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0. Introduction

J.Kurzweil, J.Mawhin and W. F. Pfeffer, to obtain an additive continuous integral
for which a quite general formulation of Gauss-Green theorem holds, introduced in
[5] a multidimensional integral (called I-integral) defined via BV partitions of unity.
In dimension one this integral falls properly in between the Lebesgue and Denjoy-
Perron integrals and the integration by parts formula holds.

An integral satisfying quite the same properties but defined by using partitions
with BV-sets or with figures (finite unions of intervals), was studied by W. F. Pfeffer
in [7] and [9]. Descriptive characterizations for this integral are given in [3] and
[8]. An application of the notion of absolute continuity given in [3] is contained in
[1], where a version of the controlled convergence theorem for the one-dimensional
Pfeffer-integral is proved.

It seems to us to be of interest to find a descriptive characterization even for
the I-integral. The aim of this paper is to solve this problem in the case of the
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one dimensional I-integral and then to apply it to prove a controlled convergence
theorem.
The main difficulty has been related to the fact that it is impossible to use the

Saks-Henstock lemma, since it is not known whether it holds for the I-integral. To
solve our problem we have made use of a useful modification of the Strong Lusin
condition introduced by P.Y. Lee in [6].

1. Preliminares

The set of all real numbers is denoted by �. If E ⊂ �, then χE , d(E), clE and |E|
denote the characteristic function, the diameter, the closure and the outer Lebesgue
measure of E, respectively. Let [a, b] be a fixed, non degenerate, compact interval of
�.

A figure of [a, b] is a finite nonempty union of subintervals of [a, b]. A collection of
figures is called nonoverlapping whenever the collection of their interiors is disjoint.
The algebraic operations and convergence for functions on the same set are defined
pointwise. The usual variation of a function ϑ over the interval [a, b] is denoted
V (ϑ, [a, b]). Let θ be a function on �, we set Sθ = {x ∈ � : θ(x) �= 0}. Given
θ ∈ L1(�) such that Sθ ⊂ (a, b) we set

‖θ‖ = inf V (ϑ, [a, b])

where the infimum is taken over all functions ϑ such that Sϑ ⊂ (a, b) and ϑ = θ

almost everywhere with respect to the Lebesgue measure in � (abbreviated as a.e.).
The family of all nonnegative functions θ on [a, b] for which θ and Sθ are bounded
and ‖θ‖ < +∞ is denoted by BV+([a, b]). The regularity of θ ∈ BV+([a, b]) at a
point x ∈ � is the number

r(θ, x) =

{ |θ|1
d(Sθ∪{x})‖θ‖ if d(Sθ ∪ {x})‖θ‖ > 0,

0 otherwise,

where |θ|1 denotes the L1 norm of θ. Let A be a figure of [a, b], then the characteristic
function χA of A belongs to BV+([a, b]) and the symbols ‖A‖ = ‖χA‖ and r(A, x) =
r(χA, x) coincide with those introduced in [2, Section 1].
A partition in [a, b] is a collection P = {(A1, x1), . . . , (Ap, xp)} where A1, . . . , Ap

are nonoverlapping subfigures of [a, b] and xi ∈ [a, b] for i = 1, . . . , p. In particular,
P is called

(i) special if A1, . . . , Ap are intervals;
(ii) tight if xi ∈ Ai for i = 1, . . . , p.
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A pseudopartition in [a, b] is a collection Q = {(θ1, x1), . . . , (θp, xp)} where
θ1, . . . , θp are functions from BV+([a, b]) such that

p∑
i=1

θi � χ[a,b] a.e. and xi ∈ [a, b]

for i = 1, . . . , p. We say that a pseudopartition P is anchored in a set E ⊂ [a, b]
if xi ∈ E for i = 1, . . . , p. Let P = {(A1, x1), . . . , (Ap, xp)} be a partition in
[a, b], then P ∗ = {(χA1 , x1), . . . , (χAp , xp)} is a pseudopartition in [a, b], called the
pseudopartition in [a, b] induced by P .
Let ε > 0 and let δ be a positive function on [a, b]. A pseudopartition Q =
{(θ1, x1), . . . , (θp, xp)} in [a, b] is called

(i) a pseudopartition of [a, b] if
p∑

i=1
θi = χ[a,b] a.e.;

(ii) ε-regular if r(θi, xi) > ε, i = 1, . . . , p;
(iii) δ-fine if d(Sθi ∪ {xi}) < δ(xi), i = 1, . . . , p.

A partition P = {(A1, x1), . . . , (Ap, xp)} in [a, b] is a partition of [a, b], or ε-regular,
or δ-fine whenever the pseudopartition P ∗ induced by P has the respective property.
For a given function f on [a, b] and a pseudopartition P = {(θ1, x1), . . . , (θp, xp)}

in [a, b] we set σ(f, P ) =
p∑

i=1
f(xi)

∫
[a,b] θi, where the symbol

∫
is used to denote the

Lebesgue integral.

Definition 1.1. (See [4].) A function f : [a, b] → � is said to be integrable
in [a, b] if there is a real number I with the following property: given ε > 0, we can
find a positive function δ on [a, b] such that

∣∣σ(f, P )− I
∣∣< ε

for each ε-regular δ-fine pseudopartition P of [a, b].

We denote by I([a, b]) the family of all integrable functions in [a, b] and set
∫ ∗
[a,b] f =

I. For each f ∈ I([a, b]), the function x �→ ∫ ∗
[a,x] f , defined on [a, b], is called the

primitive of f .
Let θ ∈ BV+([a, b]), then the distributional derivativeDθ is a signed Borel measure

in � whose support is contained in clSθ. For a bounded Borel function f on [a, b],∫
[a,b] fDθ denotes the Lebesgue integral of f over [a, b] with respect to Dθ.

Given a continuous function F on [a, b] and a pseudopartition P = {(θ1, x1), . . .,
(θp, xp)} in [a, b] we define

∑
P

∫
[a,b]

FDθ =
p∑

i=1

∫
[a,b]

FDθi.

The following lemma was proved in [4, Lemma 3.1].
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Lemma 1.2. Let f be a bounded function on [a, b] whose derivative f ′(x) exists
at x ∈ [a, b]. Given ε > 0, there is a δ > 0 such that∣∣∣∣f ′(x)|θ|1 +

∫
[a,b]

fDθ

∣∣∣∣ < ε|θ|1

for each θ ∈ BV+([a, b]) satisfying d(Sθ ∪ {x}) < δ and r(θ, x) > ε.

Proposition 1.3. Let f ∈ I([a, b]). If F (x) =
∫ ∗
[a,x] f for each x ∈ [a, b], then

the function F : [a, b] → � is continuous. In addition, for almost all x ∈ [a, b], F is
derivable at x and F ′(x) = f(x).

�����. Since I([a, b]) is a subfamily of the family R∗
t ([a, b]) introduced in [2,

Section 3], the proposition follows from [8, Proposition 2.4]. �
For each figure A ⊂ [a, b] and for each function F defined on [a, b] we set

F (A) =
n∑

h=1

[F (bh)− F (ah)],

where [a1, b1], . . . , [an, bn] are the connected components of A.

A function F (or a sequence {Fn} of functions ) is called AC∗ (see [3]) (respectively
uniformly AC∗ (see [1])) on a set E ⊂ [a, b] whenever for every ε > 0 there exist a
positive number α and a positive function δ on E satisfying the condition

p∑
i=1

∣∣F (Ai)
∣∣ < ε

(
sup

n

p∑
i=1

∣∣Fn(Ai)
∣∣ < ε

)

for each tight ε-regular δ-fine partition P = {(A1, x1), . . . , (Ap, xp)} in [a, b] anchored
in E with

∑p
i=1 |Ai| < α. A function F (a sequence {Fn}) is called ACG∗ (uniformly

ACG∗) on a set E ⊂ [a, b] whenever there are sets En ⊂ E, n = 1, 2, . . . such that

E =
∞⋃

n=1
En and F is AC∗ (uniformly AC∗) on each En.

2. Characterization of primitives

The following condition (denoted by WSL◦) is a modification of the Strong Lusin
condition, introduced by P.Y. Lee in [6].

Definition 2.1. Let N ⊂ [a, b] be a set of measure zero. A continuous function
F is said to satisfy condition WSL◦ on N if, given ε > 0, there exists a positive
function δ on [a, b] such that ∣∣∣∣ ∑

xi∈N

∫
[a,b]

FDθi

∣∣∣∣ < ε

for each ε-regular δ-fine pseudopartition P = {(θ1, x1), . . . , (θp, xp)} of [a, b].
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Proposition 2.2. Let f ∈ I([a, b]) and F (x) =
∫ ∗
[a,x] f . Then F is continuous,

derivable a.e. on [a, b] and satisfies conditionWSL◦ onN = {x : F ′(x) does not exist}.
�����. By Proposition 1.3, F is continuous and F ′(x) = f(x) a.e. in [a, b].

Then |N | = 0 and by [4, Corollary 2.10] we can assume f(x) = 0 on N and f(x) =
F ′(x) elsewhere. By Lemma 1.2, for each ε > 0 and for each x ∈ [a, b] \ N we can
find a δ0(x) > 0 such that∣∣∣∣f(x)|θ|1 +

∫
[a,b]

FDθ

∣∣∣∣ <
ε

2(b − a)
|θ|1

for every θ ∈ BV+([a, b]) satisfying d(Sθ ∪ {x}) < δ0(x) and r(θ, x) > ε. Since
f ∈ I([a, b]), there is a positive function δ on [a, b] (δ � δ0) such that∣∣σ(f, P )− [F (b)− F (a)]

∣∣ < ε
2

for each ε-regular δ-fine pseudopartition P of [a, b].
Let P = {(θ1, x1), . . . , (θp, xp)} be an ε-regular δ-fine pseudopartition of [a, b].

Then

σ(f, P ) =
p∑

i=1

f(xi)
∫
[a,b]

θi =
∑

xi∈[a,b]\N

f(xi)
∫
[a,b]

θi

and

−[F (b)− F (a)] =
∫
[a,b]

FDχ[a,b] =
∑

xi∈N

∫
[a,b]

FDθi +
∑

xi∈[a,b]\N

∫
[a,b]

FDθi.

Hence∣∣∣∣ ∑
xi∈N

∫
[a,b]

FDθi

∣∣∣∣ �
∣∣∣∣

p∑
i=1

f(xi)
∫
[a,b]

θi +
∫
[a,b]

FDχ[a,b]

∣∣∣∣
+

∣∣∣∣ ∑
xi∈[a,b]\N

(
f(xi)|θi|1 +

∫
[a,b]

FDθi

)∣∣∣∣
� ε

2
+

ε

2(b − a)

∑
xi∈[a,b]\N

|θi|1 � ε

2
+

ε

2(b − a)
(b − a) = ε.

Thus the claim is proved. �

Proposition 2.3. A function f on [a, b] belongs to I([a, b]) if and only if
there exists a continuous function F such that for almost all x ∈ [a, b] F is deriv-
able at x with F ′(x) = f(x) and satisfies condition WSL◦ on the set N = {x :
F ′(x) does not exist}. In particular, F (x) = ∫ ∗

[a,x] f.
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�����. The necessity is given in Proposition 2.2. Now suppose that there
exists a function F on [a, b] satisfying the hypotheses of the theorem. Then |N | = 0.
Assume f(x) = 0 on N and f(x) = F ′(x) elsewhere. Since F satisfies condition
WSL◦ on N , given ε > 0, there exists a positive function δ on [a, b] such that∣∣∣∣ ∑

xi∈N

∫
[a,b]

FDθi

∣∣∣∣ <
ε

2

for each ε-regular δ-fine pseudopartition P = {(θ1, x1), . . . , (θp, xp)} of [a, b].
By Lemma 1.2, to each x ∈ [a, b] \ N such a δ0(x) > 0 corresponds that∣∣∣∣f(x)|θ|1 +

∫
[a,b]

FDθ

∣∣∣∣ <
ε

2(b − a)
|θ|1

for each θ ∈ BV+([a, b]) satisfying d(Sθ ∪ {x}) < δ0(x) and r(θ, x) > ε. Define

δ∗(x) =

{
min{δ(x), δ0(x)} if x ∈ [a, b] \ N,

δ(x) if x ∈ N.

Then for each ε-regular δ∗-fine pseudopartition P = {(θ1, x1), . . . , (θp, xp)} of [a, b]
we have∣∣∣∣

p∑
i=1

f(xi)
∫
[a,b]

θi − [F (b)− F (a)]

∣∣∣∣
=

∣∣∣∣
p∑

i=1

f(xi)
∫
[a,b]

θi +
∫
[a,b]

FDχ[a,b]

∣∣∣∣
�

∣∣∣∣ ∑
xi∈N

∫
[a,b]

FDθi

∣∣∣∣+ ∑
xi∈[a,b]\N

∣∣∣∣f(xi)
∫
[a,b]

θi +
∫
[a,b]

FDθi

∣∣∣∣ < ε.

Hence f ∈ I([a, b]). �

������ 2.4. Let F : [a, b]→ � be a continuous function. If F is differentiable
a.e. on [a, b] and satisfies condition WSL◦ on the set N = {x : F ′(x) does not exist}
then F is ACG∗ on [a, b].

Indeed, by the previous theorem F ′ = f belongs to I([a, b]), thus f ∈ R∗
t ([a, b]). By

[3, Proposition 3.4] it follows that F is ACG∗ on [a, b].

Definition 2.5. Let F be a continuous function on [a, b] and let E ⊂ [a, b].
The function F is called AC◦ on E if, given ε > 0, there exist a positive number α

and a positive function δ on E such that

p∑
i=1

∣∣∣∣
∫
[a,b]

FDθi

∣∣∣∣ < ε
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for each ε-regular δ-fine pseudopartition P = {(θ1, x1), . . . , (θp, xp)} in [a, b] anchored

in E with
p∑

i=1
|θi|1 < α. The function F is called ACG◦ on E if there are measurable

sets En ⊂ E, n = 1, 2, . . . such that E =
∞⋃

i=1
En and F is AC◦ on each En.

������ 2.6. If F is ACG◦ on X ⊂ [a, b], then F is ACG∗ on X . In particular,
F is differentiable a.e. on X ([3], Corollary 3.3).

The following lemma is a straightforward modification of [3, Lemma 2.2].

Lemma 2.7. Let X ⊂ [a, b] and let F be an ACG◦ function on X. If E is
a subset of X of measure zero, given ε > 0, there exists a positive function δ on

[a, b] such that
p∑

i=1
| ∫[a,b] FDθi| < ε for each ε-regular δ-fine pseudopartition P =

{(θ1, x1), . . . , (θp, xp)} in [a, b] anchored in E.

Proposition 2.8. Let F be a continuous function on [a, b]. Then F is
differentiable a.e. in [a, b] and satisfies condition WSL◦ on the set N = {x :
F ′(x) does not exist} if and only if there exists a set X with |[a, b] \ X | = 0 such
that the function F is ACG◦ on X and satisfies condition WSL◦ on [a, b] \ X.

�����. Assume first that F is differentiable a.e. in [a, b] and satisfies condition
WSL◦ on the set N = {x : F ′(x) does not exist}. We show that F is ACG◦ on
X = [a, b] \ N. For n = 1, 2, . . ., let En = {x /∈ N : n − 1 � |F ′(x)| < n}, then
X =

∞⋃
i=1

En. By Lemma 1.2, for each ε > 0 and for each x ∈ En there is a δn(x) > 0

such that ∣∣∣∣F ′(x)|θ|1 +
∫
[a,b]

FDθ

∣∣∣∣ <
ε

2(b − a)
|θ|1

for all θ ∈ BV+([a, b]) satisfying d(Sθ ∪ {x}) < δn(x) and r(θ, x) > ε. Now let
αn = ε

2n . Then, for each ε-regular δn-fine pseudopartition P = {(θ1, x1), . . . , (θp, xp)}
in [a, b] anchored in En with

p∑
i=1

|θi|1 < αn it follows

∣∣∣∣
p∑

i=1

∫
[a,b]

FDθi

∣∣∣∣ �
p∑

i=1

∣∣∣∣F ′(xi)|θi|1 +
∫
[a,b]

FDθi

∣∣∣∣+
p∑

i=1

|F ′(xi)||θi|1 <
ε

2
+ nαn = ε

Hence F is AC◦ on En. �

Conversely, let T = [a, b] \ X and fix ε > 0. By Remark 2.6 F is differentiable
a.e. on X . Let N = {x : F ′(x) does not exist}, then N = N1 ∪ N2 where N1 ⊂ X

and N2 ⊂ T . By Lemma 2.7 there exists a positive function δ1 on [a, b] such that
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∑
P | ∫[a,b] FDθ| < ε

4 for each ε-regular δ1-fine pseudopartition P in [a, b] anchored
in N1.
Since F satisfies condition WSL◦ on T , there exists a positive function δ0 (δ0 � δ1)

such that ∣∣∣∣ ∑
xi∈T

∫
[a,b]

FDθi

∣∣∣∣ <
ε

4

for each ε-regular δ0-fine pseudopartition P = {(θ1, x1), . . . , (θp, xp)} of [a, b]. Use
Lemma 1.2 to find a positive function δ2 in T \ N2 such that∣∣∣∣F ′(x)|θ|1 +

∫
[a,b]

FDθ

∣∣∣∣ <
ε

4(b − a)
|θ|1

for each θ ∈ BV+([a, b]) satisfying d(Sθ ∪ {x}) < δ2(x) and r(θ, x) > ε. For n =
1, 2, . . ., set Tn = En ∩ (T \ N2), En being the sets defined above. Since |Tn| = 0
there exists an open set On such that Tn ⊂ On and |On| < ε/n2n+2. Now define a
positive function δ on [a, b] by setting

δ(x) =

{
min{δ0(x), δ2(x), ε/n2n+2} if x ∈ Tn, n = 1, 2, . . . ,

δ0(x) elsewhere.

Let P = {(θ1, x1), . . . , (θp, xp)} be an ε-regular δ-fine pseudopartition of [a, b]. It
follows that∣∣∣∣ ∑

xi∈N

∫
[a,b]

FDθi

∣∣∣∣ �
∣∣∣∣ ∑

xi∈N1

∫
[a,b]

FDθi

∣∣∣∣+
∣∣∣∣ ∑

xi∈N2

∫
[a,b]

FDθi

∣∣∣∣
� ε

4
+

∣∣∣∣ ∑
xi∈N2

∫
[a,b]

FDθi +
∑

xi∈T\N2

∫
[a,b]

FDθi

∣∣∣∣
+

∣∣∣∣ ∑
xi∈T\N2

∫
[a,b]

FDθi

∣∣∣∣
� ε

4
+

ε

4
+

∑
xi∈T\N2

∣∣∣∣F ′(xi)|θi|1 +
∫
[a,b]

FDθi

∣∣∣∣
+

∑
xi∈T\N2

|F ′(xi)||θi|1

� ε

2
+

ε

4
+

∞∑
n=1

∑
xi∈En

|F ′(xi)||θi|1 � 3
4
ε+

∞∑
n=1

n
ε

n2n+2
= ε.

Combining Theorem 2.3 and Proposition 2.8 we get the following theorem.

Theorem 2.9. A function f on [a, b] belongs to I([a, b]) if and only if there exist
a subset X of [a, b] and a continuous function F : [a, b]→ � such that
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(i) |[a, b] \ X | = 0,
(ii) F is ACG◦ on X ,
(iii) F satisfies condition WSL◦ on [a, b] \ X ,
(iv) F ′ = f a.e. on [a, b].

In particular, F (x) =
∫ ∗
[a,x] f.

It is interesting to point out that the Saks-Henstock lemma for the I-integral
has not been proved nor a counterexample has been produced. The validity of
the Saks-Henstock lemma would allow us to improve the formulation of the above
descriptive characterization. More precisely, in the formulation of condition WSL◦

the expression | ∑
xi∈N

∫
[a,b] FDθi| < ε would be replaced by

∑
xi∈N

| ∫[a,b] FDθi| < ε.

Thus in Proposition 2.3 the function F would satisfy such condition on every set of
measure zero, moreover the statement of Theorem 2.9 would be:
A function f on [a, b] belongs to I([a, b]) if and only if there exists a continuous

function F such that F is ACG◦ on [a, b] and F ′ = f a.e. on [a, b].

3. Controlled convergence

In this section we give a definition of uniform generalized absolute continuity and
use it to prove a controlled convergence theorem for sequences of I-integrable func-
tions.

Definition 3.1. Let {Fn} be a sequence of functions defined on [a, b]. We say
that {Fn} is uniformly AC◦ on E ⊂ [a, b] if, given ε > 0, there exist a positive
function δ on [a, b] and a positive number α such that

sup
n

p∑
i=1

∣∣∣∣
∫
[a,b]

FnDθi

∣∣∣∣ < ε

for each ε-regular δ-fine pseudopartition P = {(θ1, x1), . . . , (θp, xp)} in [a, b] anchored

in E with
p∑

i=1
|θi|1 < α. A sequence {Fn} of functions is said to be uniformly ACG◦

on E if there are disjoint sets Ek ⊂ E, k = 1, 2, . . . such that E =
∞⋃

k=1
Ek and every

Fn is uniformly AC◦ on each Ek.

Definition 3.2. Let N be a set of measure zero. A sequence of functions {Fn}
defined on [a, b] is said to satisfy uniformly condition WSL◦ on N if, given ε > 0,
there exists a positive function δ on [a, b] such that

sup
n

∣∣∣∣ ∑
xi∈N

∫
[a,b]

FDθi

∣∣∣∣ < ε

for each ε-regular δ-fine pseudopartition P = {(θ1, x1), . . . , (θp, xp)} of [a, b].
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Lemma 3.3. Let {Fn} be a sequence of functions and X a subset of [a, b] such
that
(i) |[a, b] \ X | = 0,
(ii) {Fn} is uniformly ACG◦ on X ,
(iii) {Fn} satisfies uniformly condition WSL◦ on [a, b] \ X.

Then {Fn} is uniformly ACG∗ on [a, b].

�����. Let X =
∞⋃

k=1
Ek, where the Ek’s are disjoint and the sequence {Fn} is

uniformly AC◦ on each Ek. Clearly the sequence {Fn} is uniformly AC∗ on Ek for
k = 1, 2, . . . .We have to prove that the sequence {Fn} is uniformly AC∗ on [a, b]\X .
Given ε > 0, there is a positive function δ on [a, b] such that

sup
n

∣∣∣∣ ∑
xi∈[a,b]\X

Fn(Ai)

∣∣∣∣ = sup
n

∣∣∣∣ ∑
xi∈[a,b]\X

∫
[a,b]

FnDχAi

∣∣∣∣ <
ε

2

for each ε-regular δ-fine partition P = {(A1, x1), . . . , (Ap, xp)} of [a, b]. Fix n � 1. By
Theorem 2.9 the function fn belongs to I([a, b]), hence (see Remark 2.6) its primitive
Fn is ACG∗ on [a, b]. Thus, by [3, Lemma 2.2] there is a positive function δn on [a, b]
(δn � δ) such that ∣∣∣∣

s∑
i=1

Fn(Ai)

∣∣∣∣ <
ε

2

for each ε-regular δn-fine partition {(A1, x1), . . . , (As, xs)} in [a, b] anchored in [a, b]\
X . Choose an ε-regular δ-fine partition P = {(A1, x1), . . . , (Ap, xp)} anchored in
[a, b] \ X . By Cousin’s lemma there exists a special and tight δn-fine partition P1 =
{(B1, y1), . . . , (Br, yr)} of [a, b] \ ∪P. Then P ∪ P1 is an ε-regular δ-fine partition of
[a, b]. Thus we obtain

∣∣∣∣
p∑

i=1

Fn(Ai)

∣∣∣∣ =
∣∣∣∣

p∑
i=1

Fn(Ai) +
∑

yr∈[a,b]\X

Fn(Bj)

∣∣∣∣+
∣∣∣∣ ∑

yr∈[a,b]\X

Fn(Bj)

∣∣∣∣ < ε.

Considering separately the subfigures Ai of P for which Fn(Ai) � 0 and those for
which Fn(Ai) < 0 it follows that the inequality |

s∑
i=1

Fn(Ai)| < ε can be replaced by

s∑
i=1

|Fn(Ai)| < ε. Thus we get

sup
n

s∑
i=1

∣∣∣∣Fn(Ai)

∣∣∣∣ < 2ε

and this completes the proof. �
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Definition 3.4. A sequence {fn} ∈ I([a, b]) is called I-control convergent to f

on [a, b] if fn → f a.e. in [a, b], {∫ ∗
[a,x] fn} is uniformly ACG◦ on X , where [a, b] \ X

is of measure zero, and {∫ ∗
[a,x] fn} satisfies uniformly condition WSL◦ on [a, b] \ X .

Theorem 3.5. If {fn} ∈ I([a, b]) is I-control convergent to f on [a, b], then
f ∈ I([a, b]) and

lim
n

∫ ∗

[a,b]
fn =

∫ ∗

[a,b]
f.

�����. By Lemma 3.3 the primitives Fn(x) =
∫ ∗
[a,x] fn of fn are uniformly

ACG∗. Thus by [1, Theorem 4.3] we get that lim
n

∫ ∗
[a,b] fn = (Rt)

∫ ∗
[a,b] f and F (x) =

(Rt)
∫ ∗
[a,x] f is ACG

∗ on [a, b]. It remains to show that there exists a set X with
|[a, b] \X | = 0 such that F is ACG◦ on X and satisfies condition WSL◦ on [a, b] \X .
We note that the sequence {Fn} is equicontinuous and since Fn(a) = 0, it is also
equibounded. Then, by Ascoli’s theorem, there is a subsequence {Fn(j)} of {Fn}
that converges uniformly to F on [a, b]. Given ε > 0 and a fixed k, choose δk and
δ on [a, b] and αk according to Definition 3.1 and Definition 3.2. Then the uniform
convergence of {Fn(j)} to F implies that

∑
P

∣∣∣∣
∫
[a,b]

FDθi

∣∣∣∣ � sup
n(j)

∑
P

∣∣∣∣
∫
[a,b]

Fn(j)Dθi

∣∣∣∣ < ε

for each ε-regular δk-fine pseudopartition P in [a, b] anchored in Ek with
p∑

i=1
|θi|1 < αk

and also ∣∣∣∣ ∑
xi∈N

∫
[a,b]

FDθi

∣∣∣∣ � sup
n(j)

∣∣∣∣ ∑
xi∈N

∫
[a,b]

Fn(j)Dθi

∣∣∣∣ < ε

for each ε-regular δ-fine pseudopartition P of [a, b].

Hence F is ACG◦ on X =
∞⋃

k=1
Ek with |[a, b]\X | = 0 and F satisfies condition WSL◦

on [a, b]\X . Thus by Theorem 2.9 we conclude that f ∈ I([a, b]) and F (x) =
∫ ∗
[a,x] f.

�

������ 3.6. Let g be a function of bounded variation on [a, b] and let {fn} ∈
I([a, b]) be I-control convergent to f on [a, b]. Then, by the integration by parts
formula [4, Proposition 3.3], we get

lim
n

∫ ∗

[a,b]
fng = lim

n

[
Fn(b)g(b)−

∫
[a,b]

Fn dg

]
= F (b)g(b)−

∫
[a,b]

F dg =
∫ ∗

[a,b]
fg.

	
����
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