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1. INTRODUCTION

Professor Jan Maiik, whose death in January of 1994 ended an outstanding career,
made significant contributions to several areas of mathematics including extensions
of differentiable functions. (See [3].) For his enormous contributions to analysis and
for our genuine affection for him, we dedicate this paper to his memory.

This paper is motivated by the following question. Assume that H C R is perfect
and for a function f: H — R both the kth ordinary derivative, f(*), and the kth
Peano derivative, fx, exist at all points of H. How large can the set Ej of those
points = in H be where f)(z) and fi(z) are different?

For k¥ = 1 the ordinary and Peano derivatives are the same. It follows from
Theorem 2 of this paper that for a given perfect set H the set E5 is countable.
Theorem 3 implies that if, in addition, we assume that the third ordinary and Peano
derivatives exist on H, then Fs is scattered. On the other hand Example 2 shows
that for n > 3, E,, = H is also possible for some perfect sets H.

* This author was supported by Grants FKFP B-07/1997 and Hungarian National Foun-
dation for Scientific Research Grant No. T 016094
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In our Theorems for higher values of & we must impose coincidence assumptions
about lower order Peano derivatives of the ordinary derivatives of f in order to
obtain results. Actually the non-coincidence sets we consider are non-coincidence
sets of “exact order” k, while the non-coincidence set Ej considered in the original
question is of “order” less or equal k. (We give more explanation of this heuristic
background in a remark following Theorem 6.)

In Section 4 the concept of y-gap porosity is introduced. In Theorem 5 it is proved
that if the set H is ~,-gap porous at the points z,, € H, then there is a k > 2 times
ordinary and Peano differentiable function such that z,, € Ej for all n. Theorem 6
shows that vy-gap porosity, in a certain sense, is also a necessary condition.

2. DEFINITIONS AND OTHER PRELIMINARIES

Throughout this paper H will denote a perfect subset of R, k& will be a fixed
element of N, ¢ and j will denote nonnegative integers and f: H — R. The usual
or iterative kth derivative of f will be denoted by f(*). For example if = € H, then

f'(z) = lim M Next the corresponding Peano derivative is defined.
Yy—T y—x
yeH

Definition 1. Let f: BC R — Rlet K € N and let « € B. Then f is k times
Peano differentiable at  means that there are numbers f;(x) for j = 1,2,...k and
there is a function e: B — R such that lim e(y) = 0, and for each y € B

y—z
yeB

k
f)=rf@)+) fj;;w) (y — ) +e(y)(y —2)".
=1 7
If z is an isolated point of B, then the numbers fi(z), fo(x),..., fr(z) are com-

pletely arbitrary. Otherwise they are unique if they exist. Examining the above sum
it is obvious that setting f(z) = fo(x) will be useful as will f(z) = f(©(z). The
reader unfamiliar with the notion of Peano derivatives is directed to [4]. The major
conditions imposed on the sets studied in this paper are motivated by the work done
in [1]. The specific theorem is as follows. (See page 395 of [1].)

Theorem 1. Let H C R be closed, let k € N and let f: H — R be k times
differentiable in both the usual sense and in the Peano sense on H. Suppose for each
i,7 € NU{0} with i + j < k we have that f() is j times Peano differentiable on
H and that (f(i))j = fU+9) on H. Then there is a function F: R — R which is k
times Peano differentiable on R such that F; = f; on H for each j =0,1,2,...,k.
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Simply stated, the purpose of this paper is to investigate the equality ( f (i))j =
fU+9) where f is defined on a nowhere dense set, H. If H is an interval, then the
existence of f(9) implies the existence of f; and the equality f(9) = f;. Consequently
the equality under study holds. However for a nowhere dense set it is possible for
fr(x) and f®*)(z) to both exist but to be different.

Since the hypotheses of Theorem 1 are used often in this paper, we introduce the

following useful notation. Let

PDy(H) ={f: H — R; fis k times differentiable in both the usual sense

and in the Peano sense}
and

NPD(H) = {f € PDx(H); i+ j < k and z € H imply (f<i>)j(x) exists}.

From Theorem 2 it follows that if the condition (f)) = f*/) holds on H for all
i+ j < k, with the exception i = 0, j = k, and k is even, then the set f; # f*)
is countable. If we have the additional information that f € PDyi1(H), then in
Theorem 3 we show that the previous exceptional set is scattered. However, for odd
k’s in Example 2 it is shown that there are non-empty perfect sets, H and functions,
f which satisfy the assumptions of Theorem 2 and f*) # f;. everywhere on H.

3. NON-COINCIDENCE SETS

We begin with a very simple but illustrative example.

Example 1. Let P = {p1,p2,...} be a countable set in R with no isolated
points, let {k,} be a sequence in N with &, > 2 for each n € N and let {a,,} be a
sequence in R. Then there is a function f: P — R which is infinitely differentiable
in the usual sense and in the Peano sense on P such that f*) = 0 on P for all k € N
and for each n € N we have fi(p,) = 0if k # k,, while fi (pn) = apn.

Let f(p1) = 0 and set g1(z) = f(p1) + ﬂ(9c —p1)*. Let a; = —o0 and by = +o0.

k!
Let n € N with n > 2 and suppose for j = 1,2,...,n—1, f(p,) has been defined and
set g;(z) = f(p;) + %(m —pj)¥i. Also suppose that for j = 1,2,...,n — 1 numbers
j.

a;,b; ¢ P have been selected so that p; € (a;,b;) and for i =1,2,...,(j — 1) either
(aj,b;) N (ai,b;) = 0, or (aj,b;) C (a;,b;) and in the latter case; i.e., p; € (ai,b;),

1 . .
|gz(x)_gj(x)| < exp<_m>' To define f(pn)7 let In = max{] € {17 27 e '777‘_1};
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pn € (aj,b5)}. (Since (a1,b1) = (—00,00), jn is defined.) Set f(pn) = g;, (pn) and
then let g,(z) = f(pn) + :—;(x — pn)Fr. To define a, and b, first select a closed
subinterval I of (a;, ,b;,) with p, in its interior. Let ¢ < j, with p, € (a;,b;). By
the induction hypotheses, (a;,,b;,) C (a;,b;) and |g;(z) — g, (z)] < exp(—ﬁ)
for z € (aj,,bj,). It follows that there is an ¢ > 0 such that for all i < j, with

— ) — lgi(z) — gj, ()|
o) @) — 05, @)
Because each g; is continuous and since g, (pn) — g;, (pn) = 0, it is not difficult to
see that there are a,,b, ¢ P with p, € (a,,b,) C I such that

Pn € (ai,b;) and for all z € I we have ¢ < exp(—

950 0) = 0(0)] < exp (= ) and () = g5, (@) < =

x = pj,|
To complete the induction step we need only consider the case ¢ < n with p,, € (as, b;).
By definition i < j,. If i = j,, then for € (an,b,) we have |g;, () — g(z)] <
1
exp(—i) If i < jn, then
|z — pj.|
19i(x) — gn(@)| < lgi(2) — g5, ()| + 195, (x) — gn ()|

<lgi(z) = gj,(z)| + ¢

) = lgi(@) = g, @)!

< loi(e) = g3, ()] + exp(~ 1=
.]n

To show that the function f has the desired properties, fix i € N and let n € N
with n > ¢ and p,, € (a;,b;). Then j, > i and by definition f(p,) = g;, (pn). Thus

00) = 0102} = 45, ) = ()] < exp( =)

By the definition of g; and since k; > 2, this estimate proves that f'(p;) = fi(p;) =0
(and hence that f*) =0 on P) and that fi(p;) = 0 if k # k; while f,(p;) = ;. O
The next example shows that for some perfect sets H for any integer larger than 2

the corresponding usual and Peano derivatives may exist and be different everywhere
on H.

Example 2. There is a perfect set H and, for each m € N with m > 3, a
function f € NPDy(H) for all & € N such that for all £ € N with & > 2 we have
f®) =0on H and fi =0 on H except for k = m while f,, = m! on H.

Remark 1. If m is odd then in the above Example we have f' = f; = 0 on H
which implies that (f(); = f(*9) holds except for i = 0 and j = m. When m is
even (f()); = f(+9) is always satisfied when i > 2, if i = 0, or 1 it is satisfied for all
j’s with the exception of j = m — i.
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Set £y = 1 and for each n € N let £,, = 10~"". In fact, any sequence satisfying the
following three properties can be chosen for our construction.

(i) lp—1—20, > %En,l holds for n = 2,3,....

o0 o0
(ii) For m, ng €N, m > 3 letting o,y = . (7 >0l, = 3 ™, we have

no
n=nog+1 n=ng+1

lim £, " 0n, =0 for all n € N.

no—oo

(iii) f” <0 lforn=23,...
n—1

Observe that the £,,’s we chose satisfy properties (i)—(iii).
Set 10,1 = [0, 1], 1171 = [0,51], and 11,2 = [1 — 61, 1] Suppose In,j = [a,b] has been

defined for n € N and for j € N, = {1,2,...,2"}. Then It+12j-1 = [a,a + {ny1]
o

and In+172j = [b — £n+1,b] defines In+1,j fOI'j S Nn+1. Let H = m U In,j. For
neN j=1

each v € H and for each n € N let j, , be that integer in NV, such that x € I,, ;. For

each n € N and for each j € N, let p, j(z) = an j(x — an ;) + Bn,; where ay, ; is the
left endpoint of I, ; and the constants o, ; and 3, ; will be defined later depending
on whether m is odd or even in a way that they will satisfy

(1) o, <675 and |8 5| <67

For z € H set f(x) = > Pnj,. (7).
neN

Note that for z,y € [0, 1]

(2) pny.jn,y (y) - pny.jn,z (‘r) = pny,jn,y (y) - pny,jn,z (y) + any.jn,z (y - ‘(I:)'

For z,y € H with z # y let no(z,y) = min{n € N; j, 5 # jn,}. Consequently, for
x,y € H with ¢ # y (denoting ng(z,y) by no) from (2) it follows that

1) g, e

y x

y—x

n<ng
Thus using (1) we have |py, ;. . (x)| < 207 . Since |y — x| > lpg—1 — 2ln, > lro—1/2
by (i) and (ii) it follows that the second term above tends to 0 as y — = (The term
n = ng must be dealt with separately, but clearly it is no more than 86?0__11 which
tends to 0 because m > 3.) and hence f'(z) = > anj, .-

neN
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Similarly for x,y € H with = # y

fly) = f(@) = fl@)(y —2) = (y —x)"
= ( > Py ®) = Prjo. (y)> —(y—a)"

n=ngo
= (Prosings @) = Prosinge @) = 0= 2)") + D" Puju, (0) = P v)
n>ng
=T(z,y) + S(z,y).

Since |y — x| > lpg—1 — 20y, and ng = no(x,y) — oo as y — z, conditions (i) and

(ii) imply that lim ‘fl(f;"l =0 for all n > m.
y—x 1
0 if j is odd
First let m be odd. Then put o, ; = 0 and 8, ; = Let
m_y if 7 is even.
z,y € Hwithx #y. If x <y, then z € I,,2;-1 and y € I,,2;. Thus T'(z,y) =
m 1 — (y—x)™. Since lyy—1 — 2ln, <y —x < Lp,—1, by condition (iii)

0< o (y — )™ <o (ng—1 = 26ne)™ = €3 [1_ (1_212&)?

nofl - ’I’L()*]. - nofl 1
no—

< [1— (1—m-2 fno )] < (2mereh)

no—1 en 1 no—1 no—1
0—
_ m—+no—1
=2ml, T

So by condition (i) for n > m

m+no(z,y)—1
< lim 2r—m@w=l

If y < z, then y € I,,9j—1 and = € I,,2;. Thus, since m is odd, T(z,y) =

—le _1 + (x —y)™. Now as above
0> (=)™ = Lloy1> (bng—1 = 2lng)™ — £ 4
and hence |T'(z,y)| < £ 1 — (bng—1 — 2{5,)™. So by the same argument as above,
T
lim M:Oforn>m.

y—a— |y — [
0 if j is odd
Now, let m be even. Then put 3, ; =0 and o, ; = Lo
£ if jis even.
If x < Y, then = € Ino,2j—1 and Yy e In0,2j~ Thus

1T (@, )] = 100 23 (= g ,) = (= 2) ™ < Oy — (y—2)™ < Ly = (y—a)™
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T (z,y)|

and proceeding as in the first part of the previous case yields limJr | B =0. If
y—zt |y —x
y <z, then y € I,; 2;—1 and x € I, 2;. Thus since m is even,
T(z, )| =| = 1Y = Angjug.) = (4 = @)™ | =1 1 (n,ug.. —Y) — (& —4)™]
< |(€n071 - 2£n0)m - E:Z)71|
= gnmo—l - (£n0*1 - 2€n0)m
. : : T y)|
and proceeding as in the second part of the first case yields lim ——== = 0.

sy —al
Therefore in all cases if n > m, then

W) S~ =)~ - )"

=0.
y—z (y — o)

Consequently if m is odd and m > 3, then f’(z) = 0 (because each «,, ; = 0) for all
x € H and hence f®) =0 on H for all k > 1. Moreover f;(z) = 0 if j # m while
fm(z) =ml! forall z € H.

On the other hand if m > 4 is even, then m’ = m — 1 > 3 is odd and letting

Br; = an; we have f'(z) = > B, ; ; that is, our earlier argument for odd m’s
neN

shows that (f')/(z) = f®(z) = 0 for all x € H and hence f*+1(z) = 0 for all
k > 1. Therefore f”(x) = 0 on H and hence f®) =0 on H for all k > 2. Moreover,
as above, f;j(z) = 0 if j # m while f,,,(x) = m! and we also have (f’);(z) = 0 if
j#m—1, while (f')m-1(z) = (m —1)! for all x € H.

The preceding example shows in particular that for n > 3 the nth ordinary and
the nth Peano derivatives can both exist and be different everywhere on H for some
perfect sets, H. The case n = 2 proves to be quite different as the next theorem
demonstrates. For example it shows that the second ordinary and the second Peano
derivatives can differ only on a countable set.

Theorem 2. Let H C R be perfect, let k € N with k > 2 and let f € PDy(H).
Suppose 0 < i < k with k — ¢ even and put

Ei={xeH; ifi'+j <korifi'+j =kandi >i, then
(f(i'))j, (z) exists and = f@*7)(z) and
(f9)_y(@) # FP (@)}
Then F; is countable.
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Proof. For rational numbers o and 8 with o > § and for n € N let

B = {x € H; (), (x) = fOH ) (@) for i' + j' <k,
(f(i/ )k M x) f(k)( )forz<z <k,

i j -8 —i
forye H,ly—z| < L, and f®@) >a>p8> (f(i))k_i(x)}.

The theorem will be proved if it can be shown that E,(ff is an isolated set. So
suppose to the contrary that x is a non-isolated point of Efff . Let ¢ > 0 and select
y € Ea’ﬂ with |y — 2| < & such that for i < i’ <k

) k—i f(i’) (z
3) ROEDY %
Jj=0 ’

(y - 2| < ely — a7

o,

n,i

Since both x and y belong to E

. k—i f(i) (x , o —
(4) ‘ﬂ”@)—}:ﬁ—ﬁyigy xY|<2%_€yw—xWﬂ
2 .
and
) ki f(i) (y) . o —
6 ‘f“)(x)—z(]#(x W] < sl —
=0

For u € H put

korG) (g ,
-3 B8y = ) - hiw

j=0
where h is a polynomial of degree no more than k. Then g(j)(x) =0forj=0,1,...,k
and for 0 <4/ < k

k—i

Du) = ) (u Z

Jj=

zﬂ) .
@) u—x)ﬂ.

Using the assumptions in the definition of E;ff and (3) for i <4’ < k we have

(6) 19 (y)] < ely — a7
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Again using the definition of Efff and (4) we infer

f(k) ({E) - (f(z))k,,l(x)

a—f
k — ) (y—=

20k — )]

(7) 99 () + )e

|k—i'

< ly —x

Since h is a polynomial of degree no more than k, by (5) we have

= (99), () + (A9),(y)
i

— j!

ki (g@)

ly — 2" > 9@ (@) + nO () —

a—f
20k — )]

(z —y)

=19 (z) -

(using (6) and that (g(i))j(y) =gt (y) for 1 < j < k —1i)

(g(i))kﬂ‘(y)

0— (2) N TR _ k—1i
> o= 9000 - L= e )
k—i—1 o k—i—j '
. %m_yp
=1 I
(g(l))k (y) k—1

Since (g(i))k_i(y) = (f(i))k_i(y) — f®) (), we obtain

sty =l el = e = g
@), (y) — f®(a ‘
g ‘_g(i)(y)_ ! )k_(;c(y_)i)!f ( )(96— )il
Using (7) we have
o — , 4 @Y (2) — FE) (g 4

Adding the two preceding inequalities together, canceling and keeping in mind that
k — i is even we obtain

®)  (a=B) +elk—i)(k—i)! > 2fP(z) = (f),_, () = (f),_,(@)] = A.
On the other hand z,y € Ef:f implies
FB @) >a>p> (fY), (@) and 5> (F9), ).
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Hence A > 2(a— ) and this contradicts (8) when ¢ is small. Thus Ef:f is countable.

In a similar fashion the set resulting from Efff by reversing the inequality between
« and 3 in the definition is also clearly countable. This observation concludes the
proof. O

The next theorem shows that if ¢ = 0 the set defined in Theorem 2, besides being
countable, is scattered when f is k + 1 times differentiable in both senses.

Theorem 3. Let k € N be even and let f € PDy1(H). Set
E={zeH; ifi+j<korifi+j=kand0<i, then(f(i))j(x) exists and
= fi) (@) and fi(z) # f*) ()}
Then E is nowhere dense in each () # F C H with F perfect.

Proof. By Theorem 2, F is countable. Let () # F C H be perfect. Suppose
there is an interval I; such that FNI; # @ and FF N E is dense in I; N F. Since fri1
is a Baire one function, there is an interval I C I; and an M € (0,00) such that
IL,NF # 0 and |fr+1(z)] < M for each x € I, N F. By the Baire Category Theorem
there is a 0 > 0 such that

K(;:{xelgﬁF; y € H and |z — y| < 0 implies

k+1 (o ‘
1)~ 3 L -y

=0 7

< |Z/ _ x|k+1}

is of the second category in Is N F. Also there is an interval I3 C I with IsNF # ()
such that Ky is of the second category in every subportion of I3 N F. Since F N E is
dense in I3 N F, we may select x € IsN F N E. Let € > 0. For y € E, y sufficiently
close to x

k
©) ‘f(y) B LG,

1l
=0 7

<ely—=f*

and for 0 <7 < k

(10) <ely —afF

o S U,

IRIOESY i

Jj=0

Since y € E, (10) may be rewritten as

, k=t p(itg) . ,
(11) yWNw—E:if%@hy—@J<ew—ﬂkﬂ
= b

390



As in the proof of Theorem 2 for u € H let

u—x)j.
=0

Then g (z) = 0 for j = 0,1,...,k. Since z € E, (9) implies for y € E sufficiently
close to z

F () — fu(@)

Ilc
k! ’

(12) 9(y) + (- <ely-2

Moreover for 0 < 7 < k

9@ (y) — ).

So (11) and the assumption that = € F imply |g( (y)| < |y —z|*~%. Also |[¢¥) (y)| =
|f®) (y) — f®)(z)| < e for y sufficiently close to z since f*+1)(z) exists. Because
g — [ is a polynomial of degree at most k, for y € K; sufficiently close to x we have

L () , kL () ,
o0 -3 LB y| = [0 - Y Ly <ol
j=0 J: j=0 7!
Thus by (12)
|z — gyt > ’ 3 gm y)?
) 8 () — Fo(z
> ‘f ( )k' fk( )( _y)k‘_’g(y)+f ( )k' fk( )(x_y)k‘
L))
‘Z'g j!(y ’fk+1 " -y

k

f() fk() k k k 1

T I L >4
]:

M

k+1
RS TEAA

Dividing by |z — y|*, using that y can be chosen arbitrarily close to = and that ¢ was
arbitrary we obtain an inequality which contradicts fy(z) # f*(z). O
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4. A POROSITY CONDITION

In this section we introduce a condition on the set H sufficient for the existence
of a function in NPD(H) for which f(*) = f, fails to hold on a dense subset of H.
We show that in some sense the condition is necessary.

Definition 2. Let H C R, let 0 < v < 1 and let z € H. Then H is y-gap porous
at x means there exist sequences a1 < as < ... < @y < ... <z <...<b <... <
by < by such that [age_;,_l, age_;,_g] NH = @, [bge.;,_g, bge.;,_l] NH= (Z), for / e NU {0}

Yx = ageq1] < lagese — azeqi],  Y|b2er1 — x| < [bagy1 — baryo

and
a —a boy — b
li | 2041 2£| 0, | 24 2€+1|

1500 |ageys — aseqr| 0500 [bars1 — bata|

The first condition asserts that [ag¢11,a2s42] is at least a fixed portion of the
interval [az¢41, ] while the second condition can be shown to be equivalent to stating
that the length of [aas, azet1] divided by the length of [age, x] tends to 0. Analogous
statement can be made concerning the sequence {b;}. These remarks are expressed
in a very useful way in the following proposition.

Proposition 4. Let H C R be perfect, let 0 < v < 1 and let x € H. The set
H is v-gap porous at x if and only if for each € > 0 there is a § > 0 such that if
11, y2 € H with |y; — x| < ¢ and either y1 < y2 < x or x < ya2 < y1, then we have
ly2 =il or ly2 — 1

= <E
|z — w1 |z — w1

The proof of the proposition is standard and hence is omitted.

Theorem 5. Let H be a perfect set, let k € N with k > 2 and for each n € N
let x,, € H. Suppose for each n € N there is a v, € (0,1) such that H is ~y,-gap
porous at T,. Then there is an f € NPDy(H) such that for each n € N we have
f®) () # fu(x,). In addition, for all n we can also insist that i + j < k implies
(fD);(zn) = fOH9)(x,) and 0 < i < k implies (fD)_;(z,) = f*)(2,).

Before proving this theorem we remark that given ay € (0,1) it is easy to construct
a perfect set H and a dense subset {x,; n € N} of H such that H is y-porous at
each x,. Then Theorem 5 provides a function, f, which is in NPDy(H). Since
{zn; n € N} is not scattered, by Theorem 3 f cannot belong to PDyy1(H).
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Proof. For eachn € Nlet an, / p, by e \, T, such that for each £ € N we
have

Yol — an 2041 < |On 2042 — Gn 2041,
Ynlbn,2041 — Tn| < |bn,2041 — bn,2042]
and
lim lan 2041 — an 20| o,
(=00 |an,2042 — Qn 20+41]
b —-b
li l n,20 n,2£+1| —0.

(=00 |bpoes1 — bnoeya|

Further assume, as we may, that |z, — an1| < 1 and |b,1 — z,] < 1 for each
n € N. For / e NU {0} set Ia,n’e = [an’24+1,an,25+g], Ib,n’g = [bn,2g+2,bn’24+1],
Jan,0 = (—00,an.1), Jpn,0 = (bn1,00) and for £ € N set Jg .0 = (an 20, G 20+1) and
Jbne = (bn2041,bn,2¢). Since H is y,-gap porous at z,, for £ € NU{0}, 1, , ,NH = 0,
Iyne NH =0, yplzn — an2es1| < Hanel, Ynlbn,2e41 — Tn| < |Ipnel, and

N damel | ol

lim =
=00 [Tamnel  [Lon,el

k

For eachn € N let o, = g—" Then a—Z < oo. Fixn € N. We define f(n): R —
" neN ’y'n,

R as follows. First put f(n)(z,) = 0. For £ € N U {0} the function f(n) is constant
on J, n¢ and on Jp ¢ and is linear on I, , ¢ and on I, ¢. In addition

F(n)(an2e42) — F(0)(an2041) = an ((an,2042 — 20)F — (@n2041 — 20)")

and

F)(n2e41) — F(0)(bn,20+2) = o ((bp2es1 — 20)* — (br2e42 — 20)").

Finally assume that f(n) is continuous at z,,. Hence f(n) is continuous everywhere.
Since |z, — an2041| < [La,n,e|/vn and since [by 2041 — Tn| < |Lpn,el /Y0

Q.
|f(n)(an2e42) — f(n)(an,2041)| < nl@n — an2e1]" < TZlfa,n,elk
n

and

o
|f(n)(bn201) — F(1)(Dnes2)| < anlbpoers — za|® < ?Ub,n,dk.
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Let z,y € U (Jane U Jpnye) with 2 < y. Let h = y — x and let {L; =

LeNU{0}
[ci,di]; @ € N'} denote the set of intervals I, ,,  and I ,, ¢ contained in (z,y) where
h; h; hE  h;
N CN. Put h; = |L;|. Then ) — <1 and since 0 < -~ < 1 implies 0 < - < —,
ien h h h h
we have > (%)k < 1; that is, Y h¥ < h*. Because f(n) is continuous at z,, and
ieN ieN
constant on each Jg ¢ and on each Jp ¢,
On
(13) [f(n)(y) — f(n)(z)] < W(y—x)k~
Since HC |J (JaneU Jbnr), the above inequality holds for x,y € H.
LeNU{0}
For z € H put f(z) = > f(n)(z). Since f(n) is constant on J, ¢ and on Jy ¢
neN
and since |z, —ap1| < 1 and |b, 1 —2,| < 1, from (13) it follows that | f(n)(x)] < a_z
Tn

for all x € H. Hence the sum defining f converges for all x € H.

Let € H\ {z,; n € N}. Then for each n € N there is an ¢, € N U {0} such
that © € Jane, U Jpne,. Let No € N Since f(n) is constant on J,, ¢ and on
Jb.n,e, there is an open interval U such that x € U and f(n) is constant on U for
ne€{1,2,...,Ng — 1}. Then for y € U by (13) we have

> (10 - f0060)| < 3 -l

’VLZNO TL}NO n

[f(y) = f(2)] =

Since > dn < o0, by definition it follows that f is k times Peano differentiable

at x and that fJ(x) =0 for all 1 < j < k. In particular since k > 2, we have
f'(@) = fi(z) =0.

To complete the proof it suffices to show that for each n € N, f is k£ times Peano
differentiable at z,, with fj(z,) =0 for 1 < j < k and fx(z,) = a, k! because then
f'=0on H and hence f*) = 0 on H while fy(x,) = a,k! # 0. First we show that
for each n € N if f(n) is k times Peano differentiable at x,,, then so is f and indeed
with the same Peano derivatives. To this end fix ng € N and choose Ny > ng. Then
there is an open interval U such that x,, € U and f(n) is constant on U for all
n < Ng — 1 with n # ng. Then for y € U

F) = f(@ny) = fn0) () = F(n0)(@ny) + D (F(0)(y) = f()(n))-

TL}NO

Thus o
£ (y) = f(@no) = (F(n0)(y) = F(no)(@no))| < D =y — iy |*

’I’LZNO n
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Therefore f'(xn,) = f'(no)(zn,) and for 1 < j < k we have f;(zn,) = fj(n0)(@n,)
whenever the right-hand side exists.

Finally it will be shown that for each n € N, f(n) is k times Peano differentiable
at x, with f(n);(z,) =0for 1 < j <k and f(n)x(zn) = ank!. Now fix n € N and
let € > 0. Because 0 < 7, < 1, there is K € N such that (1 —v,)% < ¢ and there
exists £y € N such that ¢ > ¢y implies

lJa,n,Zl < |Ia,n,€|% and |Jb,n,2| < lIb,n,€|%

Let x < z, with z € H so close to z,, that if ¢ € J,, ¢, then ¢ > {5. Set
t = |zp — an,20+1|; the distance between z,, and the right endpoint of J, . Since
| Ja,n,er| < [Tam,er|5= < t5, we conclude that ¢t < |z, — 2| < [Jane| +t < |[lome|5 +
t< t(l + %) Since |y, — an20+1] < [Lan,er|/Vn, we have

|Tn — an2e42| = |Tn — an2e41 — (@n2042 — An2e41)| <t =t = (1 — )t

Moreover
|$n - an,2€’+4| < (1 —v)|an — an,2€’+3| <(1- ’Yn)|$n - an,2€'+2| <(1- ’Yn)Qt

and in general

|Zn — an 241y < (1= 1)Kt < et.
In the interval (an,2e/+1,an,2(e/+K)) there are K intervals I, ¢; namely I, ¢,
Loger41s s Tapep—1. Since ol < [lanelf forall £ =0+ 1,0 +2,....0' +
K — 1, and since for these same values of £ we have |I, ¢ < t, it follows that
| Ja,n,e| < £t and consequently

+K—-1
37 el < (K = 1) &t < et.
=0 +1

The function f(n) changes by an((an,gug —2n)k — (an2041 — xn)k) on Igne =
[@n,2041, Gn 20+2], later it will also be useful to keep in mind that the sign of this

+K—1
change equals that of (—1)¥*1. From |z, — apo1x)| < et and Y [Jane| < et
=041
it is easy to see that (Recall that ¢t = |z, — an 20 41].)
ant® > (1) (f(n)(an 24 5)) = [ (1) (an,2041))
K1
= (DM DT f(n)(anera) = () (anzern)
=p
U+K-1
= (—1)* Z n((an2e01 — T0)F = (an2042 — 0)") > an ((1 = 26)t)%.
o=p
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From (13) and from the continuity of f(n) it follows that

(67% Qi
|f(n)(an,2(€/+K)) - f(n)(xn” < ?|an,2(£’+K) - $n|k < _kgktk~

Since f(n) is constant on J, ¢, we have f(n)(x) = f(n)(an,20+1); hence
[07%% Qp,
anth + —kaktk > (—1)k(f(n)(x) — f(n)(wn)) > an(l — 2e)kth — —ksktk.

Using the above inequality, ¢ < |z, — x| < (1 + #)t, and the fact that the above
argument is valid for any € > 0 one can easily verify that

f(n)(x) — f(n)(xn)

(x —xp)k

— Qp as T — Ty, T < Ty, and x € H.

N

A similar argument is valid when = > x,. This implies f;(n)(z,) = 0 for 0
j < k and fr(n)(z,) = ank! # 0. Therefore for each ng € N we have f'(x,,) =
f'(o)(@ne) = 0, fi(wn,) = fi(no)(wn,) = 0 for 1 < j < k, and fi(zn,) =
F1(n0)(#ng) = angk! # 0 = f®) ().

O

Theorem 6. Let H be a non empty perfect set and let f € NPDy(H). Assume
that f; = f9 on H forall2 < j < k—1 and let

E:{xEH; ifi+j<k,orifi+j==%kandi>0, then
(fD),(x) = f4)(2) and fi(z) # fP(2)}.

Suppose F is dense in H. Then there is a (non empty) portion I N H of H such that
for each x € I N E there is ay € (0,1) such that H is y-gap porous at x.

The above theorem seems to be too restrictive, but if F is not dense in H, then we
can still obtain some information about its size. It is clear that the union of dense
in itself sets is dense in itself. Let Fy denote a maximal dense in itself subset of F
and Hy be the closure of Ey. Then E \ Hy is a scattered set, and our theorem is
applicable to Hy. Here we also point out that the assumptions in the definition of the
set F are not unnatural either. If fi(z) # f*)(z) and 2 € E, then there is a k' < k
and 0 < 7 < k such that for g = f( the point = belongs to a set of non-coincidence,
E’, which is defined analogously to F by using g and k’. This means that one should
think of F as an “exact” non-coincidence set of order k.

Theorems 5 and 6 imply that Fs can be dense in H if and only if the set of gap
porosity points is dense in H. Furthermore the set {f*) # f,} can be dense in H
for some f € NPD(H) if and only if the set of gap porosity points of H is dense in
H.
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Proof. By Baire Category Theorem there is a portion I N H, a g > 0, an
M’ € (0,00) and a set F C I N H dense in I N H such that for each z € I N H we
have |fi(z)| < M’ and for each x € F' and each y € H with |y — z| < do

" i
(14) Z i <y —al*.

= !
Let p e INE. As in the proof of Theorem 2 for x € H we let

0-3

7=0

(J)

—p).

Then ¢\ (p) = g;(p) = 0 for all j = 0,1,....,k — 1, g®(p) = 0 and gr(p) =
fu(p) — f®)(p) # 0. In general for each y € H we have gi(y) = fr(y) — f* (p) and
hence |gx(y)] < M’ + |f®)(p)| = M for all y € I N H. Moreover since g — f is a
polynomial of degree no more than k, for z,y € H

4!

k k
o) - S L0 (i — iy - 3 I
! par
Thus by (14) for x € F and y € H with |y — z| < do

<y —al®

(15) ‘ Xk: 9@,

]
P

1
Let A = (%) "' and set v = HLA. We will now show that H is vy-gap

porous at p using Proposition 4.

Let ¢ > 0. By hypothesis, g;(z) = ¢\)(z) for each 2 € H and 1 < j < k and since
peE,ifi+j<korifi+j=Fkandi>0,then (g l)) (p) = g\"+9) (p). Thus there
isa0< 1 < dp such that y € H, |y —p| < 01 and 1 < z<k1mply

Z V(g — | < cily — pl*

i i—1 ,
where ¢; = z.|gZ'(p)| (1_—7> . Since ¢¥)(p) =0, for j = 0,1,...,k and |y — p| < &

we obtain

(16) l9i(y)| < eily —plF.
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Since gj(p) =0 for j =0,1,...,k — 1, there is a 0 < §, < &1 such that y € H and
|y — p| < 62 implies
ge\P
(17) o)~ 20y )| < ity i
e(1—7)""gr(p)l

(1+ (1 —v)k1)2k!
y < x < p. (The argument for p < < y is similar.) In addition assume that x € F.

By (15), (16) and (17)

Let x,y € H with |p — y| < d3. Further suppose

where €, =

N

k!
< gk,ff”)<y—p>k—g<y>|+|g<y> o) + \ (@)~ 20 oy
k k
<sk|y—pl’“+‘9(y)— - (y — z) Z ||y—xlj+sklx—pl
=0 =1
k-1 gy — pld
<sk(p—y)k+|y—w|k+§_:1Ejlx_p'j.! by~ | +%Iy—w|’“+sk(p—m)k~
Since
y—p)f = (@—p)f=ly—=l|> (y- —py
j=1
k
YD (- — ),
‘gk(p)‘( _ : oNE=G (0 i1
o | @ y)Z(p y) ' (p—x)
(18) = ‘
p—a) Jx_ J !
<ep(lp—y)*+ +Z€j y) +(Ml:;k>(x—y)k.

Suppose € < Z%z <7v.Sincep—y=p—z+ax—y<p—z+yp—vy), 1-7)p—y) <
(p—z).Sofor j=1,2,...,k—1

eip—a)" (@ —y) <ejla—y)p—y)r -y Ty

(19) <Ej(x_y)(p_y)k_j(p—x)j_1<i>j_l

= 120l ) p
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Also

e(p—v)* +@—2)") + (M; k!)(x—y)’“
N _ )l
< Ek(x_y)<€(g _7))161 (p 5) )
ra-n () (1) e-at
= |g;](£)| (z—y)p—a) '+ _|gg§£)| (z—y)(p—z)"
_ lato)

k—1

o @y - )

Summing inequality (19) multiplied by 1/4! for j = 1,2,...,k — 1, and adding to it
the above estimate contradicts inequality (18). Thus ﬁ <eor ﬁ > . Since F
is dense in I N H, we may assume that x € I N H. So by Proposition 4 the set H is

¥-gap porous at p. U
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