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FOR OPERATORS
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Abstract. Let H be a Hilbert space and B(H) the algebra of all bounded linear operators
on H. In this paper we shall show that if A ∈ B (H) is a nonzero closed range operator, then the
injective norm ‖A∗⊗A+ +A+⊗A∗‖λ attains its minimal value 2 if and only if A/‖A‖ is a partial
isometry. Also we shall give some characterizations of partial isometries and normal partial
isometries in terms of norm equalities for operators. These characterizations extend previous
ones obtained by A. Seddik in [On the injective norm and characterization of some subclasses of
normal operators by inequalities or equalities, J. Math. Anal. Appl. 351 (2009), 277–284], and by
M. Khosravi in [A characterization of the class of partial isometries, Linear Algebra Appl. 437
(2012)].

1. Introduction and preliminary results

Let H be a complex Hilbert space and B (H) be the space of all bounded
linear operators on H. We denote by F1(H) the class of all rank one operators in
B(H). For an operator A ∈ B (H), we write A∗ for its adjoint, |A| = (A∗A)

1
2 for

its modulus, R (A) for its range, and N (A) for its kernel. An operator A ∈ B (H)
is said to be an orthogonal projection if A2 = A = A∗, normal if AA∗ = A∗A. The
Moore-Penrose inverse of A ∈ B (H), denoted by A+, is the unique solution to the
equations

AA+A = A, A+AA+ = A+, AA+ =
(
AA+

)∗
, A+A =

(
A+A

)∗
.

Notice that A+ exists if and only if R(A) is closed [4]. In this case AA+ and A+A are
the orthogonal projections onto R(A) and R(A∗), respectively and R(A+) = R(A∗).
An operator A ∈ B (H) is EP if and only if AA+ = A+A; EP stands for “equal
projection”, as in this case R(A∗) = R(A). It is well known that if A is a normal
operator with closed range then A is EP. The converse is not true even in a finite
dimensional space.

Recall that an operator A ∈ B (H) is said to be a partial isometry provided
that ‖Ax‖ = ‖x‖ for every x ∈ N(A)⊥, that is, A∗ is the Moore-Penrose inverse of
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A (i.e. AA∗A = A); see [8], [9] and Chapter 13 of [3] for details. Then it is easy to
see that if A is a partial isometry, then A is normal if and only if A is EP.

Let A1, . . . , An, B2, . . . , Bn ∈ B(H). Then the injective norm of
∑n

i=1 Ai⊗Bi

in the tensor product space B(H)⊗B(H) is denied as

‖
n∑

i=1

Ai ⊗Bi‖λ = sup |
n∑

i=1

f(Ai)g(Bi)|,

where the supremum is taken over all bounded functionals f, g on B(H) with ‖f‖ =
‖g‖ = 1.

It was proved in [7] that

‖
n∑

i=1

Ai ⊗Bi‖λ = sup{‖
n∑

i=1

AiXBi‖ : X ∈ B(H), ‖X‖ = 1 = rankX}.

In [12], A. Seddik proved that ‖A∗⊗A−1+A−1⊗A∗‖λ ≥ 2 holds for every invertible
operator A ∈ B (H), and this last inequality becomes an equality if and only if A
is a unitary operator multiplied by a nonzero scalar. More generally, M. Khosravi
[6], proved that if A is a nonzero closed range operator with R(A) = R(A∗) (i.e, A
is EP), then ‖A∗ ⊗ A+ + A+ ⊗ A∗‖λ = 2 if and only if A is a nonzero real scalar
of a normal partial isometry. In this paper, we shall show that if A ∈ B (H) is
with closed range, then ‖A∗⊗A+ + A+⊗A∗‖λ ≥ 2, and if ‖A∗⊗A+ + A+⊗A∗‖λ

gets its minimal value 2, then A
‖A‖ is a partial isometry. Also, we shall give new

characterizations of partial isometries, normal partial isometries and closed range
normal operators in B(H) by equalities or inequalities. These characterizations
extend previous ones obtained in [6], [12] and [13].

For this purpose, we need to start with the following known results.
For T ∈ B (H), the reduced minimum modulus is defined by

γ(T ) = inf{‖Tx‖ : dist(x,N(T )) = 1} (γ(T ) = +∞ if T = 0).

It is well known [2], that γ(T ) > 0 if and only if R(T ) is closed and in this case
γ(T ) = 1

‖T+‖ .

In [10], Mbekhta has given the following characterization of partial isometries
in Hilbert spaces.

Lemma 1.1. [11] Let T be a bounded operator on H. Then T is a nonzero
partial isometry if and only if γ(T ) = ‖T‖ = 1.

Lemma 1.2. Let A and B be two operators in B (H) and let the two-sided
multiplication MA,B : B(H) → B(H) be defined by MA,B(X) = AXB. Then
‖MA,B‖ = sup‖X‖=1=rank X ‖AXB‖ = ‖A‖‖B‖.

2. Main results

In the following proposition, we give some preliminary characterizations of
partial isometries.
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Proposition 2.1. Let A ∈ B (H) be a nonzero operator with closed range.
Then the following statements are equivalent:

(i)
A

‖A‖ is a partial isometry,

(ii) ‖A‖‖A+‖ = 1,
(iii) ∀X ∈ B(H), ‖AXA+‖ = ‖A+AXA+A‖,
(iv) ∀X ∈ B(H), ‖A+XA‖ = ‖AA+XAA+‖.

Proof. Since γ(
A

‖A‖ ) =
1

‖A‖‖A+‖ , then the equivalence of (i) and (ii) follows

immediately from Lemma 1.1.
(ii) ⇒ (iii). If ‖A‖‖A+‖ = 1, then for every X ∈ B(H), we get

‖AXA+‖ = ‖AA+AXA+AA+‖ ≤ ‖A+AXA+A‖ ≤ ‖AXA+‖.
Thus, (iii) holds.

(iii)⇒ (iv). If we replace X by A+XA in (iii), we obtain the following equality
∀X ∈ B(H), ‖AA+XAA+‖ = ‖A+AA+XAA+A‖ = ‖A+XA‖.

Hence, (iv) is satisfied.
(iv) ⇒ (ii). From (iv), it follows that

sup
‖X‖=1

‖A+XA‖ = sup
‖X‖=1

‖AA+XAA+‖.

Since AA+ is an orthogonal projection, then by Lemma 1.2, we obtain ‖A‖‖A+‖ =
1.

The following lemma was given in [6]. Here, we shall prove it by an easier and
direct proof.

Lemma 2.2. Let A ∈ B (H) be a nonzero operator with closed range. If A is
an EP operator, then

‖A∗ ⊗A+ + A+ ⊗A∗‖λ = ‖A‖‖A+‖+
1

‖A‖‖A+‖ .

Proof. Since A is EP, we conclude that the operator A has the following matrix
form:

A =
[

A1 0
0 0

]
: R(A)⊕⊥ N(A) −→ R(A)⊕⊥ N(A),

where A1 is invertible on R(A). Then

A+ =
[

A−1
1 0
0 0

]
: R(A)⊕⊥ N(A) −→ R(A)⊕⊥ N(A).

Hence,
‖A∗ ⊗A+ + A+ ⊗A∗‖λ = ‖A∗1 ⊗A−1

1 + A−1
1 ⊗A∗1‖λ

From [13, Theorem 4], it follows that

‖A∗ ⊗A+ + A+ ⊗A∗‖λ = ‖A1‖‖A−1
1 ‖+

1
‖A1‖‖A−1

1 ‖ .
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Finally we obtain

‖A∗ ⊗A+ + A+ ⊗A∗‖λ = ‖A‖‖A+‖+
1

‖A‖‖A+‖ .

Recently, in [11], we have proved that if A ∈ B (H) is with closed range,
then ‖A∗XA+ + A+XA∗‖ ≥ 2‖AA+XA+A‖. From Lemma 1.2, it follows that
‖A∗ ⊗ A+ + A+ ⊗ A∗‖λ ≥ 2 holds for every nonzero closed range operator A
in B (H). In the following theorem, we shall characterize the class of operators
A ∈ B (H) for which the injective norm ‖A∗ ⊗ A+ + A+ ⊗ A∗‖λ gets its minimal
value 2.

Theorem 2.3. Let A ∈ B (H) be a nonzero operator with closed range. Then
the following statements are equivalent:

(i)
A

‖A‖ is a partial isometry,

(ii) ∀X ∈ B(H), ‖A∗XA+ + A+XA∗‖ = 2‖AA+XA+A‖,
(iii) ‖A∗ ⊗A+ + A+ ⊗A∗‖λ = 2.

Proof. (i) ⇒ (ii). Assume (i) holds. Put B = A
‖A‖ . Since B is a partial

isometry, then ‖B‖ = 1 and B+ = B∗. Therefore, for every X ∈ B(H), we obtain

‖A∗XA+ + A+XA∗‖ = 2‖B∗XB∗‖ = 2‖B∗BB∗XB∗BB∗‖
≤ 2‖BB∗XB∗B‖ ≤ 2‖B∗XB∗‖

Thus, ‖A∗XA+ + A+XA∗‖ = 2‖BB∗XB∗B‖ = 2‖AA+XA+A‖.
(ii) ⇒ (iii). From (ii) and Lemma 1.2, it follows that

‖A∗ ⊗A+ + A+ ⊗A∗‖λ = sup
‖X‖=1=rank X

‖A∗XA+ + A+XA∗‖

= sup
‖X‖=1=rank X

2‖AA+XA+A‖ = 2.

(iii) ⇒ (i). Assume that (iii) holds. Then for every operator X ∈ F1(H), we
obtain

‖A∗XA+ + A+XA∗‖ ≤ 2‖X‖.
By replacing X by AA+XA+A in this last inequality and by using A∗AA+ = A∗

and A+AA∗ = A∗, we obtain

∀X ∈ F1(H), ‖A∗XA+ + A+XA∗‖ ≤ 2‖AA+XA+A‖.
Now, Let A = U |A| be the polar decomposition of A, where U is an isometry on
R(A∗). Since A∗ = |A|U∗, A+ = |A|+U∗ and using this last inequality, we obtain
also

∀X ∈ F1(H), ‖U(|A|+X∗U |A|+|A|X∗U |A|+)‖ ≤ 2‖U(|A|+|A|X∗U |A||A|+)‖,
and since U is an isometry on R(A∗), then for every operator X ∈ F1(H), we have

‖|A|+X∗U |A|+|A|X∗U |A|+‖ ≤ 2‖|A|+|A|X∗U |A||A|+‖.
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By replacing again X by UX∗ in this last inequality, and using the fact that
U∗U |A| = |A| and U∗U |A|+ = |A|+, we find that

‖|A|+X|A|+ |A|X|A|+‖ ≤ 2‖|A|+|A|X|A||A|+‖,
holds for every operator X ∈ F1(H), which implies that

sup
‖X‖=1=rank X

‖|A|+X|A|+ |A|X|A|+‖ ≤ 2 sup
‖X‖=1=rank X

‖|A|+|A|X|A||A|+‖.

So, ‖|A| ⊗ |A|+ + |A|+ ⊗ |A|‖λ ≤ 2.
Since |A| is an EP operator, then by Lemma 2.2, we get

‖|A|‖‖|A|+‖+
1

‖|A|‖‖|A|+‖ ≤ 2

Hence ‖|A|‖‖|A|+‖ = 1, and since ‖A‖‖A+‖ = ‖|A|‖‖|A|+‖, so (i) follows immedi-
ately from Proposition 2.1.

As an immediate consequence of Proposition 1.1 in [11] and Theorem 2.3, we
have the following result.

Corollary 2.4. Let A ∈ B (H) be a nonzero operator with closed range.
Then the following statements are equivalent:

(i)
A

‖A‖ is a partial isometry,

(ii) ∀X ∈ B(H), ‖A∗XA+‖+ ‖A+XA∗‖ ≤ 2‖AA+XA+A‖.

In the following theorem, we give some characterizations of normal partial
isometries in terms of norm operator equalities.

Theorem 2.5. Let A ∈ B (H) be a nonzero operator with closed range. Then
the following statements are equivalent:

(i)
A

‖A‖ is a normal partial isometry,

(ii) ∀X ∈ B(H), ‖AXA+‖ = ‖A+AXAA+‖,
(iii) ∀X ∈ B(H), ‖AXA+‖+ ‖A+XA‖ = 2‖AA+XA+A‖.

Proof. (i) ⇔ (ii). Assume that (i) holds. It follows from Proposition 2.1 that

∀X ∈ B(H), ‖AXA+‖ = ‖A+AXA+A‖.
Since AA+ = A+A because A is normal, then we deduce that the statement (ii) is
satisfied.

Conversely, from (ii), we obtain

‖A‖‖A+‖ = sup
‖X‖=1

‖AXA+‖ = sup
‖X‖=1

‖AA+XAA+‖ = ‖AA+‖‖A+A‖ = 1.
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Then using Proposition 2.1, we get that A
‖A‖ that is a partial isometry and

‖A+AXA+A‖ = ‖A+AXAA+‖ holds for every X ∈ B(H). Let x, y be two vectors
in H such that Ax 6= 0. By taking X = x ⊗ y in this last equality, we obtain
‖A+Ay‖ = ‖AA+y‖, for every y ∈ B(H). Hence AA+ = A+A Since AA+ and
A+A are positive operators, so A is EP. Thus A is normal.

(i) ⇒ (iii). The implication follows from Proposition 2.1 and the fact that
AA+ = A+A.

(iii) ⇒ (i). First, we prove that A is EP.
Applying (iii) for X = I −AA+, we get that ‖AA+−A2(A+)2‖ = 0, and that

A2(A+)2 = AA+. (∗)
Applying again (iii) for X = I − A+A, we get that ‖A+A − (A+)2A2‖ = 0 and
therefore

(A+)2A2 = A+A. (∗∗)
From (∗) and (∗∗), it follows that

A2(A+)2A2 = AA+A2 = A2 and (A+)2A2(A+)2 = A+A(A+)2 = (A+)2,

and since A2(A+)2 and (A+)2A2 are orthogonal projections, we conclude that
(A2)+ = (A+)2. Then by [1, Theorem 2.2(c)], we obtain

R(A∗A2) ⊂ R(A) and R(A(A∗)2) ⊂ R(A∗).

Since (A2)+ = (A+)2 and from (∗) and (∗∗), it follows that R(A2) = R(A) and
N((A)2) = N(A). This last relation is equivalent to R((A∗)2) = R(A∗). Notice the
following

R(A∗A2) = A∗R(A2) = A∗R(A) = R(A∗A) = R(A∗)

and
R(A(A∗)2) = AR((A∗)2) = AR(A∗) = R(AA∗) = R(A)

Therefore, R(A∗) ⊂ R(A) and R(A) ⊂ R(A∗), that is R(A) = R(A∗). Hence, A is
EP.

Now, we prove that A
‖A‖ is a partial isometry. Since A is EP, then A has the

following matrix representation in accordance with this decomposition:

A =
[

A1 0
0 0

]
: R(A)⊕⊥ N(A) −→ R(A)⊕⊥ N(A),

where A1 is invertible. Then it follows from (iii) that

∀X1 ∈ B(R(A)), ‖A1X1A
−1
1 ‖+ ‖A−1

1 X1A1‖ = 2‖X1‖.
Using [12, Theorem 6], we obtain that A1 is a unitary operator in B(R(A)) multi-
plied by a nonzero scalar. Hence A

‖A‖ is a normal partial isometry.

The following theorem is a generalization of Proposition 2 in [13].
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Theorem 2.6. Let A ∈ B (H) have a closed range. Then the following state-
ments are equivalent:
(i) A is normal,
(ii) ∀X ∈ L(H), ‖AXA+‖+ ‖A+XA‖ ≤ ‖A∗XA+‖+ ‖A+XA∗‖,
(iii) ∀X ∈ F1(H), ‖AXA+‖+ ‖A+XA‖ ≤ ‖A∗XA+‖+ ‖A+XA∗‖.

Proof. (i) ⇒ (ii). Since A is normal, then for every operator X ∈ B(H), we
obtain ∥∥AXA+

∥∥ =
∥∥A∗XA+

∥∥ and
∥∥A+XA

∥∥ =
∥∥A+XA∗

∥∥ .

So (ii) holds.
(ii) ⇒ (iii). This implication is trivial.
(iii) ⇒ (i). By choosing X = x⊗ y, for x, y ∈ H, then using (iii) we get

‖Ax⊗ (A∗)+y‖+ ‖A+x⊗A∗y‖ ≤ ‖A∗x⊗ (A∗)+y‖+ ‖A+x⊗Ay‖.
Hence,

‖Ax‖‖(A∗)+y‖+ ‖A+x‖‖A∗y‖ ≤ ‖A∗x‖‖(A∗)+y‖+ ‖A+x‖‖Ay‖.
Since N(A+) = N(A∗) and N(A) = N((A∗)+), then by taking y ∈ N(A) and
A∗x 6= 0 in this last inequality, we obtain A∗y = 0. Hence N(A) ⊂ N(A∗). The
same argument shows that N(A∗) ⊂ N(A). Consequently, N(A) = N(A∗), and so
A is an EP operator. Then A has a matrix representation on H = R(A)⊕⊥ N(A)
of the form

A =
[

A1 0
0 0

]
,

where A1 is invertible on R(A).

By taking X =
[

X1 0
0 0

]
on H = R(A)⊕⊥ N(A) and using (iii), we get

∀X1 ∈ B(R(A)),
∥∥A1X1A

−1
1

∥∥ +
∥∥A−1

1 X1A1

∥∥ ≤
∥∥A∗1X1A

−1
1

∥∥ +
∥∥A−1

1 X1A
∗
1

∥∥ .

Then, by [13, Proposition 2], we obtain that A is normal.
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