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THE BANACH ALGEBRA B(X), WHERE X
IS A BK SPACE AND APPLICATIONS

Bruno de Malafosse

Abstract. In this paper we give some properties of Banach algebras of bounded operators
B(X), when X is a BK space. We then study the solvability of the equation Az = b for b €

{sa,s:;,sff),lp(a)} with a € Ut and 1 < p < oo. We then deal with the equation T,z = b,

where b € x(AF) for k > 1 integer, x € {sa,sz,s((f),lp(a)}, 1 < p < oo and T, is a Toeplitz
triangle matrix. Finally we apply the previous results to infinite tridiagonal matrices and explicitly
calculate the inverse of an infinite tridiagonal matrix. These results generalize those given in [4, 9].

1. Preliminary results

Let A = (Gpm)n,m>1 be an infinite matrix and consider the sequence z =
(21)n>1. We will define the product Az = (A, (2))p>1 with Ap(z) = Y07 apm@m
whenever the series are convergent for all n > 1. Throughout this paper we use the
convention that any term with subscript less than 1 is equal to naught. Let s denote
the set of all complex sequences. We write ¢, ¢g, ¢ and [, for the sets of finite, null,
convergent and bounded sequences respectively. For any given subsets X, Y of s,
we shall say that the operator represented by the infinite matrix A = (anm)n,m>1
maps X into Y, that is A € (X,Y), see [5], if

i) the series defined by A, (z) = > v,
and for all z € X;

ii) Az € Y for all z € X.

For any subset X of s, we shall write

AnmTm are convergent for all n > 1

AX ={y€s:thereisz e X, y=Azx}.
If Y is a subset of s, we shall denote the so-called matrix domain by
Y(A)={zes:y=Az €Y}
AMS Subject Classification: 40C05, 46A45
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42 B. de Malafosse

Let X C s be a Banach space, with norm || - ||x. By B(X) we will denote
the set of all bounded linear operators, mapping X into itself. We shall say that
A € B(X) if and only if A: X — X is a linear operator and

[Allzx) = sup(||Az|lx /[|z] x) < oo.
z#0

It is well known that B(X) is a Banach algebra with the norm [|A[| ), see [1]. A
Banach space X C s is a BK space if the projection P,,:  — =z, from X into C
is continuous for all n. A BK space X D ¢ is said to have AK if for every z € X,
z =limp_oo Y r_y Tkek, where e, = (0,...,1,...), 1 being in the k-th position. It
is well known that if X has AK then B(X) = (X, X), see [19]. In the following we
shall explicitly give some new properties of particular algebras.

2. The set B(lp(a)) for 1 < p < oo

2.1. The set B(lp(a)) for p > 1 real

Put now
Ut ={2=(zn)n>1 €5 : x, >0 foralln}.

oo

Recall that [,,, for p > 0 is the set of sequences = (25, )n>1 such that Y | |z, |7 <
oo. Using Wilansky’s notations [21], for any given o = (ay)pn>1 € Ut and p > 1

real we have
lp(a) = (;)1*@,{:065 : i (‘%ﬂ)p<oo}

n=1

Define the diagonal matrix Dg = (§,0nm)n,m>1, (where d,,,,, = 0 for all n # m and
dpnm = 1 otherwise), we then have Dyl, = l,(c). It is easy to see that [,(a) is a
Banach space with the norm

= T, | p%
el = 1032l = [ 2, (5)]"

We have the following lemma.

LEMMA 1. Let o = (an)n>1, B = Bu)ns1 € UT and p > 1 a real. The
condition o/ € loo implies that (o) C 1,(5).

Proof. Since p > 1, we get a/8 € Iy if and only if (a/B)P € Iy and for all

z € ly(a)
2l oy = 5 (leali %) <sup [(52) ] Il? -
» = n Bn w1 L\Bn »

This gives the conclusion. m

We also have I,(a) C [y (a) for 1 < p <p'.

As we will see later, I,(«) has AK, so B(l,()) = (I,(c),l,(a)) and B(l,(e)) is
a Banach algebra with identity. So we get

Azl1,(0) < 1A, (@) 1211, (o) for all z € I,(a).
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We have [, = [,(e), where e = (1,...,1,...) and
1D+ ADall5a,) = 1A, ) for all A € B(iy(a)).

Indeed, writing D,x = y, we get

(DL ADa)als, 1D Ayll, :
sup | —=——— | =sup [ ——=—— | = [|All30, ()

20 ]z, 20 \ 1Dyl

So we can say that A € B(l,(«)) if and only if Dy,,AD, € B(l,). When a =
(r™)p>1, for a given real r > 0, I,(a) is denoted I, (r). When p = 0o, we obtain the
next results.

2.2. The case p = co and Banach algebra S,
Let a = (an)n>1 € UT. Using Wilansky’s notation [20], we have [o(a) =
(1/a) ™! % lo = Daloo. We will write
Sa =lo(a) ={x €5 : zp/a, =0(1) (n — o0) },

see [6-15]. The set s, is a Banach space with the norm ||z, = sup,>;(|za|/an)-
The set

Sy = {A = (Gpm)nm>1 ° Sup( io:l |anm|f‘l—*:) < 00 }, (1)

n=1 ‘\m=

is a Banach algebra with identity normed by

o). 2)

o0
JAlls. = sup( 3 Janm
n>=1 ‘m=1

Recall that if A € (sq4,54), then ||Az|s, < [|A|ls,||z||s, for all z € s,. Thus we
obtain the following result where we put B(sq) = B(sa) N (Sas Sa)-

LEMMA 2. For any given o € UT we have B(sy) = S = (Sas Sa)-

As we have seen above when o = (7)1, r > 0, S, and s, are denoted S,
and s,.. When r = 1, s; = [, is the set of all bounded sequences.

Recall [14] that s, = sg if and only if there are K, Ky > 0 such that K; <
an/Bn < Ks for all n.

In the same way we will define the sets

s;—{xes c I o) (n—>oo)}

o235

and

SEXC){:L-GS N (neoo)forsomel}.
(67

The sets s,, and s{ are Banach spaces with the norm Il s, -
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3. New Banach algebras

3.1. The Banach algebra B(x) for x € {sa,sz,sg),lp(a)} with 1 <p < oo
In this section we will give an explicit expression for the norm ||A||g(lp(a)) for
1 < p < oo and give some properties of the equation Az = b for A € B(x), b € x
with x € {sa,s;,sgf),lp(a)} and 1 < p < 0.
We have the next result where U is the set of all sequences u = (u,)p>1 With

un # 0 for all n and L is the set of lower triangular infinite matrices, (that is A € £
if apm = 0 for m > n).

LEMMA 3. i) Let T € L be a triangle, that is tn, # 0 for alln, and X a BK
space. Then X(T) is a BK space with the norm

lllx () = 1T]|x. 3)

ii) Let T = Dg = (anbnm)n.m>1 be a diagonal matriz with a € U and X a BK
space with AK. Then X (T) has AK with the norm given by (3).

Proof. i) was shown in [17] and ii) comes from [20, Theorem 4.3.6 pp. 52]. m

We then have the following result.

o and s&) are BK spaces with the norm
| - ls. and s, has AK. The set l,(a) for 1 < p < oo is a BK space and has AK
with the norm || - ||, (a)-

LEMMA 4. 1) Let a € UT. Then s,, s.

i) Let x be any of the spaces S, So, or sgf) Then

’

|Pn(z)| = |2n| < anllz||s, for alln > 1 and for all x € x.

Proof. i) First we have s, = s1(Dy/,), since x € s, if and only if Dy 2 =
x/a € s1. It is well known that s; is a BK space with respect to the norm || - [|5,,
so by Lemma 3, the set s1(Dy/,) is also a BK space with

[2]l51(D10) = D1/ llsy = [[]s-
We also have s, = co(D1/q) and s = c(D1/a). We conclude since ¢ and c are
BK spaces with respect to the norm ||||s,, and ¢o has AK. Finally {, for 1 < p < o0
being a BK space with AK, it follows that [,(«) = ,(D1 /) also has AK.

o

)

ii) is a direct consequence of the definition of the sets s, s,, and st(f ..

a

REMARK 1. Note that if X is a BK space with the norm || - || x, then
(X,X) C B(X).

Indeed, by [17 Theorem 4.2.8 p. 57], since X is a BK space, the matrix map
A € (X, X) is continuous and there is M > 0 such that

|Az||x < M||z|x for all z € X.
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To obtain other results we require some definitions and lemmas. We will write
Bx(0,1) = {z € X : |z||x < 1} for the unit ball, where X is any given BK
space. Thus we get

[Allsx) = sup(|Az|x/llzl[x) = sup (Az] ) for all A € B(X).
x#0 z€Bx (0,1
Recall that for all a = (ay,),>1 € X such that the series Y | a,z, is convergent
for all x € X the identity

fallic = sup (| e,
z€Bx(0,1)
is defined and finite. In Malkowsky [17], we have

LEMMA 5. Let X be a BK space. Then A € (X,l) if and only if

o0
> ankxk‘) < 0.

n=1

sup(4, %) = sup( _sup
n>1\zeBx(0,1)

We also have, (cf. [17, Theorem 1.2.3, p. 155]),
LEMMA 6. For every a € Iy, |lallz, = llallz = llall;_ = llali, = 3277, |an]-

It can be easily deduced that if X is a BK space, then A € (X, sg) if and only
if

*

sup < 0.

n=1

5n

Since there is no characterization of the set (Ip(a),ly()) for 1 < p < 0o and
p # 2, we need to define a subset B, »(a) of (I,(c),l,(e)) permitting us to obtain
the inverse of some well chosen matrix map A € (I,(a),l,(«)). In this way we are
led to define the number

pald) = {i ( iol (|anm|aa—i?>q>p71] %7

N,
n=1 ‘m=1

for 1 <p<ooand ¢g=p/(p—1). Thus we can state the following

PROPOSITION 7. Let « € UT. Then
i) for every A € S,

4l = 141, = sup( 3 lann5):

ii) a) B(l1(a)) = (l1(a),l1(a)) and A € B(l1 () if and only if A* € Syq,
b) 1 All5 0, (o)) = [A s, for all A € B(li(a)).
iii) For 1 < p < oo we have By(a) C B(l,(c)), where
By(a) = {A = (anm)nm>1 : Npa(4) <oo},
and for every A € By(a), || Al o)) < Np.a(A).
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Proof. i) First we have

1
Az, = sup(—
n

n>1

) = sup (ainmn(xn) forallz €s,  (4)

n=1

then

. 1 1
A5, = sup <sup (—IAn(x)l)> = sup (— sup (IAn(a:)l)>~ (5)
z€Bs, (0,1) \n>1 \ ¥n n>1 \ ®n zeB,, (0,1)

Writing # = ay in (5) we obtain

1415, = sup< sup <|An<ay>|>>sup(anAnDanlw)-

>1 \ ®n yeB,, (0,1) n>1

Now by Lemma 6 we have
o0
[AnDalli, = l(ankow)iz1ll, = 32 lank|ay for all n.
k=1

We conclude that [|Al|3 )= SUP, 1 (X |Gnm o /am).

ii) By [17, Theorem 2.27, p. 175] we have B(l;) = (I1,11) and the condition A €
(l1(c),l1(c)) is equivalent to Dy /o ADg € (I1,11). It is well known that Dy, AD, €
(I1,01) if and only if (Dy/qAD,)" € Si. This means that DyA'D;/, € Si and
A" € S /4. Furthermore, since [|Az,,) = [4]ls,, 0 [All0, ) = 14 D1jalls, =
||A|s,. . This permits us to conclude for ii).

iii) Let A € gp(a) be a given infinite matrix and take any x € [,,. We have

5[5 ol < £ o)

-1 —1 \m=

(o)
Jazlp, = | (2 awmam)
m=1

HM8

n=1111,

and from the Holder’s inequality, we get for every n

00 %) é %) % 0o %
S Jawm@nl < (X Janm|?) (X Jowl?)” = (3 lauml?) "o,
m=1 m=1 m=1 m=1

with ¢ =p/(1 — p). We deduce that

et < 5535 tannl?) tels)” = 55 (52 faunl?) el

n=1 n=1 ‘m=1

and since p/q = p — 1, we have

1

||A£CH1P < Li:l(mi::l \anm|q)p* }P ||mHlp

and

4l =sw () <[5 (2 annlt)” '] ©)

n=1
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We have proved that if A € gp(e)7 then A € B(l,). Soif A € gp(a) and Dy /o, AD, €

By(e), then Dy/,AD, € B(l,) and A belongs to B(l,(a)). This concludes the
proof. m

3.2. Application to the solvability of the equation Ax = b

For a = (ann)n>1 € U we get the following elementary but very usefull result

PROPOSITION 8. Let X C s be a BK space. Assume that Dy/,A € (X, X) and

1 = D1/aAllgx) < 1. (7)

Then the equation Az = b with D1/,b = (bn/ann)n>1 € X admits a unique solution
i X given by x = (Dl/aA)_lDl/ab,

Proof. First we see that since D;/,A € (X, X) and condition (7) holds, then

Dy, A is invertible in B(X). Since B(X) is a Banach algebra of operators with
identity, then

(D1/qA) " (D1 /g Az) = [(D1/gA) " o(D1 /g A))(z) = I(z) =z forall z € X.
Thus the equation Az = b with D, ,,b € X is equivalent to Dy, Az = D1 ,,b which
in turn is x = (Dl/aA)_l(Dl/ab) € X, this concludes the proof. m

We can express a similar result in a more general case.

In the following we will write
Lo ={A=(anm)nm>1 € Sa : [[I —Als, <1},
and for 1 < p < oo,
I o ={A=(anm)nm>1 € (p(a),lp(a)) : Npo(l = A) <1}, for 1 <p <o

Note that since S, is a Banach algebra, the condition A € I', means that A is
invertible and A=t € S,,.

In the following we will put |a| = (Jann|)n>1 for any given a = (ann)n>1-

COROLLARY 9. Let o € UT and A be an infinite matriz with a € U. Assume
that Dy A € T Then

i) a) for any given b € s|q), the equation Az = b admits in s a unique solution
given by
2" = (D1/aA) " (Dyab) = A7'D (8)
with A~ € (Slajas Sa);
the

o

equation Az = b admits a unique solution in s,, given by (8) and A~' € (s‘oa‘a, S4);

b) if limy— 00 (@nm/@nnan) = 0 for all m > 1, for any given b € sloa

le?

¢) if imy,— o0 (@nm /Gnnan) = by for some 1, m > 1 and

ioj anmam) =1 for somel (9)

lim (
N—=00\Andnn m=1
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(e)

lala?

given by (8) with A=t € (S(C) ng)).

lala’

(c)

then for any given b € s the equation Ax = b admits a unique solution in Sg

ii) a) If A'Dy,, € I'1)q then for given b € I1(|a|a) the equation Az = b admits
a unique solution in ly(a) given by (8) with A=t € (I1(|a]a),l1(c)).
b) Let p > 1 real. If Dy),A € T, then for any given b € I,(|ala)

the equation Az = b admits a unique solution in l,(c) given by (8) with A=' €
(Ip(lala), Ip()).
Proof. i) By Proposition 7 i), if D;/,A € 'y, then

1 = D1jaAlls. = 1T = D1jaAllps,) < 1.

Thus Dy, A is invertible in B(s,) N So. Then (Dl/aA)_1 € S,, that is A™! €
(Slajas S4) and we conclude by Proposition 8.

b) The set s,, being a BK space with AK, we have B(s,,) = (s, s.,). Since

[e 2 Mo

DyjA € Ty and limy oo (@nm/@nnan) = 0 for all m > 1, we deduce that

D1/o(D1/aA)Dy € (co,co). So Dy A € (80, 54,)- Now by Lemma 6 we get

I = D1jaAllg(s sup (I = DrjaA)zs.) = T = DijaAlls, <1

oy =
o) e

and we conclude by Proposition 8. c¢) Here we have

(1T — Dl/aAHZ(Sg@) = |[I = Dy/oAlls, <1.
Then (Dy,,A)~" € So N l”j’(s,(;f))7 so (D1, A)~! is an operator represented by an
infinite matrix, since (D;,,A4)"! € S, and the condition (D;,,A)"" € B(s,(f))
implies (D;,,A)"" € (SEXC), s&c)). We conclude again by Proposition 8.

ii) a) By Proposition 7 ii) b) the condition A*Dy,, € 'y, implies

I = D1/aAlls, o) = I = (D17a4)'[lsy,. < 1

and (Dy,,A)~" € B(li(a)) = (li(@),lh(@)). Thus A~ € (I1(|ala),l1(a)) and we
conclude by Proposition 8. ii) b) By Proposition 7 iii) we have (D;,,A)"! €
B(l,(a)) = (Ip(a),l,(a)), so A7t € (I,(|ala),l(a)) and again we conclude by
Proposition 8. m

4. Matrix transformations mapping in the set x(AF)
for k > 1 integer and x € {sa,s;,s&c),lp(a)} with 1 < p < co.

o

In this section we will give some properties of the set x(A) for x = sa, S,

s, or Ip(c). The characterization of the set (x(AF),x(A*¥)) given in [15] being
complicated, we will deal with the subset (x(A¥),x(A¥))z: of infinite Toeplitz

triangles that map x(A¥) into itself.
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4.1. The sets X = x(AF) for x = 54, 5., s, or lp(a), with 1 < p < oo

Recall that the operator of first difference [1, 3, 6, 7, 8], [10-13] and [14-18],
is defined by A = (Mnm)n,m>1 € £, with n,, =1 for all n > 1, 1, ,,—1 = —1 for all
n > 2 and 7, = 0 otherwise. It is well known that ¥ = A7 = (9}, )n.m>1, with
Mm = 1 for m < n and 7, = 0 otherwise. We need to use the following sets

Cr={acUt: (a1 + - +ay)/a, =0(1) (n— o)},
a:{a6U+ : lim (01 + -+ ay)/ap, =1 for some [ € C},

F:{CMEUJF : lim (a"_1> <1},
n—oo an

f:{ozEUJr : lim (an_1> <1}.
n— oo (67%

It can be easily scen that I' C ' and it was shown in [12] that T’ C C; and by [15]
we have C'=T". So we have

LEMMA 10. @:fCFCa.
We also have

LEMMA 11. Let o € Ut and k > 1 be an integer. Then

i) s((f)(A’“) =5 if and only if o € T.

i) If a € T, then s5o(AF) = 54, 5.,(AF) = s, and 1,(2)(AF) = I,(a) for
1<p<oo.

Proof. 1) comes from [12, Theorem 2.6, p. 1789]. ii) By [12, Proposition
2.1, p. 1786], the condition a € T implies a € Cj, so A and AF are bijective
from s, to itself and from s, to itself then s,(A*) = s, and s (A*) = s,. It
remains to show that if @ € T', then [,(a)(A) = [,(a) for 1 < p < oo. If we put

I = liMparrowso (n—1/an) < 1, for given gg, such that 0 < g < 1 — I, there exists
No such that sup,,> n, +1(@n-1/an) <1 +ep < 1. Consider now the infinite matrix

[AgNo)}fl 0

E(No) — 1
« (0] 1 ’

A((IN“) being the finite matrix whose entries are those of A, = D;,,AD,, for all n,
m < Ny. We get
Q = Z((INO)AOL - (Qnm)n,m>17
with
1, for m =n,

Qm —
Gnm = T Qmt1’ form-n—l}No,

0, otherwise.
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For every x € I, we get (I — Q)z =

(0,...,0, (N /ONg+1)ENgs -+ 5 (Qn—1/Cn)Tr—1, . ..

the (Np + 1) position. So we get

p p
0-uit = £ (=) b < s [(22)] (5
P n=No+1 Qp n>No+1 Oy n=

I—- _
I — Q * = sup H( Q)lep < sup Qp—1
B =S\ T

and

Since ay,—1/am,

Hence

We have shown that @ is invertible in B(l,). Now let b € [,,.

are equivalent in I,.

||5E||lp n>No+1 (079

<l+eg<1foralln> Ng+ 1, we deduce

p
Qp—1

sup (n ) < 1.

n>No+1 Qp

On—1 b b
IT=Qlisq,) < | sup |" <1

n>No+1 (679

A,z =b and Qx= n(No)p

is bijective from I, to I, and A is bijective from I, () to I,(c). m

4.2. The set (x(A),x(A)) for x € {sa,s;,sgf)}

First recall the characterizations of the set (x(A),x(A)) for x = sq, s,

(2]

(c)

ss . For this we will consider the following properties

lim (Z o Z (%) D = 0 for all n;

— 00 ]71
Sup Z a](z (ank a’TL 1k>
nx1lj=1 "~ \g=j
lim [aj(z ( —An- 1k>>}—0forall],
n—00 =g

l
sup(Zaj Z( — fn- 1k)‘ < oo for all n;
121 \j=1
lim (ozj(z ( — Gn-lk )) = [; for all j;
n— oo k—j

tim > [(4) (S a)] =1 exists.

nN—o0 k=1 Qn j=1

The following Proposition was proved in [15]

The equations

t . .
)t, where an,zn,/ON,+1 IS in

).

Since Q= € B(l,), reasoning as in Proposition 8 that

Q7HQz) = (Q7'Q)x = x = (A,)7'b for all z € I,. This shows the map A,

or
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PROPOSITION 12. Let « € UT. Then

i) A € (sa(A),s54(A)) if and only if (10) and (11) hold;

i) A€ (s, (A),s.(A) if and only if (11), (12) and (13) hold;

i) A € (s$(A), s8(A)) if and only if (11), (13), (1) and (15) hold.

Note that A € (x(AF), x(AF)) if and only if

Dy /o AFA € (x(AF),Y) with Y € {I, co, ¢},

see [16]. Now we will give necessary conditions for a matrix map to be bijective
from x(A¥) into itself when x € {sq,s.., s, l,(a)} and p > 1 real. We have

PROPOSITION 13. Let « € Ut and k > 1 an integer.
i) Let b € x(AF), x € {54,582, 5&0)} and assume that there is T €]0, 1] such that
AT — A)z]||s, < T||A*Z||s, for all x € x(AF). (16)
Then
a) the map A: x — Az is bijective from x(AF) into itself;
b) if (16) holds and « € T then the matriz map A: x— Ax is bijective from
X nto itself.
ii) a) If o € T and A € T'y,, then A: x — Az is bijective from Iy (a)(A)
into itself.
b) Let 1 <p < oo. Ifa €T and A € T}, ,, then the map A: x +— Az is
bijective from 1,(c)(A¥) into itself.
Proof. i) a) It is enough to show the proposition in the case when X = s,.
Using Lemma 3, condition (16) means that

) [AF[(T — A)a]]s
I~ Al ey =510 e
B( a(Ak)) z#£0 ||Akx||50¢

so A is invertible in B(s,(A¥)) and by Proposition 8 the equation Az = b for
b € 5,(A*) admits a unique solution in s, (A¥). i) b) Since I' C T', by Lemma 10

A~

and Lemma 11 ii), we easily deduce that a € T' implies x(AF) = x, ||z]ly = ||z]s.

for x € {5a, 5., s&c)}. We conclude since condition (16) means that
1= Allsa) = [ = Alls. <7 <1.

ii) By Lemma 11, the condition o € T" implies A is bijective from I, () to itself

for any given p with 1 < p < co. Then AF is also bijective and I, (a)(A*) = I,(a).
We conclude applying Corollary 9 ii) with a = e. m

ExaMPLE 14. Let v,n € C and put

1

~

— 3
I O

M(v,m) =

(=
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As a direct consequence of Proposition 13 we can state the following. For
a€eU™T and

Qn—1 Upt1
6o = hlsup (2= ) 4 s (251 ) <1, (13)

n n>1 Qp

the equation M(y,n)x = b with b € s,(A) admits a unique solution =~ =
[M(v,n)]7'b € sa(A). Furthermore if a € T the equation M(vy,n)z = b with
b € sqadmits a unique solution x € Se-

Proof. First we have [M(y,n) —I|z = (y&p—1+N%n+1)n>1, With 2o = 0. Then
we easily get A[(M(y,n) — I)z] = (yn)n>1with

Yn = N(Tn+1 — Tn) + Y(@p-1 — Tp—2) =0 and z_; = o = 0.

Hence
1 1 « 1 «,_
7|yn| < |77||$n+1 - xn| il + |'Y||In—1 - xn—Q‘ nol
(07 Qpt1 Op Qp—1 Op
Qpt1 Ap—1
< 2L Ao, + 1227 | A,
o o,
Thus
1
sup (|yn|) AT = My, m)alll, < allAalle, < [Adl..
n>1 \On
and

1T =My 5s.a)y <1
As above we conclude that if (18) holds the equation M (y,n)x = b with b € s4(A)
admits in s,(A) the unique solution z° = [M(7y,7)]~'b. If a € T, then 54 (A) = s,
by Lemma 11 and we conclude from the preceding that the equation M (v, n)z =b
with b € s, admits a unique solution in s,. =

4.3. The equation T,z = b, where T, is a Toeplitz triangle matrix

We will denote by £’ C L the set of all infinite Toeplitz triangles. We will
say that T = (tnm)n.m>1 € L if there is a sequence a = (an)n>1 € 8, such that
thm = Gpn—m+1 for m < n and t,,, = 0 otherwise; then we will write T = T,;
L' is a subset of the set of Toeplitz matrices, see [1]. It can easily be seen that
T,T, =T,T, for all a, a’ € s. We then have the next result.

PROPOSITION 15. Let k > 1 be an integer and let T, € L' for a € U. Then
i) T, € B(sa(A¥)) if and only if T, € Sy;
i) T, € B(s,(A®)) if and only if T, € S, and

lim 2n=mtLl _ for all m; (19)
n—oo Oy

i) T, € B(S&C)(Ak)) if and only if T, € Sy,

lim nomtl Ly, for allm (20)
n—oo [a77%
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and

lim (Z Ay m+1—) =1 (21)

iv) ||Ta||2(53(Ak)) = ||Ta||3(5a(Ak)) < |Talls, and ||Ta||?3(sa(Ak)) = |[|Talls, for
aecl.

v) Let 1 <p < oo. Then T, € B(l,(a)(AF)) if and only if T, € (I,(), ().

Proof. i) The set s,(AF) is a BK space by Lemma 3 in which T'= AF. So
by Remark 1, T, € B(sq(A¥)) if and only if T, € (s4(A¥), s4(AF)). Thus the
condition T,, € B(sa(AF)) is equivalent to T,(XFx) € so(AF) for all # € s,. So
T, € B(sa(A%)) if and only if

AFIT, (SF2)] € 54 for all z € s5,.
Since A¥, 3F € £’, we have
AF[T,(2%2)] = (AFT, SRz = (T, (AD)F)x = T, for all © € s,.

We conclude that T, € B(s(A¥)) if and only if T}, € (54, 54), that is T, € S i)
As above s, (AF) is a BK space and T, € B(s,,(AF)) if and only if T, € (s,,, 5.,).
Now we have D1 /oTu Do = ({nm)n,m>1, With Enm = @n—m10m /0y, for m < n and
£nm = 0 otherwise. Thus we get Dy, T,Ds € (co,co) if and only if T, € S, and
(19) holds We get iii) by a similar argument. So T, € B(s, (A*)) if and only if
T, € (s,,s,) and T, € B(s (C)(Ak)) if and only if T, € (sg),sgf)).

iv) Let us show that ||7,]|3 (50 (AF)) S < |ITells, - We have

”Tax”sa(Ak))

ITalle, oy =500
B(sa(AF)) ||x||sa(A’“)

@#0
Since AF € £', we have A*T, = T,A* and for every x € s,(A¥)

ITaz s, ar) = A" (Ta)s, = ITa(A )]s,

so
ITaz s ar) < I Talls, 1A 25, = [ Talls. l2lls. ar)
and
1 Tall (s (ary) < [ Tallsa-
Now it can easily be seen that ||Ta||8(sa(Ak)) = ”T‘IHB(s‘;(Ak))' In the case when

a € T we have s, (AF) = s, and by Proposition 7 i) we get
ITallB(s0(ary) = [Talls.-

v) By Lemma 3 where T = AF, we see that lp(a)( k) is a BK space. We
have T, € B(l,(a)(AF)) if and only if T, € (I(« )(A ), lp(a)(AF)). Now T, €
(lp(oz)(Ak),lp(a)(Ak)) if and only if A*(T,X*x) = T,z € I,() for all z € [,(a).
This means that T, € (I,(a),{p(a)). m
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PROPOSITION 16. Let T, € L' with a; # 0. Then

i) If (1/a1)T, € T then for any given b € so(AF) the equation T,x = b admits
in so(AF) a unique solution
x =T, 'b. (22)

i) If (1/a1)T, € T and (19) holds, then for any given b € s, (A*) the equation
T.x = b admits in s, (A*) a unique solution given by (22).

iil) If (1/a1)Ty € T, (20) and (21) hold, then for any given b € S&C)(Ak) the
equation Tox = b admits in sgf)(Ak) a unique solution given by (22).

iv) a) If (1/a1)T: € T1)a, then for any given b € ly(a)(AF) the equation
T,z = b admits in I, () (AF) a unique solution given by (22).

b) Let 1 < p < oo and assume that (1/a1)T, € T, . Then for any given
b € l,(a)(A¥) the equation T,z = b admits in Ly(a)(AF) a unique solution given by
(22).

Proof. i) Since T, € L the equation T,z = b is equivalent to z = T, 1b. Now
the condition (1/a1)T, € Ty, implies T, ! € S, and by Proposition 15 i), this means
that T, ! € B(s,(A¥)). We conclude T, 1b € s,(AF).

ii) By Proposition 15 ii) we have T, € B(s,,(A*)) since T, € (s, s,,); and the
condition (1/a1)T, € 'y and Proposition 15 iv) imply

*

1
t11

1
HI— Lo, <1

t11

* 1
-
B(sa(AF) t11

B(sq (AF)) Sa

Then T, ' € B(s,(A*)) and the unique solution of the equation T,z = b for
b e s, (A% isz = T, ' € s, (AF). We get iii) from the characterization of
(s((f),s,(f)) and reasoning as above. iv) a) is a direct consequence of Corollary 9
ii) a) and Proposition 15 v). iv) b) Here the condition (1/a;)T, € T}, , implies
T, € (ly(a), (), since B(l,(a)) = (I,(a),ly(a)). Then from Proposition 15
v) T € (I(a)(AF),1,(a)(AF)) and for all b € I,(a)(A¥) the unique solution
x =T, b of the equation T,z = b belongs to [,(a)(A¥). =

REMARK 2. The conditions (1/a1)T, € T and (1/a1)T} € 'y, are equivalent
to

n—1 A x Qi
sup( > |an_m+1\a—) < |a1] and sup( > |am_n+1|a—) < |a];
n

n>2 “m=1 n>1l ‘m=n+1 m

respectively. Note that the condition (1/a1)T, € I}, , means

o0 n—1 -
> ( > |an,m+1|p/(p—1))p ! < |a1|p/(p—1)_

n=2 ‘m=1
Furthermore, it can be verified from Proposition 15 that if T, € £’, then
i) T,, € B(co(A¥)) if and only if T, € Sy and a € cy;
ii) T,, € B(c(AF)) if and only if T, € S; and a € cs.
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5. Application to infinite tridiagonal matrices

In this section we will consider infinite tridiagonal matrices. These matrices
are used in many applications, let us cite for instance the case of continued fractions
[9], or the finite differences method, see [20]. We deal with some properties of the
matrix map M (v, a,n) between particular sequence spaces. Then we will explicitly
calculate the inverse of M (v, a,n).

5.1. Properties of infinite matrices considered as operators in certain
BK spaces

Let v = (Ya)n>1, 1 = (Mn)n>1, @’ = (an)n>1 be sequences with o’ € U.
Consider the infinite tridiagonal matrix

ay m

Yo az M2 0
M(vy,a,n) = S

0 VYo An T

We then have

PROPOSITION 17. Assume that Dy, M(v,a,m) € T, that is

1 Oy —1 Qp+1
sup {— <|'yn| ; + 1] ot )] < 1.

n>=1 n n Qp

Then
i) M(v,a,n) is bijective from s4into s|qo and M(vy,a,n)"t € (Slajas Sa);

o

i) M(v,a,n) is bijective from s,, into Srala and M (y,a,n)~* € (Sra\wsa);

iii) if
1 _
lim {— (%O‘; ! +nnag+1>} =140,

Nn—0o0 | Uy n n

then M (v, a,n) is bijective from s into ') and M(y,a,n)"t € (s(c) s((f)).

lala lafa?

iv) Let p > 1 be a real. Iff(p’a = K1 + Ky < 1 with
An41
o, )’

i an_l) and KQSup< Uik
n n>=1

then M(v,a,n) is bijective from ly(a) into ly(la|la) and M(vy,a,n)~' €

(Ip(lala), lp(e)).-

Qn an
Proof. 1), ii) and iii) are direct consequences of Corollary 9. iv) We get

x 17 n p\1/p
I = DM am)eliy @) = (3 =5 | a1+ Lol )
n=1 a’ﬂ an an
_ (f T On-1Tn-1 , N Ont1 Tnil
ap Qp Op_] ap Qp Opy]

n=1
)p) 1/:0;

< (Z (Kl‘mn_l ‘ +K2‘$n+1

n=1 Ay 1 an+1

Ky sup<

n>1

,’0) 1/p
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Applying Minkowski’s inequality we get

(ioj (Kl‘ Tn-l ) + K2‘xn+1 )P)l/P < K1(§ Tnl

n=1 Op—1 Q1 n=1'Qn—1
< (K1 + Koz, a)-

p\1/p X | Ty,
) +K2(E Tntl

n=1'Q®n+1

P)l/P

we conclude that
||I - Dl/aM(’y?avn)Hz%(lp(a)) < (Kl + KQ) <1l
So Dy M (7, a,n) is invertible in B(l,(a)) and A = Do(Dy,a M (7, a,n)) is bijective
from [, () into I,(|aler). Since B(lp(a)) = (Ip(a), (), we conclude
[Dl/aM(’% a, 77)]71 € (lp(a)7 lp(a))

and M(v,a,1)7" € (p(Jala), lp(a)). =

We deduce the next corollary.

COROLLARY 18. IfIN(La < 1, then M (v, a,n) is bijective from l1(a) to l1(|a|)
and bijective from sq 10 S|q|a-

Proof. First taking p = 1 in Proposition 17 iv), we deduce that A is bijective
from l; () to I1(|a|e). Then from

11 = Dy oM (v,a,m)|ls. = Kb < Kia < 1,

we conclude that M (v, a,n) is bijective from s, to 54/ ®

REMARK 3. Note that in the case when p = 1, the condition
Tn—1 O‘nl) < 1,
Gn—-1| Qp

anJrl
+
Qp

’YnJrl
An+1

11 = [D1jaM (v, a,n)]"||s, = sup (

n>=1

also implies M (v, a,n) is bijective from I; (a) to I1(|a|a).

5.2. The inverse of an infinite tridiagonal matrix.

In this subsection, among other things, we are interested in the calculation of
the inverse of M (v, n) defined in Example 14.

For this we need to recall the next results. We can associate with any power
series f(z) = Y p2,arz" defined in the open disk |z| < R the upper triangular
infinite matrix A = ¢(f) € Uy, S defined by

ap a1 a2
ap ai

ag

(see [6]). Practically we shall write ¢[f(z)] instead of ¢(f). We have

LEMMA 19. i) The map ¢: f +— A is an isomorphism from the algebra of the
power series defined in |z| < R, into the algebra of the corresponding matrices A.
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ii) Let f(2) = Y peganz®, with ag # 0, and assume that 1/f(z) = > pe g af2"
admits R’ > 0 as radius of convergence. We then have

@ (1> =N e U s

f 0<r<R/

From the previous results we get

ProproSITION 20. Let v, n be reals with 0 < v+ mn < 1. Then
i) M(v,n) : € — M(vy,n)x is bijective from x into itself, for x € {s1,co,c}.
ii) a) Let x be either one of the sets s1, or cg, or ¢ and put

u=(1—+/1—=4yn)/2v and v=(1—+/1—4vyn)/2n.

Then for any given b € x the equation M(y,n)x = b admits a unique solution

x” = (,)n>1 0 X given by

. <uv+ 1) (—1)m0"

1[1 — (w0) Y (=1)"u"b,, for all n. (23)

18

uv — 1

with I = min(n, m).
b) The inverse [M(v,n)] ™! = (al,,,)n.m>1 s given by

1
a = (uv + 1) (=1)" =™ (ww)t — 1] for all n,m > 1 and | = min(n,m).
uv —
(24)

Proof. i) We have ||[I — M(v,n)|ls, = v+n < 1, so M(y,n) € T'y and we
conclude by Corollary 9 i) a) in which « = e. ii) Let u, v be reals with 0 < u < 1,
0 < v < 1 and consider the matrices

1 wu 0] 1 0
1 wu v 1
+ _ —
AL = o and A, = O v 1
By a short calculation we get
1 1+uuv O
1 v 1 u
+A — 1+uv 14+uv
I +uv v o 1+uv 1 1+uv
Thus the identity M(v,n) = le ATA, is equivalent to n = u/(1 + uv) and

v =v/(1+uv). Putting £ = 1+ uv, we get n = u/& and v = v/, so € = 1 +yn€2.
Since 0 < v+ 1 < 1, we have 4yn < 1 and £ = (1 £ /T —4~vn)/2yn and the
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condition |ul, |v| < 1 implies u = (1 — /T —4yn)/2y and v = (1 — /1T —4vn)/2n.
Then )

1+wuv 5
Furthermore we have ||[I — Af|ls, =u < 1 and |[|[I — A,|ls, =v < 1. So A} and
A, are invertible in S; and by Lemma 19, we have

(AN = p(1/(1+u2)) = o 3 (—1)kukF),

u—+v

AjAv
1+ uv

<1

-rizsia], 2o

k=0
00 t
(807" = (X (Rt ]
k=0
with |uzl|, |[vz| < 1. This means that
1 —u  w? . 1 O
(At =3f = oo ) a2 | Y2
u u 0] v v v? —v 1

Then (lJrluv FAL)T = (1 +uw)3, Xt For any given b € s1, we successively get

SHp — (f(q)kukb%k) i

k=0 nzl
2y (Ejb) = (Szzzl(_l)"_svn—s (ki::()(_l)kUkaJrk))n)l

and the unique solution is given by

(—1)m=stkyn—sykb, . (25)

M=
™3

= (1 + uv)

£l
I

s 0

Hence writing

n

= (14 wv)(—v)"0y, with o, = 3 (uv) ™ § (—u)*+5bg i,

s=1 k=0
putting [ = min(n, m), we get
o0 = ()™ 3 (-u)"b
_ é(w) i: (=)™ by, + g(uv) s :iojﬂ(—u)mbm

—~

)b, gl(uv)—s+ S (—w)™b,, Sz:(uv)_s

m=n+1

I
g e

—~

l 00 _ i
)b 35 (u0) ™ = 3 (=) (MO

m=1

3
I

[

—)"byn (1 = (wv) ™),

Il
T8

£
<
I
—
N
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that is (23) and ii) a) holds. ii) b) is a direct consequence of the identity z, =

[ee] / -1 _ /
D1 @b for all n, where M~1 = (al,,,)n,m>1. ®
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