ANTINORMAL COMPOSITION OPERATORS ON $l^2(\lambda)$

Dilip Kumar and Harish Chandra

Abstract. In this paper we characterize self-adjoint and normal composition operators on Poisson weighted sequence spaces $l^2(\lambda)$. However, the main purpose of this paper is to determine explicit conditions on inducing map under which a composition operator admits a best normal approximation. We extend results of Tripathi and Lal [Antinormal composition operators on l^2 , Tamkang J. Math. 39 (2008), 347-352] to characterize antinormal composition operators on $l^2(\lambda)$.

1. Introduction and preliminaries

The distance of an operator to the set of normal operators has been studied in [5, 7, 11]. In [6], Holmes posed the question: Does every operator admit a normal approximation? Holmes pays special emphasis on those operators which admit zero as a best normal approximant. He named such operators as antinormal operators. The same problem has been studied for the first time in context of composition operators on the Hilbert space l^2 in [17] by Tripathi and Lal. The notion of composition operator appeared implicitly in the work of Hardy and Littlewood [9] in 1925. A systematic study of this class of operators was initiated by Ryff [12] and Nordgren [10]. The term composition operator was coined by Nordgren in his paper [10].

Let X be a non-empty set and V(X) be a linear space of complex valued functions on X under pointwise addition and scalar multiplication. If ϕ is a selfmap on X such that composition $f \circ \phi$ belongs to V(X) for each $f \in V(X)$, then ϕ induces a linear transformation on V(X) into itself given by $C_{\phi}f = f \circ \phi$. The transformation C_{ϕ} is known as composition transformation. When V(X) is a Banach space or Hilbert space and C_{ϕ} is a bounded linear operator on V(X), then C_{ϕ} is called a composition operator.

Monographs [13] and [15] are elegant references for the theory of composition operators. For details on composition operators on l^2 we refer to [14].

²⁰¹⁰ Mathematics Subject Classification: 47B33, 47A05, 47A58, 47B37

Keywords and phrases: Composition operator; normal operator; antinormal operator; Fredholm operator; self-adjoint operator; Poisson weighted sequence spaces.

D. Kumar, H. Chandra

In this paper, \mathbb{N}_0 and \mathbb{C} denote the set of all non-negative integers and the set of all complex numbers respectively. Let ϕ be a function on \mathbb{N}_0 and $\phi^{-1}(n)$ denote the inverse image of n under ϕ . We denote by $|\phi^{-1}(n)|$ the cardinality of the set $\phi^{-1}(n)$. Also, $\chi_n : \mathbb{N}_0 \to \mathbb{N}_0$ is defined as

$$\chi_n(m) = \begin{cases} 1, & \text{if } m = n, \\ 0, & \text{otherwise.} \end{cases}$$

Let H be a separable complex Hilbert space and let B(H) denote the algebra of all bounded linear operators on H. Further, for $T \in B(H)$, let N(T) and R(T)respectively denote the null space and the range space of T.

Poisson distribution is named after French mathematician Simeon-Denis Poisson, who introduced it in 1837. Poisson distribution with parameter $\lambda > 0$ is defined as $w(n) = e^{-\lambda} \frac{\lambda^n}{n!}$, where $n \in \mathbb{N}_0$. For the details of Poisson distribution we refer to [3].

For $\lambda > 0$, $l^2(\lambda) = \{f : \mathbb{N}_0 \to \mathbb{C} \mid \sum_{n \in \mathbb{N}_0} \frac{e^{-\lambda}\lambda^n}{n!} |f(n)|^2 < \infty\}$ is the Hilbert space of all square summable Poison weighted sequences of complex numbers under the inner product

$$\langle f, g \rangle = \sum_{n \in \mathbb{N}_0} f(n) \overline{g(n)} \frac{e^{-\lambda} \lambda^n}{n!} \quad \forall f, g \in l^2(\lambda).$$

The following results proved in [8] are relevant to our context.

THEOREM 1.1. A composition transformation C_{ϕ} is bounded on $l^2(\lambda)$ if and only if there exists a real number M > 0 such that

$$\sum_{n \in \phi^{-1}(n)} \frac{e^{-\lambda} \lambda^m}{m!} \le M \frac{e^{-\lambda} \lambda^n}{n!} \quad \forall n \in \mathbb{N}_0.$$

THEOREM 1.2. Let C_{ϕ} be a composition operator on $l^2(\lambda)$. Then, C_{ϕ} is injective if and only if ϕ is surjective.

THEOREM 1.3. If $f = \sum_{n \in \mathbb{N}_0} f(n)\chi_n \in l^2(\lambda)$, then the adjoint of C_{ϕ} is $C^*_{\phi}(f) = \sum_{n \in \mathbb{N}_0} f(n)\xi_n \cdot \chi_{\phi(n)}$, where \cdot denotes pointwise operation and $\xi_n(m) = \frac{\lambda^n m!}{n! \lambda^m} \forall m \in \mathbb{N}_0$.

THEOREM 1.4. Let C_{ϕ} be a composition operator on $l^2(\lambda)$. Then, adjoint C_{ϕ}^* of C_{ϕ} is injective if and only if ϕ is injective.

Recall the following definitions and properties.

An operator $T \in B(H)$ is said to be a Fredholm operator if the dimension of N(T) and the dimension of the quotient space H/R(T) are finite. The essential spectrum of an operator T is defined as $\sigma_e(T) = \{\alpha \in \mathbb{C} : T - \alpha I \text{ is not Fredholm}\}$. Since every invertible operator is Fredholm operator, hence $\sigma_e(T) \subseteq \sigma(T)$, see [4].

The minimum modulus of an operator $T \in B(H)$ is defined as $m(T) = \inf\{\|Tx\| : \|x\| = 1\}$, and the essential minimum modulus of an operator $T \in B(H)$ is defined as $m_e(T) = \inf\{\alpha \ge 0 : \alpha \in \sigma_e(|T|)\}$, where $|T| = (T^*T)^{\frac{1}{2}}$.

An operator $T \in B(H)$ is said to be antinormal if $d(T, \mathcal{N}) = \inf_{N \in \mathcal{N}} ||T - N|| = ||T||$, where \mathcal{N} is class of all normal operators in B(H). T is antinormal if its adjoint T^* is antinormal.

For an operator T in B(H), the index of T is defined as

$$\operatorname{index}(T) = \begin{cases} \dim(N(T)) - \dim(N(T^*)), & \text{if } \dim(N(T)) \text{ or} \\ & \dim(N(T^*)) < \infty, \\ 0, & \text{otherwise.} \end{cases}$$

Observe that $index(T) = -index(T^*)$.

We now state the following important results proved by Izumino in [7] which we will use later in the paper.

THEOREM 1.5. If index(T) = 0, then $d(T, \mathcal{N}) \leq \frac{\|T\| - m(T)}{2}$.

COROLLARY 1.1. If index(T) = 0, then T cannot be antinormal.

THEOREM 1.6. If index(T) < 0, then $m_e(T) \le d(T, \mathcal{N}) \le \frac{\|T\| + m_e(T)}{2}$.

COROLLARY 1.2. If index(T) < 0, then T is antinormal if and only if $m_e(T) = ||T||$.

Let (X, \mathcal{S}, μ) be a measure space. A measurable set E is called an atom if $\mu(E) \neq 0$ and for each measurable subset F of E either $\mu(F) = 0$ or $\mu(F) = \mu(E)$. A measure space (X, \mathcal{S}, μ) is called an atomic measure space if each measurable subset of non-zero measure contains an atom.

A trivial example of an atomic measure space is (X, \mathcal{S}, μ) , where X is any non-empty set, \mathcal{S} is a σ -algebra and μ is the counting measure.

An atomic measure space (X, \mathcal{S}, μ) is called a finite atomic measure space if $\mu(X) < \infty$. In [16], Singh and Veluchamy gave the following characterization. If (X, \mathcal{S}, μ) is a finite atomic measure space and C_{ϕ} is a composition operator on $L^2(\mu)$, then the following statements are equivalent: (i) C_{ϕ} is unitary, (ii) C_{ϕ} is normal, (iii) C_{ϕ} is an isometry, (iv) C_{ϕ} is quasinormal, (v) C_{ϕ} is a co-isometry.

If the atoms $\{A_n\}_{n=1}^{\infty}$ in the finite measure space (X, \mathcal{S}, μ) are such that $\mu(A_m) \neq \mu(A_n)$ whenever m and n are different then all above statements (i) to (v) imply that C_{ϕ} is the identity operator.

2. Main results

2.1. Self-adjoint, normal composition operators on $l^2(\lambda)$

In this section we characterize self-adjoint, normal composition operators.

THEOREM 2.1. A composition operator C_{ϕ} on $l^2(\lambda)$, where $\lambda \neq 1$, is selfadjoint if and only if ϕ is identity. For $\lambda = 1$, C_{ϕ} on $l^2(\lambda)$ is self-adjoint if and only if ϕ is identity or ϕ has the following form:

$$\phi(n) = \begin{cases} 1, & \text{if } n = 0\\ 0, & \text{if } n = 1\\ n, & \text{otherwise} \end{cases}$$

Proof. Suppose C_{ϕ} is self-adjoint. Then

$$C_{\phi} = C_{\phi}^{*} \iff C_{\phi}(\chi_{n}) = C_{\phi}^{*}(\chi_{n}) \quad \forall \ n \in \mathbb{N}_{0}$$
$$\iff \chi_{\phi^{-1}(n)} = \frac{\lambda^{n}}{n!} \frac{\phi(n)!}{\lambda^{\phi(n)}} \chi_{\phi(n)} \quad \forall \ n \in \mathbb{N}_{0}$$
$$\iff \chi_{\phi^{-1}(n)} = \chi_{\phi(n)} \text{ and } \frac{\lambda^{n}}{n!} = \frac{\lambda^{\phi(n)}}{\phi(n)!} \quad \forall \ n \in \mathbb{N}_{0}$$
$$\iff \phi \circ \phi = I \text{ and } \frac{\lambda^{n}}{n!} = \frac{\lambda^{\phi(n)}}{\phi(n)!} \quad \forall \ n \in \mathbb{N}_{0}$$
$$\iff \phi \circ \phi = I \text{ and } \lambda^{\phi(n)-n} = \frac{\phi(n)!}{n!} \quad \forall \ n \in \mathbb{N}_{0}.$$

Now, if $\lambda \neq 1$ and ϕ is not an identity map, then λ vary with n. This is a contradiction. Hence the first assertion. Also, from above equation if $\lambda = 1$, then

 C_{ϕ} is self-adjoint $\iff \phi \circ \phi = I$ and $n! = \phi(n)! \quad \forall n \in \mathbb{N}_0.$

Thus second assertion follows immediately.

THEOREM 2.2. A composition operator C_{ϕ} on $l^2(\lambda)$ is normal if and only if $\sum_{m \in \phi^{-1}(n)} \frac{\lambda^m}{m!} = \left(\frac{\lambda^n}{n!}\right)^2 \frac{\phi(n)!}{\lambda^{\phi(n)}} \ \forall \ n \in \mathbb{N}_0.$

Proof. By definition we have

$$C_{\phi} \text{ is normal } \iff \|C_{\phi}(f)\| = \|C_{\phi}^{*}(f)\| \quad \forall f \in l^{2}(\lambda)$$

$$\iff \|C_{\phi}(\chi_{n})\| = \|C_{\phi}^{*}(\chi_{n})\| \quad \forall n \in \mathbb{N}_{0}$$

$$\iff \|\chi_{\phi^{-1}(n)}\|^{2} = \|\frac{\lambda^{n}}{n!}\frac{\phi(n)!}{\lambda^{\phi(n)}}\chi_{\phi(n)}\|^{2} \quad \forall n \in \mathbb{N}_{0}$$

$$\iff \sum_{m \in \phi^{-1}(n)} \frac{\lambda^{m}}{m!} = \left(\frac{\lambda^{n}}{n!}\right)^{2}\frac{\phi(n)!}{\lambda^{\phi(n)}} \quad \forall n \in \mathbb{N}_{0}.$$

Hence the proof. \blacksquare

The following remark shows a connection between normal composition operators and invertible composition operators.

REMARK 2.1. If we take $X = \mathbb{N}_0$, $A_n = \{n\}$ and $\mu(A_n) = e^{-\lambda} \frac{\lambda^n}{n!}$, where $n \in \mathbb{N}_0$. Then it follows readily that $L^2(\mu) = l^2(\lambda)$ where μ is finite atomic measure. Hence C_{ϕ} is normal if and only if ϕ is identity. This implies that every normal operator is invertible.

REMARK 2.2. It is interesting to note that normal composition operators and invertible composition operators are equivalent on l^2 .

The following example shows that this not true in $l^2(\lambda)$ for $\lambda \neq 1$.

EXAMPLE 2.1. Let $\phi \colon \mathbb{N}_0 \to \mathbb{N}_0$ be defined as

$$\phi(n) = \begin{cases} 1, & \text{if } n = 0\\ 0, & \text{if } n = 1\\ n, & \text{otherwise} \end{cases}$$

Then $C_{\phi}^* C_{\phi} f = f(0)\chi_0 + \frac{f(1)}{\lambda} f(1)\chi_1 + \sum_{n \geq 2} f(n)\chi_n$ and $C_{\phi}C_{\phi}^* f = \frac{f(0)}{\lambda} f(0)\chi_0 + f(1)\chi_1 + \sum_{n \geq 2} f(n)\chi_n$. Hence C_{ϕ} is not normal until $\lambda = 1$. Moreover, Radon-Nikodym derivative of $\mu\phi^{-1}$ with respect to μ , denoted by f_{ϕ} , is as follows:

$$f_{\phi} = \lambda \chi_0 + \frac{1}{\lambda} f(1) \chi_1 + \sum_{n \ge 2} \chi_n.$$

Clearly f_{ϕ} is bounded away from zero and range of C_{ϕ} is $l^2(\lambda)$. Hence by [15, Theorem 2.2.11] C_{ϕ} is invertible.

2.2. Antinormal composition operators on $l^2(\lambda)$

In [17], Tripathi and Lal have characterized antinormal composition operators on sequence space l^2 . Now we state this characterization as follows.

THEOREM 2.3. Let C_{ϕ} be a composition operator on l^2 .

- (i) If ϕ is bijective then C_{ϕ} is not antinormal.
- (ii) If ϕ is injective but not surjective then C_{ϕ} is antinormal.
- (iii) ϕ is surjective but not injective then C_{ϕ} is antinormal if and only if $|\phi^{-1}(n)| = ||C_{\phi}||^2$ for all but finitely many $n \in \mathbb{N}$.
- (iv) Suppose ϕ is neither injective nor surjective.
 - (a) If $index(C_{\phi}) < 0$, C_{ϕ} is antinormal if and only if $|\phi^{-1}(n)| = ||C_{\phi}||^2$ for all but finitely many $n \in \mathbb{N}$.
 - (b) If $index(C_{\phi}) \ge 0$, C_{ϕ} is not antinormal.

Now we cite two examples of antinormal composition operators on l^2 .

EXAMPLE 2.2. The function ϕ on \mathbb{N} into itself defined by $\phi(n) = n + 1$ is injective but not surjective. The composition operator C_{ϕ} is antinormal by case (ii).

EXAMPLE 2.3. The function ϕ on \mathbb{N} into itself defined by

$$\phi(n) = \begin{cases} n, & \text{if } n = 1, 2\\ \frac{n+3}{2}, & \text{if } n \ge 3 \text{ and } n \text{ is odd}\\ \frac{n}{2} + 1, & \text{if } n \ge 4 \text{ and } n \text{ is even.} \end{cases}$$

is surjective but not injective. The composition operator C_{ϕ} is antinormal by case (iii) since $|\phi^{-1}(n)| = 2$ for all $n \in \mathbb{N}$, except n = 1.

Motivated by the above results we investigate antinormal composition operators on $l^2(\lambda)$ in terms of inducing map in the following cases.

(i) ϕ is bijective.

- (ii) ϕ is not bijective then following cases are possible.
 - (a) ϕ is injective but not surjective.
 - (b) ϕ is surjective but not injective.
 - (c) ϕ is neither injective nor surjective.

REMARK 2.3. If ϕ is bijective then C_{ϕ} and C_{ϕ}^* both are injective by Theorems 1.2 and 1.4, respectively. Therefore index $(C_{\phi}) = 0$. Hence C_{ϕ} is not antinormal.

THEOREM 2.4. Suppose ϕ is injective but not surjective. If ϕ is such that no term of the sequence $\{\frac{\lambda^n}{n!} \frac{\phi(n)!}{\lambda^{\phi(n)}}\}$ repeats itself infinitely many times then C_{ϕ} is not antinormal.

Proof. It suffices to prove that C_{ϕ}^* is not antinormal. Let $\alpha \geq 0$. Then for each $f \in l^2(\lambda)$ we get

$$(C_{\phi}C_{\phi}^* - \alpha I)f = (C_{\phi}C_{\phi}^* - \alpha I)\sum_{n \in \mathbb{N}_0} f(n)\chi_n$$
$$= \sum_{n \in \mathbb{N}_0} \left(\frac{\lambda^n}{n!}\frac{\phi(n)!}{\lambda^{\phi(n)}} - \alpha\right)f(n)\chi_n$$

By our assumption, the factor $\left(\frac{\lambda^n}{n!}\frac{\phi(n)!}{\lambda^{\phi(n)}}-\alpha\right)$ can not be zero for infinitely many n's in \mathbb{N}_0 . This implies $C_{\phi}C_{\phi}^* - \alpha I$ is Fredholm for each $\alpha \geq 0$. Hence $m_e(C_{\phi}^*) = \infty$. Also, the index $(C_{\phi}^*) < 0$ as C_{ϕ}^* is injective. Now as $m_e(C_{\phi}^*) \neq ||C_{\phi}||$ and index $(C_{\phi}^*) < 0$, hence C_{ϕ}^* by Corollary 1.2 is not antinormal. Consequently C_{ϕ} is not antinormal.

Our next theorem gives a sufficient condition for C_{ϕ} to be antinormal on $l^2(\lambda)$.

THEOREM 2.5. Suppose ϕ is surjective but not injective. If the set $\{n \in \mathbb{N}_0 : \sum_{m \in \phi^{-1}(n)} \frac{\lambda^m}{m!} \frac{n!}{\lambda^n} = \alpha\}$ is finite for every $\alpha < \|C_{\phi}\|^2$ and the set $\{n \in \mathbb{N}_0 : \sum_{m \in \phi^{-1}(n)} \frac{\lambda^m}{m!} \frac{n!}{\lambda^n} = \|C_{\phi}\|^2\}$ is infinite, then C_{ϕ} is antinormal.

Proof. Performing simple computation we get

$$(C_{\phi}^*C_{\phi} - \alpha I)f = \sum_{n \in \mathbb{N}_0} \Big(\sum_{m \in \phi^{-1}(n)} \frac{\lambda^m}{m!} \frac{n!}{\lambda^n} - \alpha \Big) f(n)\chi_n.$$

For $0 \leq \alpha < \|C_{\phi}\|^2$, $\dim(N(C_{\phi}^*C_{\phi} - \alpha I)) = \dim(N(C_{\phi}^*C_{\phi} - \alpha I)^*)$ is finite by our assumption. Hence $\alpha \notin \sigma_e(|C_{\phi}|)$ for $0 \leq \alpha < \|C_{\phi}\|$. But for $\alpha = \|C_{\phi}\|^2$, $\dim N((C_{\phi}^*C_{\phi} - \alpha I))$ is infinite, by the given assumption. Hence $\|C_{\phi}\| \in \sigma_e(|C_{\phi}|)$. Thus $m_e(C_{\phi}) = \|C_{\phi}\|$. Also, the index $(C_{\phi}) < 0$ as C_{ϕ} is injective. Hence C_{ϕ} is antinormal.

The following result gives a necessary condition for C_{ϕ} to be antinormal.

THEOREM 2.6. Suppose ϕ is surjective but not injective. If C_{ϕ} is antinormal then set $\{n \in \mathbb{N}_0 : \sum_{m \in \phi^{-1}(n)} \frac{\lambda^m}{m!} \frac{n!}{\lambda^n} = \alpha\}$ is finite for every $\alpha < \|C_{\phi}\|^2$.

264

Proof. On the contrary, assume that there exists a positive real number α_0 such that the set $\{n \in \mathbb{N}_0 : \sum_{m \in \phi^{-1}(n)} \frac{\lambda^m}{m!} \frac{n!}{\lambda^n} = \alpha_0 < \|C_{\phi}\|^2\}$ is infinite. Now consider the following equation

$$(C_{\phi}^*C_{\phi} - \alpha_0 I)f = \sum_{n \in \mathbb{N}_0} \Big(\sum_{m \in \phi^{-1}(n)} \frac{\lambda^m}{m!} \frac{n!}{\lambda^n} - \alpha_0\Big) f(n)\chi_n.$$

The above equation shows that dim $(N(C_{\phi}^*C_{\phi} - \alpha_0 I))$ is infinite. Hence $C_{\phi}^*C_{\phi} - \alpha_0 I$ is not Fredholm. Hence $\sqrt{\alpha_0} \in \sigma_e(|C_{\phi}|)$. This implies

$$m_e(C_\phi) \le \sqrt{\alpha_0} < \|C_\phi\|.$$

Again observe that $index(C_{\phi}) < 0$, as C_{ϕ} is injective. Hence C_{ϕ} is not antinormal.

Before exploring the case when ϕ is neither injective nor surjective, we prove the following lemma.

LEMMA 2.1. dim
$$(N(C_{\phi}^*)) = \sum_{n \in \mathbb{N}_0} (|\phi^{-1}(n)| - 1).$$

Proof. We first show that $\dim(R(C_{\phi}))^{\perp} = \sum_{n \in \mathbb{N}_0} |\phi^{-1}(n)| - 1$. Let

$$f \in R(C_{\phi})^{\perp} \iff \langle f, g \rangle = 0 \ \forall g \in R(C_{\phi})$$
$$\iff \langle f, C_{\phi}h \rangle = 0 \ \forall h \in l^{2}(\lambda)$$
$$\iff \langle C_{\phi}^{*}f, h \rangle = 0 \ \forall h \in l^{2}(\lambda)$$
$$\iff \langle C_{\phi}^{*}f, \chi_{n} \rangle = 0 \ \forall \chi_{n} \in l^{2}(\lambda)$$
$$\iff \sum_{n \in \mathbb{N}_{0}} \Big(\sum_{m \in \phi^{-1}(n)} f(m) \frac{\lambda^{m}}{m!} \Big) \frac{\phi(n)!}{\lambda^{\phi}(n)} \chi_{n} = 0 \ \forall n \in \mathbb{N}_{0}$$
$$\iff \sum_{m \in \phi^{-1}(n)} f(m) \frac{\lambda^{m}}{m!} = 0 \ \forall n \in \mathbb{N}_{0}.$$

This implies that $\dim(R(C_{\phi}))^{\perp} = \sum_{n \in \mathbb{N}_0} (|\phi^{-1}(n)| - 1)$. Further since $N(C_{\phi}^*) = (R(C_{\phi}))^{\perp}$, hence the result follows.

THEOREM 2.7. Suppose ϕ is neither injective nor surjective.

- (a) If the index $(C_{\phi}) > 0$ and no term of the sequence $\{\frac{\lambda^n}{n!} \frac{\phi(n)!}{\lambda^{\phi(n)}}\}$ repeats infinitely many times, then C_{ϕ} is not antinormal.
- (b) If the index $(C_{\phi}) < 0$, the set $\{n \in \mathbb{N}_0 : \sum_{m \in \phi^{-1}(n)} \frac{\lambda^m}{m!} \frac{n!}{\lambda^n} = \alpha\}$ is finite for every $\alpha < \|C_{\phi}\|^2$ and the set $\{n \in \mathbb{N}_0 : \sum_{m \in \phi^{-1}(n)} \frac{\lambda^m}{m!} \frac{n!}{\lambda^n} = \|C_{\phi}\|^2\}$ is infinite, then C_{ϕ} is antinormal.
- (c) If the index $(C_{\phi}) = 0$, then C_{ϕ} is not antinormal.

Proof. If $index(C_{\phi}) > 0$ then $index(C_{\phi}^*) < 0$. Therefore $\dim(N(C_{\phi}^*))$ is finite. Hence by Lemma 2.1 $|\phi^{-1}(n)| = 1$ for all but finitely many $n \in \mathbb{N}_0$. Now using the arguments used in Theorem 2.4, $\sigma_e(|C_{\phi}^*|) = \emptyset$. Consequently $m_e(C_{\phi}^*) = \infty$. Therefore C_{ϕ} is not antinormal. The result (b) is immediate from the Theorem 2.5. Part (c) follows from the Corollary 1.1.

EXAMPLE 2.4. The function ϕ on \mathbb{N}_0 into itself defined by $\phi(n) = n + 1$ is injective but not surjective. It is easy to see that no term of the sequence $\frac{\lambda^n}{n!} \frac{\phi(n)!}{\lambda^{\phi(n)}}$ repeats infinitely many times. Consequently, C_{ϕ} is not antinormal by Theorem 2.4.

ACKNOWLEDGEMENT. We are thankful to the referee for his critical comments which substantially improved this paper.

REFERENCES

- Y. A. Abramovich and C. D. Aliprantis, An Invitation to Operator Theory, Graduate Studies in Math., Amer. Math. Soc., 2002.
- [2] AFM ter Elst, Antinormal operators, Acta. Sci. Math. 54 (1990), 151-158.
- [3] A. Bobrowski, Functional Analysis for Probability and Stochastic Processes, Cambridge University Press, Cambridge, 2005.
- [4] J. B. Conway, A Course in Functional Analysis, second edition, Springer-Verlag, 1990.
- [5] M. Fujii and R. Nakamoto, Antinormal operators and theorems of Izumino, Math. Japonica 24 (1979), 41–44.
- [6] R. B. Holmes, Best approximation by normal operators, J. Approximation Theory 12 (1974), 412–417.
- [7] S. Izumino, Inequalities on normal and antinormal operators, Math. Japonica 23 (1978), 211–215.
- [8] D. Kumar and H. Chandra, Composition operators on Poisson weighted sequence spaces, Functional Analysis, Approximation & Computation 8 (1) (2016), 21–37.
- [9] J. E. Littlewood, On inequalities in the theory of functions, Proc. London Math. Soc. 23 (1925), 481–519.
- [10] E. A. Nordgren, Composition operators, Canad. J. Math. 20 (1968), 442–449.
- [11] D. D. Rogers, On proximal sets of normal operators, Proc. Amer. Math. Soc. 61 (1976), 44-48.
- [12] J. V. Ryff, Subordinate H^p-functions, Duke J. Math. 33 (1966), 347–354.
- [13] J. H. Shapiro, Composition Operators and Classical Function Theory, Springer-Verlag, New York, 1993.
- [14] L. Singh, Study of composition operators on l², Thesis, Banaras Hindu University, 1987.
- [15] R. K. Singh and J. S. Manhas, Composition Operators on Function Spaces, North-Holland, New York, 1993.
- [16] R. K. Singh and T. Veluchamy, Atomic measure spaces and essentially normal composition operators, Bull. Australian Math. Soc., 27 (1983), 259–267.
- [17] G. P. Tripathi and N. Lal, Antinormal composition operators on l², Tamkang J. Math. 39 (2008), 347–352.

(received 22.01.2016; in revised form 03.05.2016; available online 27.06.2016)

Department of Mathematics, Institute of Science, Banaras Hindu University, Varanasi, India-221005

E-mail: dilipmathsbhu@gmail.com, harishc@bhu.ac.in

266