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ON A SYSTEM OF LINEAR THERMOELASTICITY
WITH THE BESSEL OPERATOR

S. Mesloub and S. A. Messaoudi

Abstract. In this paper, we study an initial value problem for a one-dimensional system
of thermoelasticity. Using an a priori bound and a density argument, we prove the existence and
uniqueness of a generalized solution.

1. Introduction

In this paper we are concerned with a coupled system of thermoelasticity of
the form

L1u = utt − a

r
(rur)r + brθr = f(r, t) (1.1)

L2θ = θt − κ

r
(rθr)r + brurt = g(r, t) (1.2)

in the bounded domain

Q = Ω × (0, T ) = {(r, t) : 0 < r < 1, 0 < t < T} ,

where u is the displacement, θ is the difference absolute temperature, f is an
external force, g is a heat supply, and a, b, κ are positive constants. This system
can be regarded as a model for the radially symmetric deformation and temperature
distribution in the unit disk.

For b = 0, system (1.1), (1.2) decouples and we obtain two independent equa-
tions; namely the hyperbolic wave equation and the parabolic heat equation “with
the Bessel operator”. Both equations have been extensively investigated and sev-
eral results concerning existence, uniqueness, and well-posedness have been estab-
lished. For the parabolic case we mention here Cannon [3], Bouziani [2], Ionkin [5],
Kamynin [6], P. Shi [15], Yurchuk [18], Mesloub [8], Mesloub and Bouziani [9], [10],
[11], Kartynik [7]. For the hyperbolic case, we mention Mesloub and Bouziani [12],
[13], Muravei and Philinovskii [14], Pulkina [16], [17] and Beilin [1].

AMS Subject Classification: 35K22, 58D25, 73B30
Keywords and phrases: Coupled system, thermoelasticiy, a priori bound.
This work has been funded and supported by the Research center project number Math/24-

25/06 at King Saud University. The authors thank KSU for its support.

19



20 S. Mesloub, S. A. Messaoudi

We supplement (1.1), (1.2) with the initial conditions

�1u = u(r, 0) = u0(r), 0 < r < 1 (1.3)

�2u = ut(r, 0) = u1(r), 0 < r < 1 (1.4)

�3θ = θ(r, 0) = θ0(r), 0 < r < 1 (1.5)

and the one-point boundary conditions

u(1, t) = 0, 0 < t < T (1.6)

θ(1, t) = 0, 0 < t < T, (1.7)

where the data functions satisfy, for compatibility,

u0(1) = u1(1) = θ0(1) = 0. (1.8)

Based on an a priori bound and on the density of the range of the operator
generated by the problem in consideration, we prove the existence, uniqueness and
the continuous dependence on the data of the strong solution of problem (1.1)–
(1.7). We should note here that for the best of our knowledge, system (1.1), (1.2)
has never been treated using this approach.

2. Functions spaces

Let L2
ρ(Q) be the weighted L2(Q) Hilbert space of square integrable functions

on Q with scalar product

(u, θ)L2
ρ(Q) =

∫
Q

ruθ dr dt,

and with the associated finite norm

‖u‖2
L2

ρ(Q) =
∫

Q

ru2 dr dt,

and W 1,1
2,ρ be the weighted Hilbert space consisting of the elements u of L2

ρ(Q)
having first order generalized derivatives square summable on Q. W 1,1

2,ρ is equipped
with the scalar product

(u, θ)W 1,1
2,ρ (Q) = (u, θ)L2

ρ(Q) + (ur, θr)L2
ρ(Q) + (ut, θt)L2

ρ(Q),

and the associated norm is

‖u‖2
W 1,1

2,ρ (Q) = ‖u‖2
L2

ρ(Q) + ‖ur‖2
L2

ρ(Q) + ‖ut‖2
L2

ρ(Q) .

We also use the weighted spaces on Ω, such as L2
ρ(Ω) and W 1

2,ρ(Ω), whose definitions
are analogous to the spaces on Q.

3. Reformulation of the problem

We reformulate problem (1.1)–(1.7) as the problem of solving the operator
equation

AU = H, (3.1)



On a system of linear thermoelasticity 21

where U , AU and H are respectively the pairs:

U = (u, θ), (3.2)

AU = (L1u,L2θ), (3.3)

and
H = (H1,H2). (3.4)

The right-hand sides of (3.3) and (3.4) are respectively defined by

L1u = {L1u, �1u, �2u} , L2θ = {L2θ, �3θ} , (3.5)

and
H1 = {f, u0, u1} , H2 = {g, θ0} . (3.6)

The operator A is considered from a space B = B1×B2 into the space H = H1×H2,
where B is a Banach space consisting of all functions (u, θ) ∈ (L2

ρ(Q))2 satisfying
conditions (1.6)–(1.7) and having the finite norm

‖U‖2
B = sup

0≤τ≤T

(
‖u(., τ)‖2

W 1,1
2,ρ (Ω) + ‖θ(., τ)‖2

L2
ρ(Ω)

)
+ ‖θr‖2

L2
ρ(Q) (3.7)

and H = H1 × H2 is the completion of the Hilbert space{
L2

ρ(Q) × W 1
2,ρ(Ω) × L2

ρ(Ω)
} × {

L2
ρ(Q) × L2

ρ(Ω)
}

with respect to the norm

‖H‖2
H = ‖f‖2

L2
ρ(Q) + ‖u0‖2

W 1
2,ρ(Ω) + ‖u1‖2

L2
ρ(Ω) + ‖g‖2

L2
ρ(Q) + ‖θ0‖2

L2
ρ(Ω) . (3.8)

Let D(L), be the domain of definition of the operator A, defined by:

D(A) =
{
(u, θ) ∈ (L2

ρ(Q))2/ ut, θt, utt, ur, θr, urr, θrr, utr, θtr ∈ L2
ρ(Q)

}
,

satisfying conditions (1.6)–(1.7).

4. Uniqueness of the solution

Theorem 4.1. For any function U = (u, θ) ∈ D(A), there exists a positive
constant C independent of U, such that

‖U‖B ≤ C ‖AU‖H . (4.1)

Proof. Consider the scalar products:

(ut,L1u)L2
ρ(Qτ ) and (θ,L2θ)L2

ρ(Qτ ), (4.2)

where Qτ = (0, τ) × Ω. We have from (4.2)

(ut, utt)L2
ρ(Qτ ) − a((rur)r, ut))L2(Qτ ) + (θ, θt)L2

ρ(Qτ )

− κ((rθr)r, θ))L2(Qτ ) + b(rurt, θ)L2
ρ(Qτ ) + b(rut, θr)L2

ρ(Qτ )

= (ut,L1u))L2
ρ(Qτ ) + (θ,L2θ)L2

ρ(Qτ ). (4.3)

Using conditions (1.3)0-(1.7), we can evaluate the first five terms on the left-hand
side of (4.3) as follows

(ut, utt)L2
ρ(Qτ ) =

1
2
‖ut(r, τ)‖2

L2
ρ(Ω) −

1
2
‖u1‖2

L2
ρ(Ω) , (4.4)
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−a((rur)r, ut))L2(Qτ ) =
a

2
‖ur(r, τ)‖2

L2
ρ(Ω) −

a

2

∥∥∥∥∂u0

∂r

∥∥∥∥
2

L2
ρ(Ω)

, (4.5)

(θ, θt)L2
ρ(Qτ ) =

1
2
‖θ(r, τ)‖2

L2
ρ(Ω) −

1
2
‖θ0‖2

L2
ρ(Ω) , (4.6)

−κ((rθr)r, θ))L2(Qτ ) = κ ‖θr‖2
L2

ρ(Qτ ) , (4.7)

b(rurt, θ)L2
ρ(Qτ ) = −b(rut, θr)L2

ρ(Qτ ) − 2b(ut, θ)L2
ρ(Qτ ). (4.8)

Substitution of equalities (4.4)–(4.8) into (4.3), yields

a

2
‖ur(r, τ)‖2

L2
ρ(Ω) +

1
2
‖ut(r, τ)‖2

L2
ρ(Ω) +

1
2
‖θ(r, τ)‖2

L2
ρ(Ω) + κ ‖θr‖2

L2
ρ(Qτ )

=
1
2
‖u1‖2

L2
ρ(Ω) +

a

2

∥∥∥∥∂u0

∂r

∥∥∥∥
2

L2
ρ(Ω)

+
1
2
‖θ0‖2

L2
ρ(Ω)

+ 2b(ut, θ)L2
ρ(Qτ ) + (ut,L1u))L2

ρ(Qτ ) + (θ,L2θ)L2
ρ(Qτ ). (4.9)

Using Cauchy-Schwarz inequality, we estimate the last three terms in the right-hand
side of (4.9) as follows

2b(ut, θ)L2
ρ(Qτ ) ≤ b ‖θ‖2

L2
ρ(Qτ ) + b ‖ut‖2

L2
ρ(Qτ ) , (4.10)

(ut,L1u))L2
ρ(Qτ ) ≤ 1

2
‖ut‖2

L2
ρ(Qτ ) +

1
2
‖L1u‖2

L2
ρ(Qτ ) , (4.11)

(θ,L2θ)L2
ρ(Qτ ) ≤ 1

2
‖θ‖2

L2
ρ(Qτ ) +

1
2
‖L2θ‖2

L2
ρ(Qτ ) . (4.12)

Combining (in)equalities (4.9)–(4.12), we obtain

a

2
‖ur(r, τ)‖2

L2
ρ(Ω) +

1
2
‖ut(r, τ)‖2

L2
ρ(Ω) +

1
2
‖θ(r, τ)‖2

L2
ρ(Ω) + κ ‖θr‖2

L2
ρ(Qτ )

≤ 1
2
‖u1‖2

L2
ρ(Ω) +

a

2

∥∥∥∥∂u0

∂r

∥∥∥∥
2

L2
ρ(Ω)

+
1
2
‖θ0‖2

L2
ρ(Ω) (b +

1
2
) ‖ut‖2

L2
ρ(Qτ )

+ (b +
1
2
) ‖θ‖2

L2
ρ(Qτ ) +

1
2
‖L2θ‖2

L2
ρ(Qτ ) +

1
2
‖L1u‖2

L2
ρ(Qτ ) . (4.13)

It is easy to check that
1
2
‖u(r, τ)‖2

L2
ρ(Ω) ≤

1
2
‖u0‖2

L2
ρ(Ω) +

1
2
‖u‖2

L2
ρ(Qτ ) +

1
2
‖ut‖2

L2
ρ(Qτ ) , (4.14)

If we sum side to side (4.13) and (4.14), we get

‖ur(r, τ)‖2
L2

ρ(Ω) + ‖ut(r, τ)‖2
L2

ρ(Ω) + ‖u(r, τ)‖2
L2

ρ(Ω) + ‖θ(r, τ)‖2
L2

ρ(Ω) + ‖θr‖2
L2

ρ(Qτ )

≤ c
(
‖u1‖2

L2
ρ(Ω) + ‖θ0‖2

L2
ρ(Ω) + ‖u0‖2

W 1
2,ρ(Ω) + ‖L2θ‖2

L2
ρ(Qτ )

+ ‖L1u‖2
L2

ρ(Qτ ) + ‖u‖2
L2

ρ(Qτ ) + ‖ut‖2
L2

ρ(Qτ ) + ‖θ‖2
L2

ρ(Qτ )

)
, (4.15)

where

c =
max(a, 2b + 2)
min(a, 1, 2κ)

.
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Applying Gronwall’s inequality [4] to (4.15), we obtain

‖u(r, τ)‖2
W 1,1

2,ρ (Ω) + ‖θ(r, τ)‖2
L2

ρ(Ω) + ‖θr‖2
L2

ρ(Qτ )

≤ cecT
(
‖u1‖2

L2
ρ(Ω) + ‖θ0‖2

L2
ρ(Ω) + ‖u0‖2

W 1
2,ρ(Ω) + ‖f‖2

L2
ρ(Qτ ) + ‖g‖2

L2
ρ(Qτ )

)
. (4.16)

Replacing the left-hand side of (4.16) by its upper bound with respect to τ over
(0, T ), gives the desired estimate (4.1), with C =

√
c exp( cT

2 ).
It can be proved in a standard way that the operator A : B = B1 ×B2 → H =

H1 × H2 is closable. Let A be its closure.

Proposition 4.2. The operator A : B → H has a closure.

Proof. The proof can be established in a similar way as in [12].
These are some consequences of Theorem 4.1.

Corollary 4.3. There exists a positive constant C such that

‖U‖B ≤ C
∥∥AU

∥∥
H

, ∀U ∈ D(A). (4.17)

Inequality (4.17) leads to the following results:

Corollary 4.4. A strong solution of (1.1)–(1.7) is unique and depends con-
tinuously on H = (H1,H2) ∈ H, where H1 = {f, u0, u1} and H2 = {g, θ0} .

Corollary 4.5. The range R(A) of A is closed in H and R(A) = R(A).

This last corollary shows that in order to prove that problem (1.1)–(1.7) has a
strong solution for arbitrary (H1,H2) ∈ H, it is sufficient to prove that the range
of A is dense in H; that is R(A) = H.

5. Solvability of the problem

Proposition 5.1. If, for some function W = (w1, w2) ∈ (L2
ρ(Q))2 and for all

elements U ∈ D0(A) = {U/U ∈ D(A) : �1u = �2u = �3θ = 0}, we have

(L1u,w1)L2
ρ(Q) + (L2θ, w2)L2

ρ(Q) = 0, (5.1)

then W vanishes almost everywhere in Q.

Proof. Since relation (5.1) holds for any element of D0(A), we then take an
element U = (u, θ) with a special form given by

U =
{ (0, 0), 0 ≤ t ≤ s

(
∫ t

s
(τ − t)uττ dτ,

∫ t

s
θτ dτ), s ≤ t ≤ T

(5.2)

such that (utt, θt) is a solution of the system{
rutt = E1(r, t),

rθt = E2(r, t),
(5.3)
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where E1(r, t) =
∫ T

t
w1(r, τ) dτ , and E2(r, t) =

∫ T

t
w2(r, τ) dτ . It is clear that{

w1 = −ruttt

w2 = −rθtt.
(5.4)

By virtue of relations (5.2) and (5.3), the function U = (u, θ) ∈ (L2
ρ(Q))2. In fact

U possesses a higher order of smoothness.
Using lemma 3.2 of [11], the function W = (w1, w2) represented by (5.4) is in

(L2
ρ(Q))2.

Replacing the functions w1 and w2 given by (5.4) in the relation (5.1), we
obtain

− (utt, uttt)L2
ρ(Q) + a(uttt, (rur)r)L2(Q) − b(rθr, uttt)L2

ρ(Q)

− (θt, θtt)L2
ρ(Q) + κ(θtt, (rθr)r)L2(Q) − b(rθtt, utr)L2

ρ(Q) = 0. (5.5)

Taking into account the special form of U given by (5.2) and (5.3), using conditions
(1.6)–(1.7), and integrating by parts each term of (5.5), gives

−(utt, uttt)L2
ρ(Q) =

1
2
‖utt(r, s)‖2

L2
ρ(Ω) , (5.6)

a(uttt, (rur)r)L2(Q) =
a

2
‖urt(r, T )‖2

L2
ρ(Ω) , (5.7)

−b(rθr, uttt)L2
ρ(Q) = b(rθrt, utt)L2

ρ(Q), (5.8)

−(θt, θtt)L2
ρ(Q) =

1
2
‖θt(r, s)‖2

L2
ρ(Ω) , (5.9)

κ(θtt, (rθr)r)L2(Q) = κ ‖θrt‖2
L2

ρ(Qs) , (5.10)

−b(rθtt, utr)L2
ρ(Q) = −b(rθrt, utt)L2

ρ(Qs) − 2b(θt, utt)L2
ρ(Qs).

(5.11)

Combining equalities (5.5)–(5.11), we get
1
2
‖θt(r, s)‖2

L2
ρ(Ω) +

1
2
‖utt(r, s)‖2

L2
ρ(Ω) +

a

2
‖urt(r, T )‖2

L2
ρ(Ω) + κ ‖θrt‖2

L2
ρ(Qs)

= 2b(θt, utt)L2
ρ(Qs), (5.12)

where Qs = Ω× [s, T ]. By using Cauchy-Schwarz inequality and discarding the two
last terms of the left-hand side of (5.12), we obtain

‖θt(r, s)‖2
L2

ρ(Ω) + ‖utt(r, s)‖2
L2

ρ(Ω)

≤ 2b

∫ T

s

(∫ 1

0

rθ2
t (r, t) dr +

∫ 1

0

ru2
tt(r, t) dr

)
dt. (5.13)

From (5.13), it follows that

− d

ds

{
e2bs

∫ T

s

(∫ 1

0

rθ2
t (r, t) dr +

∫ 1

0

ru2
tt(r, t) dr

)
dt

}
≤ 0. (5.14)

Integrating (5.14) over [s, T ] and using the fact that∫ T

s

(∫ 1

0

rθ2
t (r, t) dr +

∫ 1

0

ru2
tt(r, t) dr

)
dt |s=T = 0,
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it follows that

e2bs

(∫ T

s

∫ 1

0

rθ2
t (r, t) dr dt +

∫ T

s

∫ 1

0

ru2
tt(r, t) dr dt

)
≤ 0. (5.15)

Hence, we deduce from (5.15) that W = (w1, w2) = (0, 0) almost everywhere in Qs.
Proceeding in this way step by step, we prove that W = 0 almost everywhere in
Q.

We now prove the following theorem which gives the existence of a strong
solution of problem (1.1)–(1.7).

Theorem 5.2. For any (f, g) ∈ (L2
ρ(Q))2 and any u0 ∈ W 1

2,ρ(Ω), u1 ∈ L2
ρ(Q),

θ0 ∈ L2
ρ(Q), there exists a unique strong solution U = A

−1H = A−1H of the
problem (1.1)–(1.7), where H= (H1,H2) ∈ H, H1 = {f, u0, u1}, H2 = {g, θ0},
U = (u, θ) and

‖U‖B ≤ C ‖AU‖H ,

for a positive constant C, independent of U .

Proof. It is sufficient to prove that the range R(A) of A is dense in H = H1×H2.

Suppose that for some Ψ = (G1,G2) = ({w1, w3, w4} , {w2, w5}) ∈ H, the
orthogonal of R(A), so that

(AU,Ψ)H = ({L1u,L2θ} , {G1,G2})H

= ({(L1u, �1u, �2u), (L2θ, �3θ), ({w1, w3, w4} , {w2, w5})})H

= (L1u,w1)L2
ρ(Q) + (�1u,w3)W 1

ρ (Ω) + (�2u,w4)L2
ρ(Ω)

+ (L2θ, w2)L2
ρ(Q) + (�3θ, w5)L2

ρ(Ω) = 0. (5.16)

We must show that Ψ = 0. Putting U ∈ D0(A) in (5.16), we get

(L1u,w1)L2
ρ(Q) + (L2θ, w2)L2

ρ(Q) = 0, ∀U ∈ D(A). (5.17)

Hence proposition 5.1 implies that w1 = w2 = 0.

The relation (5.17), implies that

(�1u,w3)W 1
ρ (Ω) + (�2u,w4)L2

ρ(Ω) + (�3θ, w5)L2
ρ(Ω) = 0, (5.18)

for all U ∈ D(A).
Since the three quantities in (5.18) vanish independently and since the ranges

of the trace operators �1, �2, and �3 are respectively everywhere dense in the spaces
W 1

2,ρ(Ω), L2
ρ(Q), and L2

ρ(Q), therefore it follows, from (5.18), that w3 = w4 = w5 =
0. Hence R(A) = H.
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