ON A PROBLEM OF E. PRISNER CONCERNING THE BICLIQUE OPERATOR

BOHDAN ZELINKA, Liberec

(Received July 21, 2000)

Abstract. The symbol K(B, C) denotes a directed graph with the vertex set $B \cup C$ for two (not necessarily disjoint) vertex sets B, C in which an arc goes from each vertex of B into each vertex of C. A subdigraph of a digraph D which has this form is called a bisimplex in D. A biclique in D is a bisimplex in D which is not a proper subgraph of any other and in which $B \neq \emptyset$ and $C \neq \emptyset$. The biclique digraph $\vec{C}(D)$ of D is the digraph whose vertex set is the set of all bicliques in D and in which there is an arc from $K(B_1, C_1)$ into $K(B_2, C_2)$ if and only if $C_1 \cap B_2 \neq \emptyset$. The operator which assigns $\vec{C}(D)$ to D is the biclique operator \vec{C} . The paper solves a problem of E. Prisner concerning the periodicity of \vec{C} .

 $Keywords\colon$ digraph, bis implex, biclique, biclique digraph, biclique operator, periodicity of an operator

MSC 2000: 05C20

Let φ be a graph operator, let φ^n denote the *n*-th iteration of φ for a positive integer *n*. Let *G* be a graph (directed or undirected) for which $\varphi^n(G) \cong G$. Then we say that *G* is periodic in φ with periodicity *n*. If n = 1, then *G* is called fixed in φ .

We shall consider directed graphs (digraphs) without loops and without arcs having the same initial vertex and the same terminal one.

Let B, C be two (not necessarily disjoint) sets of vertices. By K(B, C) we denote the digraph with the vertex set $B \cup C$ in which an arc goes from each vertex of Binto each vertex of C. If we consider such a digraph as a subdigraph of a digraph D, we call it a bisimplex in D. A bisimplex in D which is not a proper subdigraph of any other and in which $B \neq \emptyset$ and $C \neq \emptyset$ is called a biclique in D.

A biclique digraph $\tilde{C}(D)$ of D is the digraph whose vertex set is the set of all bicliques in D and in which there is an arc from a biclique $K(B_1, C_1)$ into a biclique

371

 $K(B_2, C_2)$ if and only if $C_1 \cap B_2 \neq \emptyset$. The operator \vec{C} which assigns $\vec{C}(D)$ to D is called the biclique operator.

In [1], p. 207, E. Prisner suggests the following problem:

Are there, besides the dicycles, any other \vec{C} -periodic digraphs in the \vec{C} -semibasin of finite strongly connected digraphs?

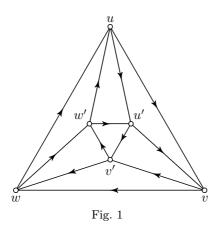
We shall not reproduce the definition of a semibasin from [1]; it suffices to say that in this problem we might say "in the class of finite strongly connected digraphs".

Before solving this problem we do a consideration concerning bicliques with $B \cap C \neq \emptyset$. In the definition of K(B,C) it was noted that B, C are not necessarily disjoint. Thus consider $B = \{x, z\}, C = \{y, z\}$. We consider no loops, therefore K(B, C) has three arcs xy, xz, zy.

The solution of the problem is the following theorem.

Theorem. There exists a finite strongly connected digraph D which is not a directed cycle and which is fixed in the biclique operator \vec{C} .

Proof. The vertex set of D is $V(D) = \{u, v, w, u', v', w'\}$ and the arc set is $A(D) = \{uv, vw, wu, u'v', v'w', w'u', uu', vv', ww', u'v, v'w, w'u\}$ (Fig. 1). This digraph is evidently finite and strongly connected and is not a directed cycle (dicycle).



Put $B_1 = C'_3 = \{u, u'\}, B_2 = C'_1 = \{v, v'\}, B_3 = C'_2 = \{w, w'\}, C_1 = B'_1 = \{u', v\}, C_2 = B'_2 = \{v', w\}, C_3 = B'_3 = \{w', u\}.$ The digraph D has exactly six bicliques, namely $C_i = K(B_i, C_i)$ and $C'_i = K(B'_i, C'_i)$ for $i \in \{1, 2, 3\}$. The reader may verify himself that there exists a homomorphic mapping $\varphi \colon V(D) \to V(C(D))$ such that $\varphi(u) = C_1, \varphi(v) = C_2, \varphi(w) = C_3, \varphi(u') = C'_1, \varphi(v') = C'_2, \varphi(w') = C'_3.$

Note that the digraph D is obtained from the graph of the regular octahedron by directing its edges in such a way that the indegrees and the outdegrees of all vertices become equal to 2.

372

References

[1] E. Prisner: Graph Dynamics. Longman House, Burnt Mill, Harlow, 1995.

Author's address: Bohdan Zelinka, Department of Applied Mathematics, Faculty of Education, Technical University of Liberec, Voroněžská 13, 46001 Liberec, Czech Republic, e-mail: bohdan.zelinka@vslib.cz.

373