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THE BANACH ALGEBRA B(X), WHERE X
IS A BK SPACE AND APPLICATIONS

Bruno de Malafosse

Abstract. In this paper we give some properties of Banach algebras of bounded operators
B(X), when X is a BK space. We then study the solvability of the equation Ax = b for b ∈
{sα, s

◦
α, s

(c)
α , lp(α)} with α ∈ U+ and 1 � p < ∞. We then deal with the equation Tax = b,

where b ∈ χ(∆k) for k � 1 integer, χ ∈ {sα, s
◦
α, s

(c)
α , lp(α)}, 1 � p < ∞ and Ta is a Toeplitz

triangle matrix. Finally we apply the previous results to infinite tridiagonal matrices and explicitly
calculate the inverse of an infinite tridiagonal matrix. These results generalize those given in [4, 9].

1. Preliminary results

Let A = (anm)n,m�1 be an infinite matrix and consider the sequence x =
(xn)n�1. We will define the product Ax = (An(x))n�1 with An(x) =

∑∞
m=1 anmxm

whenever the series are convergent for all n � 1. Throughout this paper we use the
convention that any term with subscript less than 1 is equal to naught. Let s denote
the set of all complex sequences. We write ϕ, c0, c and l∞ for the sets of finite, null,
convergent and bounded sequences respectively. For any given subsets X, Y of s,
we shall say that the operator represented by the infinite matrix A = (anm)n,m�1

maps X into Y , that is A ∈ (X,Y ), see [5], if

i) the series defined by An(x) =
∑∞

m=1 anmxm are convergent for all n � 1
and for all x ∈ X;

ii) Ax ∈ Y for all x ∈ X.

For any subset X of s, we shall write

AX = { y ∈ s : there is x ∈ X, y = Ax }.
If Y is a subset of s, we shall denote the so-called matrix domain by

Y (A) = {x ∈ s : y = Ax ∈ Y }.
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Let X ⊂ s be a Banach space, with norm ‖ · ‖X . By B(X) we will denote
the set of all bounded linear operators, mapping X into itself. We shall say that
A ∈ B(X) if and only if A : X → X is a linear operator and

‖A‖∗B(X) = sup
x�=0

(‖Ax‖X/‖x‖X) < ∞.

It is well known that B(X) is a Banach algebra with the norm ‖A‖∗B(X), see [1]. A
Banach space X ⊂ s is a BK space if the projection Pn : x �→ xn from X into C

is continuous for all n. A BK space X ⊃ ϕ is said to have AK if for every x ∈ X,
x = limp→∞

∑p
k=1 xkek, where ek = (0, . . . , 1, . . . ), 1 being in the k-th position. It

is well known that if X has AK then B(X) = (X,X), see [19]. In the following we
shall explicitly give some new properties of particular algebras.

2. The set B(lp(α)) for 1 � p � ∞
2.1. The set B(lp(α)) for p � 1 real
Put now

U+ = {x = (xn)n�1 ∈ s : xn > 0 for all n }.
Recall that lp, for p > 0 is the set of sequences x = (xn)n�1 such that

∑∞
n=1 |xn|p <

∞. Using Wilansky’s notations [21], for any given α = (αn)n�1 ∈ U+ and p � 1
real we have

lp(α) =
(

1
α

)−1

∗ lp =
{

x ∈ s :
∞∑

n=1

(
|xn|
αn

)p

< ∞
}

.

Define the diagonal matrix Dξ = (ξnδnm)n,m�1, (where δnm = 0 for all n 	= m and
δnm = 1 otherwise), we then have Dαlp = lp(α). It is easy to see that lp(α) is a
Banach space with the norm

‖x‖lp(α) = ‖D 1
α
x‖lp =

[ ∞∑
n=1

(
|xn|
αn

)p] 1
p

.

We have the following lemma.

Lemma 1. Let α = (αn)n�1, β = (βn)n�1 ∈ U+ and p � 1 a real. The
condition α/β ∈ l∞ implies that lp(α) ⊂ lp(β).

Proof. Since p � 1, we get α/β ∈ l∞ if and only if (α/β)p ∈ l∞ and for all
x ∈ lp(α)

‖x‖p
lp(β) =

∞∑
n=1

(
|xn| 1

αn

αn

βn

)p

� sup
n�1

[(
αn

βn

)p]
‖x‖p

lp(α).

This gives the conclusion.
We also have lp(α) ⊂ lp′(α) for 1 � p � p′.
As we will see later, lp(α) has AK, so B(lp(α)) = (lp(α), lp(α)) and B(lp(α)) is

a Banach algebra with identity. So we get

‖Ax‖lp(α) � ‖A‖∗B(lp(α))‖x‖lp(α) for all x ∈ lp(α).
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We have lp = lp(e), where e = (1, . . . , 1, . . . ) and

‖D 1
α
ADα‖∗B(lp) = ‖A‖∗B(lp(α)) for all A ∈ B(lp(α)).

Indeed, writing Dαx = y, we get

sup
x�=0

(‖(D 1
α
ADα)x‖lp

‖x‖lp

)
= sup

y �=0

(‖D 1
α
Ay‖lp

‖D 1
α
y‖lp

)
= ‖A‖∗B(lp(α)).

So we can say that A ∈ B(lp(α)) if and only if D1/αADα ∈ B(lp). When α =
(rn)n�1, for a given real r > 0, lp(α) is denoted lp(r). When p = ∞, we obtain the
next results.

2.2. The case p = ∞ and Banach algebra Sα

Let α = (αn)n�1 ∈ U+. Using Wilansky’s notation [20], we have l∞(α) =
(1/α)−1 ∗ l∞ = Dαl∞. We will write

sα = l∞(α) = {x ∈ s : xn/αn = O(1) (n → ∞) },
see [6–15]. The set sα is a Banach space with the norm ‖x‖sα

= supn�1(|xn|/αn).
The set

Sα =
{

A = (anm)n,m�1 : sup
n�1

( ∞∑
m=1

|anm|αm

αn

)
< ∞

}
, (1)

is a Banach algebra with identity normed by

‖A‖Sα
= sup

n�1

( ∞∑
m=1

|anm|αm

αn

)
. (2)

Recall that if A ∈ (sα, sα), then ‖Ax‖sα
� ‖A‖Sα

‖x‖sα
for all x ∈ sα. Thus we

obtain the following result where we put B(sα) = B(sα) ∩ (sα, sα).

Lemma 2. For any given α ∈ U+ we have B(sα) = Sα = (sα, sα).

As we have seen above when α = (rn)n�1, r > 0, Sα and sα are denoted Sr

and sr. When r = 1, s1 = l∞ is the set of all bounded sequences.

Recall [14] that sα = sβ if and only if there are K1, K2 > 0 such that K1 �
αn/βn � K2 for all n.

In the same way we will define the sets

s
◦
α =

{
x ∈ s :

xn

αn
= o(1) (n → ∞)

}
and

s(c)
α =

{
x ∈ s :

xn

αn
→ l (n → ∞) for some l

}
.

The sets s
◦
α and s

(c)
α are Banach spaces with the norm ‖ · ‖sα

.
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3. New Banach algebras

3.1. The Banach algebra B(χ) for χ ∈ {sα, s
◦
α, s

(c)
α , lp(α)} with 1 � p < ∞

In this section we will give an explicit expression for the norm ‖A‖∗B(lp(α)) for
1 � p � ∞ and give some properties of the equation Ax = b for A ∈ B(χ), b ∈ χ

with χ ∈ {sα, s
◦
α, s

(c)
α , lp(α)} and 1 � p < ∞.

We have the next result where U is the set of all sequences u = (un)n�1 with
un 	= 0 for all n and L is the set of lower triangular infinite matrices, (that is A ∈ L
if anm = 0 for m > n).

Lemma 3. i) Let T ∈ L be a triangle, that is tnn 	= 0 for all n, and X a BK
space. Then X(T ) is a BK space with the norm

‖x‖X(T ) = ‖Tx‖X . (3)

ii) Let T = Da = (anδnm)n,m�1 be a diagonal matrix with a ∈ U and X a BK
space with AK. Then X(T ) has AK with the norm given by (3).

Proof. i) was shown in [17] and ii) comes from [20, Theorem 4.3.6 pp. 52].
We then have the following result.

Lemma 4. i) Let α ∈ U+. Then sα, s
◦
α and s

(c)
α are BK spaces with the norm

‖ · ‖sα
and s

◦
α has AK. The set lp(α) for 1 � p < ∞ is a BK space and has AK

with the norm ‖ · ‖lp(α).

ii) Let χ be any of the spaces sα, s
◦
α, or s

(c)
α . Then

|Pn(x)| = |xn| � αn‖x‖sα
for all n � 1 and for all x ∈ χ.

Proof. i) First we have sα = s1(D1/α), since x ∈ sα if and only if D1/αx =
x/α ∈ s1. It is well known that s1 is a BK space with respect to the norm ‖ · ‖s1 ,
so by Lemma 3, the set s1(D1/α) is also a BK space with

‖x‖s1(D1/α) = ‖D1/αx‖s1 = ‖x‖sα
.

We also have s
◦
α = c0(D1/α) and s

(c)
α = c(D1/α). We conclude since c0 and c are

BK spaces with respect to the norm ‖‖s1 , and c0 has AK. Finally lp for 1 � p < ∞
being a BK space with AK, it follows that lp(α) = lp(D1/α) also has AK.

ii) is a direct consequence of the definition of the sets sα, s
◦
α, and s

(c)
α .

Remark 1. Note that if X is a BK space with the norm ‖ · ‖X , then

(X,X) ⊂ B(X).

Indeed, by [17 Theorem 4.2.8 p. 57], since X is a BK space, the matrix map
A ∈ (X,X) is continuous and there is M > 0 such that

‖Ax‖X � M‖x‖X for all x ∈ X.
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To obtain other results we require some definitions and lemmas. We will write
BX(0, 1) = {x ∈ X : ‖x‖X � 1 } for the unit ball, where X is any given BK
space. Thus we get

‖A‖∗B(X) = sup
x�=0

(‖Ax‖X/‖x‖X) = sup
x∈BX(0,1)

(‖Ax‖
X

) for all A ∈ B(X).

Recall that for all a = (an)n�1 ∈ X such that the series
∑∞

n=1 anxn is convergent
for all x ∈ X the identity

‖a‖∗X = sup
x∈BX(0,1)

(∣∣∣ ∞∑
n=1

anxn

∣∣∣)
is defined and finite. In Malkowsky [17], we have

Lemma 5. Let X be a BK space. Then A ∈ (X, l∞) if and only if

sup
n�1

(‖An‖∗X) = sup
n�1

(
sup

x∈BX(0,1)

∣∣∣ ∞∑
n=1

ankxk

∣∣∣) < ∞.

We also have, (cf. [17, Theorem 1.2.3, p. 155]),

Lemma 6. For every a ∈ l1, ‖a‖∗c0
= ‖a‖∗c = ‖a‖∗l∞ = ‖a‖l1 =

∑∞
n=1 |an|.

It can be easily deduced that if X is a BK space, then A ∈ (X, sβ) if and only
if

sup
n�1

∥∥∥∥ 1
βn

An

∥∥∥∥∗
X

< ∞.

Since there is no characterization of the set (lp(α), lp(α)) for 1 < p < ∞ and
p 	= 2, we need to define a subset B̂p(α) of (lp(α), lp(α)) permitting us to obtain
the inverse of some well chosen matrix map A ∈ (lp(α), lp(α)). In this way we are
led to define the number

Np,α(A) =
[ ∞∑

n=1

( ∞∑
m=1

(
|anm|αm

αn

)q)p−1] 1
p

,

for 1 < p < ∞ and q = p/(p − 1). Thus we can state the following

Proposition 7. Let α ∈ U+. Then
i) for every A ∈ Sα

‖A‖∗B(sα) = ‖A‖Sα
= sup

n�1

( ∞∑
m=1

|anm|αm

αn

)
;

ii) a) B(l1(α)) = (l1(α), l1(α)) and A ∈ B(l1(α)) if and only if At ∈ S1/α,

b) ‖A‖∗B(l1(α)) = ‖At‖S1/α
for all A ∈ B(l1(α)).

iii) For 1 < p < ∞ we have B̂p(α) ⊂ B(lp(α)), where

B̂p(α) = {A = (anm)n,m�1 : Np,α(A) < ∞},
and for every A ∈ B̂p(α), ‖A‖∗B(lp(α)) � Np,α(A).
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Proof. i) First we have

‖Ax‖sα
= sup

n�1

( 1
αn

∣∣∣ ∞∑
k=1

ankxk

∣∣∣) = sup
n�1

(
1

αn
|An(x)|

)
for all x ∈ sα (4)

then

‖A‖∗B(sα) = sup
x∈Bsα (0,1)

(
sup
n�1

(
1

αn
|An(x)|

))
= sup

n�1

(
1

αn
sup

x∈Bsα (0,1)

(|An(x)|)
)

. (5)

Writing x = αy in (5) we obtain

‖A‖∗B(sα) = sup
n�1

(
1

αn
sup

y∈Bs1 (0,1)

(|An(αy)|)
)

= sup
n�1

(
1

αn
‖AnDα‖∗l∞

)
.

Now by Lemma 6 we have

‖AnDα‖∗l∞ = ‖(ankαk)k�1‖l1 =
∞∑

k=1

|ank|αk for all n.

We conclude that ‖A‖∗B(sα) = supn�1(
∑∞

m=1 |anm|αm/αn).

ii) By [17, Theorem 2.27, p. 175] we have B(l1) = (l1, l1) and the condition A ∈
(l1(α), l1(α)) is equivalent to D1/αADα ∈ (l1, l1). It is well known that D1/αADα ∈
(l1, l1) if and only if (D1/αADα)t ∈ S1. This means that DαAtD1/α ∈ S1 and
At ∈ S1/α. Furthermore, since ‖A‖∗B(l1)

= ‖At‖S1 , so ‖A‖∗B(l1(α)) = ‖AtD1/α‖S1 =
‖At‖Sα

. This permits us to conclude for ii).

iii) Let A ∈ B̂p(α) be a given infinite matrix and take any x ∈ lp. We have

‖Ax‖p
lp

=
∥∥∥( ∞∑

m=1
anmxm

)
n�1

∥∥∥p

lp
=

∞∑
n=1

∣∣∣ ∞∑
m=1

anmxm

∣∣∣p �
∞∑

n=1

( ∞∑
m=1

|anmxm|
)p

,

and from the Hölder’s inequality, we get for every n

∞∑
m=1

|anmxm| �
( ∞∑

m=1
|anm|q

) 1
q
( ∞∑

m=1
|xm|p

) 1
p

=
( ∞∑

m=1
|anm|q

) 1
q ‖x‖lp ,

with q = p/(1 − p). We deduce that

‖Ax‖p
lp

�
∞∑

n=1

[( ∞∑
m=1

|anm|q
) 1

q ‖x‖lp

]p
=

∞∑
n=1

( ∞∑
m=1

|anm|q
) p

q ‖x‖p
lp

;

and since p/q = p − 1, we have

‖Ax‖lp �
[ ∞∑

n=1

( ∞∑
m=1

|anm|q
)p−1] 1

p ‖x‖lp

and

‖A‖∗B(lp) = sup
x�=0

(‖Ax‖lp

‖x‖lp

)
�
[ ∞∑

n=1

( ∞∑
m=1

|anm|q
)p−1] 1

p

. (6)
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We have proved that if A ∈ B̂p(e), then A ∈ B(lp). So if A ∈ B̂p(α) and D1/αADα ∈
B̂p(e), then D1/αADα ∈ B(lp) and A belongs to B(lp(α)). This concludes the
proof.

3.2. Application to the solvability of the equation Ax = b

For a = (ann)n�1 ∈ U we get the following elementary but very usefull result

Proposition 8. Let X ⊂ s be a BK space. Assume that D1/aA ∈ (X,X) and

‖I − D1/aA‖∗B(X) < 1. (7)

Then the equation Ax = b with D1/ab = (bn/ann)n�1 ∈ X admits a unique solution
in X given by x = (D1/aA)−1D1/ab.

Proof. First we see that since D1/aA ∈ (X,X) and condition (7) holds, then
D1/aA is invertible in B(X). Since B(X) is a Banach algebra of operators with
identity, then

(D1/aA)−1(D1/aAx) = [(D1/aA)−1o(D1/aA)](x) = I(x) = x for all x ∈ X.

Thus the equation Ax = b with D1/ab ∈ X is equivalent to D1/aAx = D1/ab which
in turn is x = (D1/aA)−1(D1/ab) ∈ X, this concludes the proof.

We can express a similar result in a more general case.
In the following we will write

Γα = {A = (anm)n,m�1 ∈ Sα : ‖I − A‖Sα
< 1 },

and for 1 < p < ∞,

Γ′
p,α = {A = (anm)n,m�1 ∈ (lp(α), lp(α)) : Np,α(I − A) < 1 }, for 1 < p < ∞.

Note that since Sα is a Banach algebra, the condition A ∈ Γα means that A is
invertible and A−1 ∈ Sα.

In the following we will put |a| = (|ann|)n�1 for any given a = (ann)n�1.

Corollary 9. Let α ∈ U+ and A be an infinite matrix with a ∈ U . Assume
that D1/aA ∈ Γα. Then

i) a) for any given b ∈ s|a|α, the equation Ax = b admits in sα a unique solution
given by

x0 = (D1/aA)−1(D1/ab) = A−1b (8)

with A−1 ∈ (s|a|α, sα);

b) if limn→∞(anm/annαn) = 0 for all m � 1, for any given b ∈ s
◦
|a|α, the

equation Ax = b admits a unique solution in s
◦
α given by (8) and A−1 ∈ (s

◦
|a|α, s

◦
α);

c) if limn→∞(anm/annαn) = lm for some lm, m � 1 and

lim
n→∞

( 1
αnann

∞∑
m=1

anmαm

)
= l for some l (9)



48 B. de Malafosse

then for any given b ∈ s
(c)
|a|α, the equation Ax = b admits a unique solution in s

(c)
α

given by (8) with A−1 ∈ (s(c)
|a|α, s

(c)
α ).

ii) a) If AtD1/a ∈ Γ1/α then for given b ∈ l1(|a|α) the equation Ax = b admits
a unique solution in l1(α) given by (8) with A−1 ∈ (l1(|a|α), l1(α)).

b) Let p > 1 real. If D1/aA ∈ Γ′
p,α, then for any given b ∈ lp(|a|α)

the equation Ax = b admits a unique solution in lp(α) given by (8) with A−1 ∈
(lp(|a|α), lp(α)).

Proof. i) By Proposition 7 i), if D1/aA ∈ Γα, then

‖I − D1/aA‖Sα
= ‖I − D1/aA‖∗B(sα) < 1.

Thus D1/aA is invertible in B(sα) ∩ Sα. Then (D1/aA)−1 ∈ Sα, that is A−1 ∈
(s|a|α, sα) and we conclude by Proposition 8.

b) The set s
◦
α being a BK space with AK, we have B(s

◦
α) = (s

◦
α, s

◦
α). Since

D1/aA ∈ Γα and limn→∞(anm/annαn) = 0 for all m � 1, we deduce that
D1/α(D1/aA)Dα ∈ (c0, c0). So D1/aA ∈ (s

◦
α, s

◦
α). Now by Lemma 6 we get

‖I − D1/aA‖∗B(s◦
α) = sup

x∈Bsα

(‖(I − D1/aA)x‖sα
) = ‖I − D1/aA‖Sα

< 1

and we conclude by Proposition 8. c) Here we have

‖I − D1/aA‖∗B(s
(c)
α )

= ‖I − D1/aA‖Sα
< 1.

Then (D1/aA)−1 ∈ Sα ∩ B(s(c)
α ), so (D1/aA)−1 is an operator represented by an

infinite matrix, since (D1/aA)−1 ∈ Sα and the condition (D1/aA)−1 ∈ B(s(c)
α )

implies (D1/aA)−1 ∈ (s(c)
α , s

(c)
α ). We conclude again by Proposition 8.

ii) a) By Proposition 7 ii) b) the condition AtD1/a ∈ Γ1/α implies

‖I − D1/aA‖∗B(l1(α)) = ‖I − (D1/aA)t‖S1/α
< 1

and (D1/aA)−1 ∈ B(l1(α)) = (l1(α), l1(α)). Thus A−1 ∈ (l1(|a|α), l1(α)) and we
conclude by Proposition 8. ii) b) By Proposition 7 iii) we have (D1/aA)−1 ∈
B(lp(α)) = (lp(α), lp(α)), so A−1 ∈ (lp(|a|α), lp(α)) and again we conclude by
Proposition 8.

4. Matrix transformations mapping in the set χ(∆k)
for k � 1 integer and χ ∈ {sα, s

◦
α, s

(c)
α , lp(α)} with 1 � p < ∞.

In this section we will give some properties of the set χ(∆) for χ = sα, s
◦
α,

s
(c)
α , or lp(α). The characterization of the set (χ(∆k), χ(∆k)) given in [15] being

complicated, we will deal with the subset (χ(∆k), χ(∆k))L′ of infinite Toeplitz
triangles that map χ(∆k) into itself.
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4.1. The sets X = χ(∆k) for χ = sα, s
◦
α, s

(c)
α , or lp(α), with 1 � p < ∞

Recall that the operator of first difference [1, 3, 6, 7, 8], [10–13] and [14–18],
is defined by ∆ = (ηnm)n,m�1 ∈ L, with ηnn = 1 for all n � 1, ηn,n−1 = −1 for all
n � 2 and ηnm = 0 otherwise. It is well known that Σ = ∆−1 = (η′

nm)n,m�1, with
η′

nm = 1 for m � n and η′
nm = 0 otherwise. We need to use the following sets

Ĉ1 = {α ∈ U+ : (α1 + · · · + αn)/αn = O(1) (n → ∞) },
Ĉ = {α ∈ U+ : lim

n→∞(α1 + · · · + αn)/αn = l for some l ∈ C },

Γ =
{

α ∈ U+ : lim
n→∞

(
αn−1

αn

)
< 1

}
,

Γ̂ =
{

α ∈ U+ : lim
n→∞

(
αn−1

αn

)
< 1

}
.

It can be easily seen that Γ̂ ⊂ Γ and it was shown in [12] that Γ ⊂ Ĉ1 and by [15]
we have Ĉ = Γ̂. So we have

Lemma 10. Ĉ = Γ̂ ⊂ Γ ⊂ Ĉ1.

We also have

Lemma 11. Let α ∈ U+ and k � 1 be an integer. Then

i) s
(c)
α (∆k) = s

(c)
α if and only if α ∈ Γ̂.

ii) If α ∈ Γ, then sα(∆k) = sα, s
◦
α(∆k) = s

◦
α and lp(α)(∆k) = lp(α) for

1 � p < ∞.
Proof. i) comes from [12, Theorem 2.6, p. 1789]. ii) By [12, Proposition

2.1, p. 1786], the condition α ∈ Γ implies α ∈ Ĉ1, so ∆ and ∆k are bijective
from sα to itself and from s

◦
α to itself then sα(∆k) = sα and s

◦
α(∆k) = s

◦
α. It

remains to show that if α ∈ Γ, then lp(α)(∆) = lp(α) for 1 � p < ∞. If we put
l = limnarrow∞(αn−1/αn) < 1, for given ε0, such that 0 < ε0 < 1 − l, there exists
N0 such that supn�N0+1(αn−1/αn) � l + ε0 < 1. Consider now the infinite matrix

Σ(N0)
α =


[∆(N0)

α ]−1 O
1

O 1
.

 ,

∆(N0)
α being the finite matrix whose entries are those of ∆α = D1/α∆Dα for all n,

m � N0. We get
Q = Σ(N0)

α ∆α = (qnm)n,m�1,

with

qnm =


1, for m = n,

− αm

αm+1
, for m = n − 1 � N0,

0, otherwise.
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For every x ∈ lp we get (I − Q)x =
(0, . . . , 0, (αN0/αN0+1)xN0 , . . . , (αn−1/αn)xn−1, . . . )t, where αN0xN0/αN0+1 is in
the (N0 + 1) position. So we get

‖(I − Q)x‖p
lp

=
∞∑

n=N0+1

(
αn−1

αn

)p

|xn−1|p � sup
n�N0+1

[(
αn−1

αn

)p]( ∞∑
n=N0

|xn|p
)
,

and

‖I − Q‖∗B(lp) = sup
x�=0

(‖(I − Q)x‖lp

‖x‖lp

)
�
[

sup
n�N0+1

(
αn−1

αn

)p] 1
p

.

Since αn−1/αn � l + ε0 < 1 for all n � N0 + 1, we deduce

sup
n�N0+1

(
αn−1

αn

)p

< 1.

Hence

‖I − Q‖B(lp) �
[

sup
n�N0+1

(
αn−1

αn

)p] 1
p

< 1.

We have shown that Q is invertible in B(lp). Now let b ∈ lp. The equations

∆αx = b and Qx = Σ(N0)b

are equivalent in lp. Since Q−1 ∈ B(lp), reasoning as in Proposition 8 that
Q−1(Qx) = (Q−1Q)x = x = (∆α)−1b for all x ∈ lp. This shows the map ∆α

is bijective from lp to lp and ∆ is bijective from lp(α) to lp(α).

4.2. The set (χ(∆),χ(∆)) for χ ∈ {sα, s
◦
α, s

(c)
α }

First recall the characterizations of the set (χ(∆), χ(∆)) for χ = sα, s
◦
α, or

s
(c)
α . For this we will consider the following properties

lim
l→∞

( l∑
j=1

αj

∣∣∣ ∞∑
k=l

(
ank − an−1,k

αn

)∣∣∣) = 0 for all n; (10)

sup
n�1

∣∣∣ ∞∑
j=1

αj

( ∞∑
k=j

(
ank − an−1,k

αn

))∣∣∣ < ∞; (11)

lim
n→∞

[
αj

( ∞∑
k=j

(
ank − an−1,k

αn

))]
= 0 for all j; (12)

sup
l�1

( l∑
j=1

αj

∣∣∣ ∞∑
k=l

(
ank − an−1,k

αn

)∣∣∣) < ∞ for all n; (13)

lim
n→∞

(
αj

( ∞∑
k=j

(
ank − an−1,k

αn

)))
= lj for all j; (14)

lim
n→∞

∞∑
k=1

[(ank − an−1,k

αn

)( k∑
j=1

αj

)]
= l exists. (15)

The following Proposition was proved in [15]



The Banach algebra B(X) and applications 51

Proposition 12. Let α ∈ U+. Then
i) A ∈ (sα(∆), sα(∆)) if and only if (10) and (11) hold;
ii) A ∈ (s

◦
α(∆), s

◦
α(∆)) if and only if (11), (12) and (13) hold;

iii) A ∈ (s(c)
α (∆), s(c)

α (∆)) if and only if (11), (13), (14) and (15) hold.

Note that A ∈ (χ(∆k), χ(∆k)) if and only if

D1/α∆kA ∈ (χ(∆k), Y ) with Y ∈ {l∞, c0, c},
see [16]. Now we will give necessary conditions for a matrix map to be bijective
from χ(∆k) into itself when χ ∈ {sα, s

◦
α, s

(c)
α , lp(α)} and p � 1 real. We have

Proposition 13. Let α ∈ U+ and k � 1 an integer.

i) Let b ∈ χ(∆k), χ ∈ {sα, s◦α, s
(c)
α } and assume that there is τ ∈]0, 1[ such that

‖∆k[(I − A)x]‖sα
� τ‖∆kx‖sα

for all x ∈ χ(∆k). (16)

Then
a) the map A : x �→ Ax is bijective from χ(∆k) into itself;

b) if (16) holds and α ∈ Γ̂ then the matrix map A : x �→ Ax is bijective from
χ into itself.

ii) a) If α ∈ Γ and At ∈ Γ1/α, then A : x �→ Ax is bijective from l1(α)(∆k)
into itself.

b) Let 1 < p < ∞. If α ∈ Γ and A ∈ Γ′
p,α, then the map A : x �→ Ax is

bijective from lp(α)(∆k) into itself.
Proof. i) a) It is enough to show the proposition in the case when X = sα.

Using Lemma 3, condition (16) means that

‖I − A‖∗B(sα(∆k)) = sup
x�=0

(‖∆k[(I − A)x]‖sα

‖∆kx‖sα

)
� τ < 1,

so A is invertible in B(sα(∆k)) and by Proposition 8 the equation Ax = b for
b ∈ sα(∆k) admits a unique solution in sα(∆k). i) b) Since Γ̂ ⊂ Γ, by Lemma 10
and Lemma 11 ii), we easily deduce that α ∈ Γ̂ implies χ(∆k) = χ, ‖x‖χ = ‖x‖sα

for χ ∈ {sα, s
◦
α, s

(c)
α }. We conclude since condition (16) means that

‖I − A‖B(sα) = ‖I − A‖Sα
� τ < 1.

ii) By Lemma 11, the condition α ∈ Γ implies ∆ is bijective from lp(α) to itself
for any given p with 1 � p < ∞. Then ∆k is also bijective and lp(α)(∆k) = lp(α).
We conclude applying Corollary 9 ii) with a = e.

Example 14. Let γ, η ∈ C and put

M(γ, η) =


1 η
γ 1 η 0

γ 1 η
0 . . .

 . (17)
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As a direct consequence of Proposition 13 we can state the following. For
α ∈ U+ and

ξα = |γ| sup
n�2

(
αn−1

αn

)
+ |η| sup

n�1

(
αn+1

αn

)
< 1, (18)

the equation M(γ, η)x = b with b ∈ sα(∆) admits a unique solution x
◦

=
[M(γ, η)]−1b ∈ sα(∆). Furthermore if α ∈ Γ the equation M(γ, η)x = b with
b ∈ sαadmits a unique solution x

◦ ∈ sα.
Proof. First we have [M(γ, η)−I]x = (γxn−1 +ηxn+1)n�1, with x0 = 0. Then

we easily get ∆[(M(γ, η) − I)x] = (yn)n�1with

yn = η(xn+1 − xn) + γ(xn−1 − xn−2) = 0 and x−1 = x0 = 0.

Hence
1

αn
|yn| � |η||xn+1 − xn| 1

αn+1

αn+1

αn
+ |γ||xn−1 − xn−2| 1

αn−1

αn−1

αn

� |η|αn+1

αn
‖∆x‖sα

+ |γ|αn−1

αn
‖∆x‖sα

.

Thus

sup
n�1

(
1

αn
|yn|
)

= ‖∆[(I − M(γ, η))x]‖sα
� ξα‖∆x‖sα

< ‖∆x‖sα

and
‖I − M(γ, η)‖∗B(sα(∆)) < 1.

As above we conclude that if (18) holds the equation M(γ, η)x = b with b ∈ sα(∆)
admits in sα(∆) the unique solution x

◦
= [M(γ, η)]−1b. If α ∈ Γ, then sα(∆) = sα

by Lemma 11 and we conclude from the preceding that the equation M(γ, η)x = b
with b ∈ sα admits a unique solution in sα.

4.3. The equation Tax = b, where Ta is a Toeplitz triangle matrix
We will denote by L′ ⊂ L the set of all infinite Toeplitz triangles. We will

say that T = (tnm)n,m�1 ∈ L′ if there is a sequence a = (an)n�1 ∈ s, such that
tnm = an−m+1 for m � n and tnm = 0 otherwise; then we will write T = Ta;
L′ is a subset of the set of Toeplitz matrices, see [1]. It can easily be seen that
TaTa′ = Ta′Ta for all a, a′ ∈ s. We then have the next result.

Proposition 15. Let k � 1 be an integer and let Ta ∈ L′ for a ∈ U . Then
i) Ta ∈ B(sα(∆k)) if and only if Ta ∈ Sα;

ii) Ta ∈ B(s
◦
α(∆k)) if and only if Ta ∈ Sα and

lim
n→∞

an−m+1

αn
= 0 for all m; (19)

iii) Ta ∈ B(s(c)
α (∆k)) if and only if Ta ∈ Sα,

lim
n→∞

an−m+1

αn
= lm for all m (20)



The Banach algebra B(X) and applications 53

and
lim

n→∞

( n∑
m=1

an−m+1
αm

αn

)
= l. (21)

iv) ‖Ta‖∗B(s◦
α(∆k))

= ‖Ta‖∗B(sα(∆k)) � ‖Ta‖Sα
and ‖Ta‖∗B(sα(∆k)) = ‖Ta‖Sα

for
α ∈ Γ.

v) Let 1 � p < ∞. Then Ta ∈ B(lp(α)(∆k)) if and only if Ta ∈ (lp(α), lp(α)).

Proof. i) The set sα(∆k) is a BK space by Lemma 3 in which T = ∆k. So
by Remark 1, Ta ∈ B(sα(∆k)) if and only if Ta ∈ (sα(∆k), sα(∆k)). Thus the
condition Ta ∈ B(sα(∆k)) is equivalent to Ta(Σkx) ∈ sα(∆k) for all x ∈ sα. So
Ta ∈ B(sα(∆k)) if and only if

∆k[Ta(Σkx)] ∈ sα for all x ∈ sα.

Since ∆k, Σk ∈ L′, we have

∆k[Ta(Σkx)] = (∆kTaΣk)x = (Ta(∆Σ)k)x = Tax for all x ∈ sα.

We conclude that Ta ∈ B(sα(∆k)) if and only if Ta ∈ (sα, sα), that is Ta ∈ Sα. ii)
As above s

◦
α(∆k) is a BK space and Ta ∈ B(s

◦
α(∆k)) if and only if Ta ∈ (s

◦
α, s

◦
α).

Now we have D1/αTaDα = (ξnm)n,m�1, with ξnm = an−m+1αm/αn for m � n and
ξnm = 0 otherwise. Thus we get D1/αTaDα ∈ (c0, c0) if and only if Ta ∈ Sα and
(19) holds. We get iii) by a similar argument. So Ta ∈ B(s

◦
α(∆k)) if and only if

Ta ∈ (s
◦
α, s

◦
α) and Ta ∈ B(s(c)

α (∆k)) if and only if Ta ∈ (s(c)
α , s

(c)
α ).

iv) Let us show that ‖Ta‖∗B(sα(∆k)) � ‖Ta‖Sα
. We have

‖Ta‖∗B(sα(∆k)) = sup
x�=0

(‖Tax‖sα(∆k)

‖x‖sα(∆k)

)
< ∞.

Since ∆k ∈ L′, we have ∆kTa = Ta∆k and for every x ∈ sα(∆k)

‖Tax‖sα(∆k) = ‖∆k(Tax)‖sα
= ‖Ta(∆kx)‖sα

,

so
‖Tax‖sα(∆k) � ‖Ta‖Sα

‖∆kx‖sα
= ‖Ta‖Sα

‖x‖sα(∆k)

and
‖Ta‖∗B(sα(∆k)) � ‖Ta‖Sα

.

Now it can easily be seen that ‖Ta‖∗B(sα(∆k)) = ‖Ta‖∗B(s◦
α(∆k))

. In the case when

α ∈ Γ we have sα(∆k) = sα and by Proposition 7 i) we get

‖Ta‖∗B(sα(∆k)) = ‖Ta‖Sα
.

v) By Lemma 3 where T = ∆k, we see that lp(α)(∆k) is a BK space. We
have Ta ∈ B(lp(α)(∆k)) if and only if Ta ∈ (lp(α)(∆k), lp(α)(∆k)). Now Ta ∈
(lp(α)(∆k), lp(α)(∆k)) if and only if ∆k(TaΣkx) = Tax ∈ lp(α) for all x ∈ lp(α).
This means that Ta ∈ (lp(α), lp(α)).
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Proposition 16. Let Ta ∈ L′ with a1 	= 0. Then
i) If (1/a1)Ta ∈ Γα then for any given b ∈ sα(∆k) the equation Tax = b admits

in sα(∆k) a unique solution
x = T−1

a b. (22)

ii) If (1/a1)Ta ∈ Γα and (19) holds, then for any given b ∈ s
◦
α(∆k) the equation

Tax = b admits in s
◦
α(∆k) a unique solution given by (22).

iii) If (1/a1)Ta ∈ Γα, (20) and (21) hold, then for any given b ∈ s
(c)
α (∆k) the

equation Tax = b admits in s
(c)
α (∆k) a unique solution given by (22).

iv) a) If (1/a1)T t
a ∈ Γ1/α, then for any given b ∈ l1(α)(∆k) the equation

Tax = b admits in l1(α)(∆k) a unique solution given by (22).
b) Let 1 < p < ∞ and assume that (1/a1)Ta ∈ Γ′

p,α. Then for any given
b ∈ lp(α)(∆k) the equation Tax = b admits in lp(α)(∆k) a unique solution given by
(22).

Proof. i) Since Ta ∈ L the equation Tax = b is equivalent to x = T−1
a b. Now

the condition (1/a1)Ta ∈ Γα implies T−1
a ∈ Sα and by Proposition 15 i), this means

that T−1
a ∈ B(sα(∆k)). We conclude T−1

a b ∈ sα(∆k).

ii) By Proposition 15 ii) we have Ta ∈ B(s
◦
α(∆k)) since Ta ∈ (s

◦
α, s

◦
α); and the

condition (1/a1)Ta ∈ Γα and Proposition 15 iv) imply∥∥∥∥I − 1
t11

Ta

∥∥∥∥∗
B(sα(∆k))

=
∥∥∥∥I − 1

t11
Ta

∥∥∥∥∗
B(s◦

α(∆k))

�
∥∥∥∥I − 1

t11
Ta

∥∥∥∥
Sα

< 1.

Then T−1
a ∈ B(s

◦
α(∆k)) and the unique solution of the equation Tax = b for

b ∈ s
◦
α(∆k) is x = T−1

a b ∈ s
◦
α(∆k). We get iii) from the characterization of

(s(c)
α , s

(c)
α ) and reasoning as above. iv) a) is a direct consequence of Corollary 9

ii) a) and Proposition 15 v). iv) b) Here the condition (1/a1)Ta ∈ Γ′
p,α implies

T−1
a ∈ (lp(α), lp(α)), since B(lp(α)) = (lp(α), lp(α)). Then from Proposition 15

v) T−1
a ∈ (lp(α)(∆k), lp(α)(∆k)) and for all b ∈ lp(α)(∆k) the unique solution

x = T−1
a b of the equation Tax = b belongs to lp(α)(∆k).

Remark 2. The conditions (1/a1)Ta ∈ Γα and (1/a1)T t
a ∈ Γ1/α are equivalent

to

sup
n�2

(n−1∑
m=1

|an−m+1|αm

αn

)
< |a1| and sup

n�1

( ∞∑
m=n+1

|am−n+1| αn

αm

)
< |a1|;

respectively. Note that the condition (1/a1)Ta ∈ Γ′
p,α means

∞∑
n=2

(n−1∑
m=1

|an−m+1|p/(p−1)
)p−1

< |a1|p/(p−1).

Furthermore, it can be verified from Proposition 15 that if Ta ∈ L′, then
i) Ta ∈ B(c0(∆k)) if and only if Ta ∈ S1 and a ∈ c0;
ii) Ta ∈ B(c(∆k)) if and only if Ta ∈ S1 and a ∈ cs.
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5. Application to infinite tridiagonal matrices

In this section we will consider infinite tridiagonal matrices. These matrices
are used in many applications, let us cite for instance the case of continued fractions
[9], or the finite differences method, see [20]. We deal with some properties of the
matrix map M(γ, a, η) between particular sequence spaces. Then we will explicitly
calculate the inverse of M(γ, a, η).

5.1. Properties of infinite matrices considered as operators in certain
BK spaces

Let γ = (γn)n�1, η = (ηn)n�1, a′ = (an)n�1 be sequences with a′ ∈ U .
Consider the infinite tridiagonal matrix

M(γ, a, η) =


a1 η1

γ2 a2 η2 0
. . .

0 γn an ηn

. .

 .

We then have

Proposition 17. Assume that D1/aM(γ, a, η) ∈ Γα, that is

sup
n�1

[
1
an

(
|γn|αn−1

αn
+ |ηn|αn+1

αn

)]
< 1.

Then
i) M(γ, a, η) is bijective from sαinto s|a|α and M(γ, a, η)−1 ∈ (s|a|α, sα);

ii) M(γ, a, η) is bijective from s
◦
α into s

◦
|a|α and M(γ, a, η)−1 ∈ (s

◦
|a|α, s

◦
α);

iii) if

lim
n→∞

[
1
an

(
γn

αn−1

αn
+ ηn

αn+1

αn

)]
= l 	= 0,

then M(γ, a, η) is bijective from s
(c)
α into s

(c)
|a|α and M(γ, a, η)−1 ∈ (s(c)

|a|α, s
(c)
α ).

iv) Let p � 1 be a real. If K̃p,α = K1 + K2 < 1 with

K1 = sup
n�1

(∣∣∣∣γn

an

∣∣∣∣ αn−1

αn

)
and K2 = sup

n�1

(∣∣∣∣ηn

an

∣∣∣∣ αn+1

αn

)
,

then M(γ, a, η) is bijective from lp(α) into lp(|a|α) and M(γ, a, η)−1 ∈
(lp(|a|α), lp(α)).

Proof. i), ii) and iii) are direct consequences of Corollary 9. iv) We get

‖(I − D1/aM(γ, a, η))x‖lp(α) =
( ∞∑

n=1

1
αp

n

∣∣∣γn

an
xn−1 +

ηn

an
xn+1

∣∣∣p)1/p

=
( ∞∑

n=1

∣∣∣γn

an

αn−1

αn

xn−1

αn−1
+

ηn

an

αn+1

αn

xn+1

αn+1

∣∣∣p)1/p

�
( ∞∑

n=1

(
K1

∣∣∣xn−1

αn−1

∣∣∣+ K2

∣∣∣xn+1

αn+1

∣∣∣)p)1/p

;
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Applying Minkowski’s inequality we get( ∞∑
n=1

(
K1

∣∣∣xn−1

αn−1

∣∣∣+ K2

∣∣∣xn+1

αn+1

∣∣∣)p)1/p

� K1

( ∞∑
n=1

∣∣∣xn−1

αn−1

∣∣∣p)1/p

+ K2

( ∞∑
n=1

∣∣∣xn+1

αn+1

∣∣∣p)1/p

� (K1 + K2)‖x‖lp(α).

we conclude that

‖I − D1/aM(γ, a, η)‖∗B(lp(α)) � (K1 + K2) < 1.

So D1/aM(γ, a, η) is invertible in B(lp(α)) and A = Da(D1/aM(γ, a, η)) is bijective
from lp(α) into lp(|a|α). Since B(lp(α)) = (lp(α), lp(α)), we conclude

[D1/aM(γ, a, η)]−1 ∈ (lp(α), lp(α))

and M(γ, a, η)−1 ∈ (lp(|a|α), lp(α)).
We deduce the next corollary.

Corollary 18. If K̃1,α < 1, then M(γ, a, η) is bijective from l1(α) to l1(|a|α)
and bijective from sα to s|a|α.

Proof. First taking p = 1 in Proposition 17 iv), we deduce that A is bijective
from l1(α) to l1(|a|α). Then from

‖I − D1/aM(γ, a, η)‖Sα
= K̃ ′

α � K̃1,α < 1,

we conclude that M(γ, a, η) is bijective from sα to s|a|α.
Remark 3. Note that in the case when p = 1, the condition

‖I − [D1/aM(γ, a, η)]t‖Sα
= sup

n�1

(∣∣∣∣γn+1

an+1

∣∣∣∣ αn+1

αn
+
∣∣∣∣ηn−1

an−1

∣∣∣∣ αn−1

αn

)
< 1,

also implies M(γ, a, η) is bijective from l1(α) to l1(|a|α).

5.2. The inverse of an infinite tridiagonal matrix.
In this subsection, among other things, we are interested in the calculation of

the inverse of M(γ, η) defined in Example 14.
For this we need to recall the next results. We can associate with any power

series f(z) =
∑∞

k=0 akzk defined in the open disk |z| < R the upper triangular
infinite matrix A = ϕ(f) ∈ ⋃0<r<R Sr defined by

ϕ(f) =


a0 a1 a2 .

a0 a1 .
O a0 .

.

 ,

(see [6]). Practically we shall write ϕ[f(z)] instead of ϕ(f). We have

Lemma 19. i) The map ϕ : f �→ A is an isomorphism from the algebra of the
power series defined in |z| < R, into the algebra of the corresponding matrices Ā.
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ii) Let f(z) =
∑∞

k=0 akzk, with a0 	= 0, and assume that 1/f(z) =
∑∞

k=0 a′
kzk

admits R′ > 0 as radius of convergence. We then have

ϕ

(
1
f

)
= [ϕ(f)]−1 ∈

⋃
0<r<R′

Sr.

From the previous results we get

Proposition 20. Let γ, η be reals with 0 < γ + η < 1. Then

i) M(γ, η) : x �−→ M(γ, η)x is bijective from χ into itself, for χ ∈ {s1, c0, c}.
ii) a) Let χ be either one of the sets s1, or c0, or c and put

u = (1 −
√

1 − 4γη)/2γ and v = (1 −
√

1 − 4γη)/2η.

Then for any given b ∈ χ the equation M(γ, η)x = b admits a unique solution
x

◦
= (x

◦
n)n�1 in χ given by

x
◦
n =

(
uv + 1
uv − 1

)
(−1)nvn

∞∑
m=1

[1 − (uv)−l](−1)mumbm for all n. (23)

with l = min(n,m).

b) The inverse [M(γ, η)]−1 = (a′
nm)n,m�1 is given by

a′
nm =

(
uv + 1
uv − 1

)
(−1)n+mvn−m[(uv)l − 1] for all n,m � 1 and l = min(n,m).

(24)

Proof. i) We have ‖I − M(γ, η)‖S1 = γ + η < 1, so M(γ, η) ∈ Γ1 and we
conclude by Corollary 9 i) a) in which α = e. ii) Let u, v be reals with 0 < u < 1,
0 < v < 1 and consider the matrices

∆+
u =


1 u O

1 u
O . .

 and ∆v =


1 O
v 1
O v 1

. .

 .

By a short calculation we get

1
1 + uv

∆+
u ∆v =


1 u

1+uv O
v

1+uv 1 u
1+uv

O v
1+uv 1 u

1+uv
. .

 .

Thus the identity M(γ, η) = 1
1+uv ∆+

u ∆v is equivalent to η = u/(1 + uv) and
γ = v/(1 + uv). Putting ξ = 1 + uv, we get η = u/ξ and γ = v/ξ, so ξ = 1 + γηξ2.
Since 0 < γ + η < 1, we have 4γη < 1 and ξ = (1 ± √

1 − 4γη)/2γη and the
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condition |u|, |v| < 1 implies u = (1 −√
1 − 4γη)/2γ and v = (1 −√

1 − 4γη)/2η.
Then ∥∥∥∥I − 1

1 + uv
∆+

u ∆v

∥∥∥∥
S1

= γ + η =
u + v

1 + uv
< 1.

Furthermore we have ‖I − ∆+
u ‖S1 = u < 1 and ‖I − ∆v‖S1 = v < 1. So ∆+

u and
∆v are invertible in S1 and by Lemma 19, we have

(∆+
u )−1 = ϕ(1/(1 + uz)) = ϕ

( ∞∑
k=0

(−1)kukzk
)
,

(∆v)−1 =
[
ϕ
( ∞∑

k=0

(−1)kvkzk
)]t

,

with |uz|, |vz| < 1. This means that

(∆+
u )−1 = Σ+

u =


1 −u u2 .

1 −u u2

O . .
.

 and (∆v)−1 = Σv =


1 O

−v 1
v2 −v 1
. . . .

 .

Then ( 1
1+uv ∆+

u ∆v)−1 = (1 + uv)ΣvΣ+
u . For any given b ∈ s1, we successively get

Σ+
u b =

( ∞∑
k=0

(−1)kukbn+k

)
n�1

,

Σv(Σ+
u b) =

( n∑
s=1

(−1)n−svn−s
( ∞∑

k=0

(−1)kukbs+k

))
n�1

and the unique solution is given by

x
◦
n = (1 + uv)

n∑
s=1

∞∑
k=0

(−1)n−s+kvn−sukbs+k. (25)

Hence writing

x
◦
n = (1 + uv)(−v)nσn with σn =

n∑
s=1

(uv)−s
∞∑

k=0

(−u)k+sbs+k,

putting l = min(n,m), we get

σn =
n∑

s=1
(uv)−s

∞∑
m=0

(−u)mbm

=
n∑

s=1
(uv)−s

n∑
m=s

(−u)mbm +
n∑

s=1
(uv)−s

∞∑
m=n+1

(−u)mbm

=
∞∑

m=1
(−u)mbm

m∑
s=1

(uv)−s +
∞∑

m=n+1
(−u)mbm

n∑
s=1

(uv)−s

=
∞∑

m=1
(−u)mbm

l∑
s=1

(uv)−s =
∞∑

m=1
(−u)mbm

(uv)−1−(uv)−l−1

1−(uv)−1

=
1

uv − 1

∞∑
m=1

(−u)mbm(1 − (uv)−l),
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that is (23) and ii) a) holds. ii) b) is a direct consequence of the identity x
◦
n =∑∞

m=1 a′
nmbm for all n, where M−1 = (a′

nm)n,m≥1.
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[2] Böttcher, A., Silbermann, B., Introduction to Large Truncated Toeplitz Matrices, Springer,
New York, Berlin 2000.

[3] Hardy, G.H., Divergent Series, Oxford University Press 1973.

[4] Labbas, R., de Malafosse, B., On some Banach algebra of infinite matrices and applications,
Demonstratio Matematica 31 (1998), 153–168.

[5] Maddox, I.J., Infinite Matrices of Operators, Springer-Verlag, Berlin, Heidelberg and New
York, 1980.

[6] de Malafosse, B., Properties of some sets of sequences and application to the spaces of
bounded difference sequences of order µ, Hokkaido Math. Journal 31 (2002), 283–299.

[7] de Malafosse, B., Sets of sequences that are strongly τ-bounded and matrix transformations
between these sets, Demonstratio Matematica 36, 1 (2003), 155–171.

[8] de Malafosse, B., Variation of an element in the operator of first difference, Novi Sad J.
Math. 32, 1, (2002), 141–158.

[9] de Malafosse, B., Some new properties of sequence spaces, and application to the continued
fractions, Mat. Vesnik 53 (2001), 91–102.

[10] de Malafosse, B., On the set of sequences that are strongly α-bounded and α-convergent to
naught with index p, Rend. Sem. Mat. Univ. Pol. Torino 61 (2003), 13–32.

[11] de Malafosse, B., On matrix transformations and sequence spaces, Rend. del Circ. Mat. di
Palermo 52, 2 (2003), 189–210.

[12] de Malafosse, B., On some BK space, International J. Math. and Math. Sci. 28 (2003),
1783–1801.

[13] de Malafosse, B., Malkowsky, E., Sequence spaces and inverse of an infinite matrix, Rend.
del Circ. Mat. di Palermo Serie II, 51 (2002), 277–294.

[14] de Malafosse, B., Malkowsky, E., Matrix transformations in the sets X(NpNq) where X is

in the form sξ, or s
◦
ξ , or s

(c)
ξ , Proceeding MFA-03 (2004).

[15] de Malafosse, B., Malkowsky, E., Sets of difference sequences of order m, under review in
Acta. Math. Szeged.

[16] Malkowsky, E., Linear operators in certain BK spaces, Bolyai Soc. Math. Stud. 5 (1996),
259–273.
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