

)2
∥∥∥ ≤ εn.(3)

is less than e−cm/3, and likewise for B. So the probability that (1) is not true for an
admissible triple (m, (i, g), (i′, g′)) is less than the probability that (3) is not true
for k ∈ A or k ∈ B, which is less than 2e−cm/3.

Since m >
Nn

n2
we can conclude that the probability of (1) not being true is less

than 2e
−cNn
3n2 , provided

Nn

3n2
> M . Remembering k = |Hn+1/Hn|, there are less

than Nn((Nn)dk)2 admissible triples so the probability that (1) is true for all of
them is less than

1 − 2(Nn)2d+1k2e−cNn/3n2
.(4)

So, take Nn sufficiently large that
Nn

3n2
> M and (4) is greater than zero. This

means a realization of ηn will exist to satisfy (1). Additionally we require that Nn

be large enough to ensure that θn+3 < hn+1. This means that θn+1 will be much
less than sn, a fact that will be important in later scanning arguments.
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The sequences {An} and {Cn} thus defined constitute an almost-tiling Følner
sequence. By also requiring that Nn grow exponentially with n, we guarantee that
the resulting measure space is finite. Thus, we have £ a rank-one action of G.

3.2. T is mixing. To show T is mixing we must show µ(T iA∩B) −→ µ(A)µ(B)
for all measurable sets A and B. Since A and B can be approximated by levels of
the k-tower, for large k, it suffices to show that for each k, Pk is mixed by T . More
precisely, we want to show∥∥Distx

(
Pk(T ix), Pk(x)

)
− Dist(x,y) (Pk(x), Pk(y))

∥∥(5)

tends to 0 as i → ∞.
Each level of the k tower is a union of levels of the (n−1)-tower (when n−1 > k).

We can link i to n by requiring

wn − (sn + wn−1 + θn+1) ≤ i ≤ wn+1 − (sn+1 + wn + θn+2).(6)

So (5) is bounded by∥∥Distx

(
Pn−1(T ix), Pn−1(x)

)
− Dist(x,y) (Pn−1(x), Pn−1(y))

∥∥ .(7)

Why is this true? The measures in (5) are probability measures on the set A∗
k×A∗

k.
Because of Lemma 3 with the map Pn−1

k × Pn−1
k , (5) is less than or equal to (7).

Thus to prove T is mixing it suffices to show (7) tends to zero as n and thus i go
to infinity. Why link i to n? When i is small compared to hn+1, we can investigate
the first measure in (7) by examining an (n + 1)-block and its overlap with the
(n + 1)-block shifted by T i. When i is much larger than wn, but still smaller than
wn+1, we examine the overlap of (n + 2)-blocks.

The key idea is that when we shift the (n + 1)-tower by an offset i in the Z

coordinate, we see nearly uniform Pn−1 × Pn−1 symbols on the overlap.

Definition 8 (Row overlaps). The (n+1)-block is composed of |Hn+1| rows, each
of the form [0, hn]d × g for fixed g ∈ Hn+1. An overlap of rows is indexed by [0,m]
and two points a and a′. This is a map

[0,m] → ([0,hn], g) × ([0,hn], g′)(8)

which is defined by u → ((a + u, g), (a′ + u, g′)). Thus the overlap is a pairing of
[a,a + m] × g in the upper block with [a′,a′ + m] × g′ in the lower block.

Lemma 12 (Row overlap measures). Consider an overlap of two rows in An+1,
as above, where |mi| > Nn

n2 wn for all i. If g + Hn equals g′ + Hn and ‖a − a′‖ >
wn − (sn + wn−1 + θn+1), or if g + Hn is not equal to g′ + Hn then∥∥Distu∈[0,m]

(
Pn+1

n−1 (a + u, g), Pn+1
n−1 (a′ + u, g′)

)
− Unif (An−1 × An−1)

∥∥(9)

tends to 0 as n → ∞.

An overlap of rows that satisfies the conclusion of Lemma 12 is called good. Using
this lemma we can complete the proof that T is mixing.

Proof that T is mixing. When i is in the range

wn − (sn + wn−1 + θn+1) ≤ i ≤ wn + sn+1 + θn+2,
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i is small compared to hn+1, so the overlap between An+1 and (ie1 + An+1) is
large. Let B equal to An+1 ∩ (ie1 + An+1) and let XB represent the levels of the
(n + 1)-tower indexed by B. Statement (7) is less than∥∥Distx(Pn−1(T ix), Pn−1(x)) − Distx∈XB

(Pn−1(T ix), Pn−1(x))
∥∥

+
∥∥Distx∈XB

(Pn−1(T ix), Pn−1(x)) − Unif(An−1 × An−1)
∥∥

+
∥∥Unif(An−1 × An−1) − Dist(x,y)(Pn−1(x), Pn−1(y))

∥∥ .

Lemma 4 shows the first summand is less than 2(1 − µ(XB)) which n−→ 0. Why?
Notice that XB is a large fraction of Xn+1. More precisely

µ(XB)
µ(Xn+1)

≥ hn+1 − wn − sn+1 − θn+2

hn+1
.

This fraction n−→ 1 so we see that 1 − µ(XB) n−→ 0. Lemma 4 also shows the
third summand is less than 2(1 − µ(Xn−1)) which n−→ 0. The second summand is
equivalent to∥∥Distu∈B(Pn+1

n−1 (u + ie1), Pn+1
n−1 (u)) − Unif(An−1 × An−1)

∥∥ ,(10)

and this distribution over the overlap indexed by B is a weighted average of dis-
tributions over overlaps of rows in An+1. They are all good overlaps so Lemma 12
shows that (10) n−→ 0.

When i is in the range

wn + sn+1 + θn+2 ≤ i ≤ wn+1 − (sn+1 + θn+2 + wn),(11)

we consider the overlap of (n + 2)-towers. Let B be An+2 ∩ (ie1 + An+2), and let
XB represent levels of the (n + 2)-tower indexed by B. Statement (7) is less than∥∥Distx(Pn−2(T ix), Pn−2(x)) − Distx∈XB

(Pn−1(T ix), Pn−1(x))
∥∥

+
∥∥Distx∈XB

(Pn−1(T ix), Pn−1(x)) − Unif(An−1 × An−1)
∥∥

+
∥∥Unif(An−1 × An−1) − Dist(x,y)(Pn−1(x), Pn−1(y))

∥∥ .

Again, Lemma 4 shows the first and third summands n−→ 0. The second summand
is equal to ∥∥Distu∈B(Pn+1

n−1 (u + ie1), Pn+1
n−1 (u)) − Unif(An−1 × An−1)

∥∥ .(12)

Most of the overlap indexed by B is composed of overlaps of (n + 1)-blocks. These
(n + 1)-blocks are not in their standard positions. They have been shifted and
shuffled into their respective windows of the (n+2)-tower. This means their overlaps
are not indexed by a simple set of the form (i′ + An+1) ∩ An+1, rather, they are
the union of overlaps of rows of the (n + 1)-block. Because of the range for i, most
of the overlap indexed by B is composed of good overlaps of rows of (n+1)-blocks.
They are good because the range for i guarantees that the row overlaps start in
different windows or are too short to be significant. Thus, the portion of B not in
good overlaps n−→ 0. The distribution of the Pn−1 symbols in the overlap indexed
by B will be a weighted average of distributions over good row overlaps. So (12)
is a weighted average of distributions like (9) which n−→ 0 by Lemma 12. This
concludes the proof that T is mixing. �
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We turn to the proof of Lemma 12. Rather than distributions on overlaps of
rows like the map from [0,m] to ([0,hn], g) × ([0,hn], g′) defined by

u → ((a + u, g), (a′ + u, g)) ,(13)

we consider sets formed by fixing a position in the window and looking at that
position, in both the upper and lower block, in some number of consecutive windows
in the positive Z direction.

Definition 9 (Span). A span is a map from [0, M ] to ([0,hn], g) × ([0,hn], g′) of
the form

i → ((b + iwne1, g), (b′ + iwne1, g
′))(14)

where:
1. b and b′ are in [0,hn+1].
2. g and g′ are in Hn+1.
3. (b + Mwne1) and (b′ + Mwne1) are in [0,hn+1].
4. M > Nn/n2.

Let R(b, m) be b mod m. Call a vector b good if each coordinate bi satisfies

sn + θn+1 ≤ R(bi, wn) ≤ wn − (sn + θn+1).

If both b and b′ are good and in windows of different order in An+1, we call (14)
a good span. The constraint on bi means that if b is a good vector and g ∈ Hn+1

then (b, g) is contained in CnAn. That’s because b is far enough away from the
boundary of the Zd component of the window that (b, g) is always included in the
n-block in the window. So the Pn × Pn symbols in good spans are never spacers.

Overlaps like (13) are unions of spans of nearly equal size. So (9) is an almost
equally weighted average of distributions over spans D,∥∥Distd∈D

(
Pn+1

n−1 × Pn+1
n−1

)
(d) − Unif (An−1 × An−1)

∥∥ .(15)

Most of the spans considered are good but those that are not have weight at most
2d(sn + θn+1 + wn−1)/wn. Since their weight n−→ 0, to establish Lemma 12 it
suffices to prove the following:

Lemma 13. If D is a good span then (15) n−→ 0.

Proof. Let D be as in (14), and let the starting points (b, g) and (b′, g′) be in
windows (I, gI) and (I′, gI′) respectively. Here gI and gI′ are in Γn so that g+Hn =
gI + Hn and g′ + Hn = gI′ + Hn. Let ν be the measure

Distd∈D

(
Pn+1

n−1 × Pn+1
n−1

)
(d).

The marginal measure ν observes the Pn−1 symbols at the fixed position in the
windows of the upper (n + 1)-block. Because the position is fixed, the value of
the spacer function in that window determines the symbol seen. We look at this
position for M consecutive windows along the positive Z axis. Over that range the
spacers are nearly uniformly distributed,∥∥Distk∈[0,M ] ηn(I + ke1, gI) − Unif([0, sn]d × Hn)

∥∥ ≤ εn,

so we have the effect of “scanning” a region of the n-block nearly uniformly. Why?
The measure ν is equal to

Distk∈[0,M ] P
n
n−1 ((b + kwne1, g) − kwnI − gI − ηn(I + ie1, gI)) .



Rank-one group actions with simple mixing Z-subactions 191

Since the H component of the spacers are uniform over Hn we scan a portion of
each row of An. Because the spacers are jointly uniform over [0, sn]d for each row of
An we scan a portion that is [0, sn]d in size. The region scanned is like the shuffled
block seen in Figure 3, but we scan only a portion of each row that is [0, sn]d

in size. Also because we have arranged for the maximum carry θn+1 to be small
compared to sn, the scanned region of An contains nd|Hn/Hn−1| complete copies
of the (n − 1)-block, and the portion scanned that is not in those blocks n−→ 0.
Thus we observe nearly uniform Pn−1 symbols at our fixed window position, that
is, ‖ν − Unif An−1‖

n−→ 0.
Now examine the fibres of ν. The fibre measure νa looks only at the windows in

the upper (n + 1)-block where we see a fixed symbol a,

νa := Disti∈[0,M ]

(
Pn+1

n−1 (b′ + iwne1, g
′) | Pn+1

n−1 (b + iwne1, g) = a
)
.

The fixed symbol a only occurs for a finite number of spacer values γ1, γ2, . . . , γt.
Because the spacers are jointly uniform,∥∥Distk∈[0,M ] (ηn(I +kwne1, gI), ηn(I′ +kwne1, g

′)) − Unif([0, sn]d×Hn)2
∥∥ ≤ εn,

for a fixed spacer value in the window of the upper block, Lemma 7 shows the
distribution of spacers in the windows of the lower block are also nearly uniform,∥∥Distk∈[0,M ] (ηn(I′ + kwne1, g

′) | ηn(I + kwne1, g) = γj ) − Unif
(
[0, sn]d × Hn

) ∥∥
≤ εnsd

n|Hn|.

Since εn =
(
sd

n|Hn|
)2 then εnsd

n|Hn| =
√

εn which also n−→ 0. Thus, we get nearly
uniform scanning of a region of the n-block by observing the windows of the lower
block at our fixed position. By the same nearly uniform scanning argument, we
see nearly uniform Pn−1 symbols. This occurs for each γj ; so taking a weighted
average, ‖νa − Unif An−1‖

n−→ 0.
Since both ν and νa are nearly Unif An−1, by Lemma 6

‖ν − Unif(An−1 × An−1)‖
n−→ 0. �

Thus Lemma 13 is true which concludes the proof of Lemma 12.

3.3. T is simple and C(T ) = G. Let λ be an ergodic self-joining of T . We
show that λ is either the product measure µ × µ, or an off diagonal (I × £g)∆.
Since (I × S)∆ is an ergodic joining for all S ∈ C(T ), this implies C(T ) is merely
times(£) (all the transformations in the action of G).

Take ε > 0, α = 1/4 and a partition Q of X × X; apply Lemma 8. Then for
λ-almost all (x, x′) there exists N (depending on (x, x′)) so that if E is a set of the
form E = l + ∪M

i=0[iwn, iwn + L] where:

1. n ≥ N ,
2. M ∈ N,
3. αwn ≤ L ≤ wn, and
4. −wn ≤ l ≤ wn,

then

‖Disti∈E Q(T ix, T ix′) − Dist(y,y′) Q(y, y′)‖ < ε.
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0 wn-wn

x’

x

Figure 4. Overlap of Z-n-windows in the names of x and x′.

A point (x, x′) that satisfies the above for all rational ε > 0, all partitions Pk×Pk

and α = 1/4, we call generic. Since this is only a countable number of applications
of the lemma, λ-almost all points are generic. Fix one such point (x, x′) ∈ X × X.

Definition 10 (Time-n order of x). If x ∈ Xn+1 then it is contained in a level of
the tower En

u for u ∈ An+1. Let Θn(x) denote the time-n order of x, defined by

Θn(x) := (i, g),

where (i, g) is the window of An+1 that contains u.

Definition 11 (Z-n-window). For a point x ∈ Xn+1 the Z-n-window is [a, b], a
maximal interval in Z, so that Θn(T ix) is constant for i ∈ [a, b].

Definition 12 (Centrally Located). Say x is centrally located at time-n if

Nn/n2 < i1 < Nn − Nn/n2,

where Θn(x) = (i, g). Define eventually centrally located to mean there exists an
N depending on x so that for all times n ≥ N , x is centrally located at time n.

By the Borel-Cantelli lemma, since the amount of measure we are outlawing is
finite, µ-almost all x are eventually centrally located. We want x and x′ to be away
from the edge of the n-tower in the Z coordinate.

Fix a pair (x, x′) that is generic and both x and x′ are eventually centrally
located. Examining the structure of the Pk × Pk names of (x, x′) will reveal the
nature of λ. The placement of Z-n-windows in the name of x′ relative to those in
the name of x, will be of particular importance. When x and x′ are both centrally
located, Z-n-windows for x and x′ fill the interval [−Nnwn/n2, Nnwn/n2].

Definition 13 (Overlap of Z-n-windows). An overlap of Z-n-windows is a maxi-
mal interval [a, b] such that Θn(T ix) and Θn(T ix′) are constant for i in [a, b].

Definition 14 (Offset time). Call n an offset time if there is an overlap of length
at least wn/4 in [−wn, wn] so that the overlapping Z-n-windows (in x and x′) have
different orders.

Remarkably, the occurrence of offset times completely determines the structure
of λ.
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Claim 14 (Finitely many offset times). If there are only a finite number of offset
times then λ = (I × £g)∆, for some g ∈ G.

Proof. Let N be sufficiently large so that for all n ≥ N , n is not an offset time,
and x and x′ are centrally located. We know [−wN , wN ] is filled with Z-n-windows
for both x and x′, so it must contain at least one overlap of size > wn/4. Since N
is not an offset time this overlap is from windows whose order must be the same.
If x and x′ do not have the same order at time-N their orders differ by no more
than (1, 0, . . . , 0) ∈ Zd. The Z-windows of x and x′ at time-(N + 1) must overlap
almost completely, certainly > wN+1/4 in length. Since N + 1 is not an offset
time ΘN+1(x) = ΘN+1(x′). We repeat, inductively, to see that for all n ≥ N + 1,
Θn(x) = Θn(x′), that is, x and x′ have the same order. If x is not equal to £gx′ for
some g ∈ AN+1 − AN+1 then at some time n > N , x and x′ would be in different
windows. But that’s not possible. This implies x = £gx′ for some g ∈ G. Thus
λ = (I × £g)∆. �

Claim 15 (Infinitely many offset times). If there is an infinite sequence of offset
times {nj}∞j=1, then λ = µ × µ.

Proof. We can assume that for nj where j ≥ 1, x and x′ are centrally located.
Consider the name of (x, x′) with respect to partitions Pk × Pk. In the interval
[−wnj , wnj ] there will be an overlap of Z − nj-windows of length greater than
wnj

/4. Since nj is an offset time, this is an overlap of windows of different orders
and because x and x′ are centrally located this overlap pattern is repeated at least
Nnj /nj

2 times to the right. Let Lj be the width of the overlap. Thus we can define
a set Enj of the form l + ∪M

i=0[iwnj
, iwnj

+ Lj ] where:

1. M = Nnj
/nj

2.
2. wnj

/4 ≤ Lj ≤ wnj
.

3. −wnj ≤ l ≤ wnj .
Because (x, x′) was chosen to be generic for λ over sets like Enj , for all partitions

Pk × Pk,

lim
j→∞

Disti∈Enj
(Pk(T ix), Pk(T ix′)) = Distλ Pk × Pk.(16)

If we also knew that for all k,

lim
j→∞

Disti∈Enj
(Pk(T ix), Pk(T ix′)) = Distµ×µ Pk × Pk,(17)

then, since the partitions Pk × Pk generate the σ-algebra, from (16) and (17) we
could conclude that λ = µ × µ.

To establish (17) we will show∥∥∥Disti∈Enj
(Pk(T ix), Pk(T ix′)) − Distµ×µ(Pk × Pk)

∥∥∥ nj−→ 0.

Proceeding similarly to the proof that T is mixing, it suffices to show∥∥∥Disti∈Enj
(Pnj−1(T ix), Pnj−1(T ix′)) − Distµ×µ(Pnj−1 × Pnj−1)

∥∥∥ nj−→ 0.

This is because Pnj−1 refines Pk when nj is large enough. Of course∥∥Distµ×µ(Pnj−1 × Pnj−1) − Unif(Anj−1 × Anj−1)
∥∥
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is less than 2µ(XC
nj−1) which

nj−→ 0. So it suffices to show that∥∥∥Disti∈Enj
(Pnj−1(T ix), Pnj−1(T ix′)) − Unif(Anj−1 × Anj−1)

∥∥∥ nj−→ 0.(18)

But the measure

Disti∈Enj
(Pnj−1(T ix), Pnj−1(T ix′))

is an average of distributions over a fixed position in the windows, a span. A small
proportion of the spans comprising Enj

are not good, at most 4(snj
+ θnj+1)/wnj

,
which goes to 0. Since nj is an offset time the rest are good. By Claim 13, statement
(18) tends to 0. �
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