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ANTINORMAL COMPOSITION OPERATORS ON l2(λ)

Dilip Kumar and Harish Chandra

Abstract. In this paper we characterize self-adjoint and normal composition operators on
Poisson weighted sequence spaces l2(λ). However, the main purpose of this paper is to determine
explicit conditions on inducing map under which a composition operator admits a best normal
approximation. We extend results of Tripathi and Lal [Antinormal composition operators on l2,
Tamkang J. Math. 39 (2008), 347-352] to characterize antinormal composition operators on l2(λ).

1. Introduction and preliminaries

The distance of an operator to the set of normal operators has been studied
in [5, 7, 11]. In [6], Holmes posed the question: Does every operator admit a
normal approximation? Holmes pays special emphasis on those operators which
admit zero as a best normal approximant. He named such operators as antinormal
operators. The same problem has been studied for the first time in context of com-
position operators on the Hilbert space l2 in [17] by Tripathi and Lal. The notion
of composition operator appeared implicitly in the work of Hardy and Littlewood
[9] in 1925. A systematic study of this class of operators was initiated by Ryff [12]
and Nordgren [10]. The term composition operator was coined by Nordgren in his
paper [10].

Let X be a non-empty set and V (X) be a linear space of complex valued func-
tions on X under pointwise addition and scalar multiplication. If φ is a selfmap on
X such that composition f ◦ φ belongs to V(X) for each f ∈ V (X), then φ induces
a linear transformation on V (X) into itself given by Cφf = f ◦φ. The transforma-
tion Cφ is known as composition transformation. When V (X) is a Banach space
or Hilbert space and Cφ is a bounded linear operator on V (X), then Cφ is called a
composition operator.

Monographs [13] and [15] are elegant references for the theory of composition
operators. For details on composition operators on l2 we refer to [14].
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In this paper, N0 and C denote the set of all non-negative integers and the set
of all complex numbers respectively. Let φ be a function on N0 and φ−1(n) denote
the inverse image of n under φ. We denote by |φ−1(n)| the cardinality of the set
φ−1(n). Also, χn : N0 → N0 is defined as

χn(m) =
{

1, if m = n,

0, otherwise.

Let H be a separable complex Hilbert space and let B(H) denote the algebra
of all bounded linear operators on H. Further, for T ∈ B(H), let N(T ) and R(T )
respectively denote the null space and the range space of T .

Poisson distribution is named after French mathematician Simeon-Denis Pois-
son, who introduced it in 1837. Poisson distribution with parameter λ > 0 is
defined as w(n) = e−λ λn

n! , where n ∈ N0. For the details of Poisson distribution we
refer to [3].

For λ > 0, l2(λ) = {f : N0 → C | ∑
n∈N0

e−λλn

n! |f(n)|2 < ∞} is the Hilbert
space of all square summable Poison weighted sequences of complex numbers under
the inner product

〈f, g〉 =
∑

n∈N0

f(n)g(n)
e−λλn

n!
∀f, g ∈ l2(λ).

The following results proved in [8] are relevant to our context.
Theorem 1.1. A composition transformation Cφ is bounded on l2(λ) if and

only if there exists a real number M > 0 such that

∑

m∈φ−1(n)

e−λλm

m!
≤ M

e−λλn

n!
∀n ∈ N0.

Theorem 1.2. Let Cφ be a composition operator on l2(λ). Then, Cφ is
injective if and only if φ is surjective.

Theorem 1.3. If f =
∑

n∈N0
f(n)χn ∈ l2(λ), then the adjoint of Cφ is

C∗φ(f) =
∑

n∈N0
f(n)ξn · χφ(n), where · denotes pointwise operation and ξn(m) =

λn

n!
m!
λm ∀ m ∈ N0.

Theorem 1.4. Let Cφ be a composition operator on l2(λ). Then, adjoint C∗φ
of Cφ is injective if and only if φ is injective.

Recall the following definitions and properties.
An operator T ∈ B(H) is said to be a Fredholm operator if the dimension of

N(T ) and the dimension of the quotient space H/R(T )) are finite. The essential
spectrum of an operator T is defined as σe(T ) = {α ∈ C : T −αI is not Fredholm}.
Since every invertible operator is Fredholm operator, hence σe(T ) ⊆ σ(T ), see [4].

The minimum modulus of an operator T ∈ B(H) is defined as m(T ) =
inf{‖Tx‖ : ‖x‖ = 1}, and the essential minimum modulus of an operator T ∈ B(H)
is defined as me(T ) = inf{α ≥ 0 : α ∈ σe(|T |)}, where |T | = (T ∗T )

1
2 .
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An operator T ∈ B(H) is said to be antinormal if d(T,N ) = infN∈N ‖T−N‖ =
‖T‖, where N is class of all normal operators in B(H). T is antinormal if its adjoint
T ∗ is antinormal.

For an operator T in B(H), the index of T is defined as

index(T ) =





dim(N(T ))− dim(N(T ∗)), if dim(N(T )) or
dim(N(T ∗)) < ∞,

0, otherwise.

Observe that index(T ) = − index(T ∗).
We now state the following important results proved by Izumino in [7] which

we will use later in the paper.

Theorem 1.5. If index(T ) = 0, then d(T,N ) ≤ ‖T‖−m(T )
2 .

Corollary 1.1. If index(T ) = 0, then T cannot be antinormal.

Theorem 1.6. If index(T ) < 0, then me(T ) ≤ d(T,N ) ≤ ‖T‖+me(T )
2 .

Corollary 1.2. If index(T ) < 0, then T is antinormal if and only if me(T ) =
‖T‖.

Let (X,S, µ) be a measure space. A measurable set E is called an atom if
µ(E) 6= 0 and for each measurable subset F of E either µ(F ) = 0 or µ(F ) = µ(E).
A measure space (X,S, µ) is called an atomic measure space if each measurable
subset of non-zero measure contains an atom.

A trivial example of an atomic measure space is (X,S, µ), where X is any
non-empty set, S is a σ-algebra and µ is the counting measure.

An atomic measure space (X,S, µ) is called a finite atomic measure space if
µ(X) < ∞. In [16], Singh and Veluchamy gave the following characterization. If
(X,S, µ) is a finite atomic measure space and Cφ is a composition operator on
L2(µ), then the following statements are equivalent: (i) Cφ is unitary, (ii) Cφ is
normal, (iii) Cφ is an isometry, (iv) Cφ is quasinormal, (v) Cφ is a co-isometry.

If the atoms {An}∞n=1 in the finite measure space (X,S, µ) are such that
µ(Am) 6= µ(An) whenever m and n are different then all above statements (i)
to (v) imply that Cφ is the identity operator.

2. Main results

2.1. Self-adjoint, normal composition operators on l2(λ)
In this section we characterize self-adjoint, normal composition operators.

Theorem 2.1. A composition operator Cφ on l2(λ), where λ 6= 1, is self-
adjoint if and only if φ is identity. For λ = 1, Cφ on l2(λ) is self-adjoint if and
only if φ is identity or φ has the following form:

φ(n) =





1, if n = 0
0, if n = 1
n, otherwise .
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Proof. Suppose Cφ is self-adjoint. Then

Cφ = C∗φ ⇐⇒ Cφ(χn) = C∗φ(χn) ∀ n ∈ N0

⇐⇒ χφ−1(n) =
λn

n!
φ(n)!
λφ(n)

χφ(n) ∀ n ∈ N0

⇐⇒ χφ−1(n) = χφ(n) and
λn

n!
=

λφ(n)

φ(n)!
∀ n ∈ N0

⇐⇒ φ ◦ φ = I and
λn

n!
=

λφ(n)

φ(n)!
∀ n ∈ N0

⇐⇒ φ ◦ φ = I and λφ(n)−n =
φ(n)!

n!
∀ n ∈ N0.

Now, if λ 6= 1 and φ is not an identity map, then λ vary with n. This is a
contradiction. Hence the first assertion. Also, from above equation if λ = 1, then

Cφ is self-adjoint ⇐⇒ φ ◦ φ = I and n! = φ(n)! ∀ n ∈ N0.

Thus second assertion follows immediately.

Theorem 2.2. A composition operator Cφ on l2(λ) is normal if and only if
∑

m∈φ−1(n)
λm

m! =
(

λn

n!

)2
φ(n)!
λφ(n) ∀ n ∈ N0.

Proof. By definition we have

Cφ is normal ⇐⇒ ‖Cφ(f)‖ = ‖C∗φ(f)‖ ∀ f ∈ l2(λ)

⇐⇒ ‖Cφ(χn)‖ = ‖C∗φ(χn)‖ ∀ n ∈ N0

⇐⇒ ‖χφ−1(n)‖2 = ‖λn

n!
φ(n)!
λφ(n)

χφ(n)‖2 ∀ n ∈ N0

⇐⇒
∑

m∈φ−1(n)

λm

m!
=

(λn

n!

)2 φ(n)!
λφ(n)

∀ n ∈ N0.

Hence the proof.

The following remark shows a connection between normal composition opera-
tors and invertible composition operators.

Remark 2.1. If we take X = N0, An = {n} and µ(An) = e−λ λn

n! , where
n ∈ N0. Then it follows readily that L2(µ) = l2(λ) where µ is finite atomic
measure. Hence Cφ is normal if and only if φ is identity. This implies that every
normal operator is invertible.

Remark 2.2. It is interesting to note that normal composition operators and
invertible composition operators are equivalent on l2.

The following example shows that this not true in l2(λ) for λ 6= 1.
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Example 2.1. Let φ : N0 → N0 be defined as

φ(n) =





1, if n = 0
0, if n = 1
n, otherwise .

Then C∗φCφf = f(0)χ0 + f(1)
λ f(1)χ1 +

∑
n≥2 f(n)χn and CφC∗φf = f(0)

λ f(0)χ0 +
f(1)χ1 +

∑
n≥2 f(n)χn. Hence Cφ is not normal until λ = 1. Moreover, Radon-

Nikodym derivative of µφ−1 with respect to µ, denoted by fφ, is as follows:

fφ = λχ0 +
1
λ

f(1)χ1 +
∑

n≥2

χn.

Clearly fφ is bounded away from zero and range of Cφ is l2(λ). Hence by [15,
Theorem 2.2.11] Cφ is invertible.

2.2. Antinormal composition operators on l2(λ)
In [17], Tripathi and Lal have characterized antinormal composition operators

on sequence space l2. Now we state this characterization as follows.

Theorem 2.3. Let Cφ be a composition operator on l2.
(i) If φ is bijective then Cφ is not antinormal.
(ii) If φ is injective but not surjective then Cφ is antinormal.
(iii) φ is surjective but not injective then Cφ is antinormal if and only if |φ−1(n)| =

‖Cφ‖2 for all but finitely many n ∈ N.
(iv) Suppose φ is neither injective nor surjective.

(a) If index(Cφ) < 0, Cφ is antinormal if and only if |φ−1(n)| = ‖Cφ‖2 for
all but finitely many n ∈ N.

(b) If index(Cφ) ≥ 0, Cφ is not antinormal.

Now we cite two examples of antinormal composition operators on l2.
Example 2.2. The function φ on N into itself defined by φ(n) = n + 1 is

injective but not surjective. The composition operator Cφ is antinormal by case (ii).
Example 2.3. The function φ on N into itself defined by

φ(n) =





n, if n = 1, 2
n+3

2 , if n ≥ 3 and n is odd
n
2 + 1, if n ≥ 4 and n is even.

is surjective but not injective. The composition operator Cφ is antinormal by case
(iii) since |φ−1(n)| = 2 for all n ∈ N, except n = 1.

Motivated by the above results we investigate antinormal composition opera-
tors on l2(λ) in terms of inducing map in the following cases.
(i) φ is bijective.
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(ii) φ is not bijective then following cases are possible.
(a) φ is injective but not surjective.
(b) φ is surjective but not injective.
(c) φ is neither injective nor surjective.
Remark 2.3. If φ is bijective then Cφ and C∗φ both are injective by Theorems

1.2 and 1.4, respectively. Therefore index(Cφ) = 0. Hence Cφ is not antinormal.

Theorem 2.4. Suppose φ is injective but not surjective. If φ is such that no
term of the sequence {λn

n!
φ(n)!
λφ(n) } repeats itself infinitely many times then Cφ is not

antinormal.

Proof. It suffices to prove that C∗φ is not antinormal. Let α ≥ 0. Then for each
f ∈ l2(λ) we get

(CφC∗φ − αI)f = (CφC∗φ − αI)
∑

n∈N0

f(n)χn

=
∑

n∈N0

(λn

n!
φ(n)!
λφ(n)

− α
)
f(n)χn.

By our assumption, the factor
(

λn

n!
φ(n)!
λφ(n) − α

)
can not be zero for infinitely many

n′s in N0. This implies CφC∗φ − αI is Fredholm for each α ≥ 0. Hence me(C∗φ) =
∞. Also, the index(C∗φ) < 0 as C∗φ is injective. Now as me(C∗φ) 6= ‖Cφ‖ and
index(C∗φ) < 0, hence C∗φ by Corollary 1.2 is not antinormal. Consequently Cφ is
not antinormal.

Our next theorem gives a sufficient condition for Cφ to be antinormal on l2(λ).

Theorem 2.5. Suppose φ is surjective but not injective. If the set {n ∈
N0 :

∑
m∈φ−1(n)

λm

m!
n!
λn = α} is finite for every α < ‖Cφ‖2 and the set {n ∈ N0 :∑

m∈φ−1(n)
λm

m!
n!
λn = ‖Cφ‖2} is infinite, then Cφ is antinormal.

Proof. Performing simple computation we get

(C∗φCφ − αI)f =
∑

n∈N0

( ∑

m∈φ−1(n)

λm

m!
n!
λn

− α
)
f(n)χn.

For 0 ≤ α < ‖Cφ‖2, dim(N(C∗φCφ − αI)) = dim(N(C∗φCφ − αI)∗) is finite by
our assumption. Hence α /∈ σe(|Cφ|) for 0 ≤ α < ‖Cφ‖. But for α = ‖Cφ‖2,
dim N((C∗φCφ − αI)) is infinite, by the given assumption. Hence ‖Cφ‖ ∈ σe(|Cφ|).
Thus me(Cφ) = ‖Cφ‖. Also, the index(Cφ) < 0 as Cφ is injective. Hence Cφ is
antinormal.

The following result gives a necessary condition for Cφ to be antinormal.

Theorem 2.6. Suppose φ is surjective but not injective. If Cφ is antinormal
then set {n ∈ N0 :

∑
m∈φ−1(n)

λm

m!
n!
λn = α} is finite for every α < ‖Cφ‖2.
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Proof. On the contrary, assume that there exists a positive real number α0

such that the set {n ∈ N0 :
∑

m∈φ−1(n)
λm

m!
n!
λn = α0 < ‖Cφ‖2} is infinite. Now

consider the following equation

(C∗φCφ − α0I)f =
∑

n∈N0

( ∑

m∈φ−1(n)

λm

m!
n!
λn

− α0

)
f(n)χn.

The above equation shows that dim(N(C∗φCφ−α0I)) is infinite. Hence C∗φCφ−α0I

is not Fredholm. Hence
√

α0 ∈ σe(|Cφ|). This implies

me(Cφ) ≤ √
α0 < ‖Cφ‖.

Again observe that index(Cφ) < 0, as Cφ is injective. Hence Cφ is not antinormal.
Before exploring the case when φ is neither injective nor surjective, we prove

the following lemma.

Lemma 2.1. dim(N(C∗φ)) =
∑

n∈N0

(
|φ−1(n)| − 1

)
.

Proof. We first show that dim(R(Cφ))⊥ =
∑

n∈N0
|φ−1(n)| − 1. Let

f ∈ R(Cφ)⊥ ⇐⇒ 〈f, g〉 = 0 ∀g ∈ R(Cφ)

⇐⇒ 〈f, Cφh〉 = 0 ∀h ∈ l2(λ)

⇐⇒ 〈C∗φf, h〉 = 0 ∀h ∈ l2(λ)

⇐⇒ 〈C∗φf, χn〉 = 0 ∀χn ∈ l2(λ)

⇐⇒
∑

n∈N0

( ∑

m∈φ−1(n)

f(m)
λm

m!

) φ(n)!
λφ(n)

χn = 0 ∀n ∈ N0

⇐⇒
∑

m∈φ−1(n)

f(m)
λm

m!
= 0 ∀n ∈ N0.

This implies that dim(R(Cφ))⊥ =
∑

n∈N0

(
|φ−1(n)| − 1

)
. Further since N(C∗φ) =

(R(Cφ))⊥, hence the result follows.

Theorem 2.7. Suppose φ is neither injective nor surjective.

(a) If the index(Cφ) > 0 and no term of the sequence {λn

n!
φ(n)!
λφ(n) } repeats infinitely

many times, then Cφ is not antinormal.

(b) If the index(Cφ) < 0, the set {n ∈ N0 :
∑

m∈φ−1(n)
λm

m!
n!
λn = α} is finite for

every α < ‖Cφ‖2 and the set {n ∈ N0 :
∑

m∈φ−1(n)
λm

m!
n!
λn = ‖Cφ‖2} is infinite,

then Cφ is antinormal.
(c) If the index(Cφ) = 0, then Cφ is not antinormal.

Proof. If index(Cφ) > 0 then index(C∗φ) < 0. Therefore dim(N(C∗φ)) is finite.
Hence by Lemma 2.1 |φ−1(n)| = 1 for all but finitely many n ∈ N0. Now using



266 D. Kumar, H. Chandra

the arguments used in Theorem 2.4, σe(|C∗φ|) = ∅. Consequently me(C∗φ) = ∞.
Therefore Cφ is not antinormal. The result (b) is immediate from the Theorem
2.5. Part (c) follows from the Corollary 1.1.

Example 2.4. The function φ on N0 into itself defined by φ(n) = n + 1 is
injective but not surjective. It is easy to see that no term of the sequence λn

n!
φ(n)!
λφ(n)

repeats infinitely many times. Consequently, Cφ is not antinormal by Theorem 2.4.
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