| 1 | Abramowitz, M., and Stegun, I.A., eds., Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables, (Dover, New York, 1972). | |
| 2 | Agresti, J., Researches on Non-standard Optics for Advanced Gravitational Waves
Interferometers, Ph.D. Thesis, (University of Pisa, Pisa, 2007). [ |
|
| 3 | Bondarescu, B., and Thorne, K.S., “New family of light beams and mirror shapes for future
LIGO interferometers”, Phys. Rev. D, 74, 082003, 1–6, (2006). [ |
|
| 4 | Bondarescu, M., Kogan, O., Chen, Y., Lundgreen, A., Bondarescu, R., and Tsang, D., “Beams of
the Future”, Joint LSC/VIRGO Meeting, Hanover, Germany, October 22 – 26, 2007, conference
paper, (2007). Related online version (cited on 22 July 2008): |
|
| 5 | Bondu, F., Hello, P., and Vinet, J.-Y., “Thermal noise in mirrors of interferometric gravitational
wave antennas”, Phys. Lett. A, 246, 227–236, (1998). [ |
|
| 6 | Born, M., and Wolf, E., Principles of Optics: Electromagnetic Theory of Propagation,
Interference and Diffraction of Light, (Cambridge University Press, Cambridge; New York,
1999), 7th exp. edition. [ |
|
| 7 | Braginsky, V.B., Gorodetsky, M.L., and Vyatchanin, S.P., “Thermodynamical fluctuations and
photo-thermal shot noise in gravitational wave antennae”, Phys. Lett. A, 264, 1–10, (1999).
[ |
|
| 8 | Braginsky, V.B., and Vyatchanin, S.P., “Thermodynamical fluctuations in optical mirror
coatings”, Phys. Lett. A, 312, 244–255, (2003). [ |
|
| 9 | Callen, H.B., and Welton, T.A., “Irreversibility and Generalized Noise”, Phys. Rev., 83, 34–40,
(1951). [ |
|
| 10 | Courty, J.-M., Heidmann, A., and Pinard, M., “Quantum Locking of Mirrors in Interferometers”,
Phys. Rev. Lett., 90, 083601, 1–4, (2003). [ |
|
| 11 | D’Ambrosio, E., “Nonspherical mirrors to reduce thermoelastic noise in advanced gravitational
wave interferometers”, Phys. Rev. D, 67, 102004, 1–16, (2003). [ |
|
| 12 | D’Ambrosio, E., O’Shaughnessy, R., Strigin, S., Thorne, K.S., and Vyatchanin, S.P., “Reducing
Thermoelastic Noise in Gravitational-Wave Interferometers by Flattening the Light Beams”,
arXiv e-print, (2004). [ |
|
| 13 | Degallaix, J., Zhao, C., Ju, L., and Blair, D.G., “Simulation of bulk-absorption thermal lensing
in transmissive optics of gravitational waves detectors”, Appl. Phys. B, 77, 409–414, (2003).
[ |
|
| 14 | Degallaix, J., Zhao, C., Ju, L., and Blair, D.G., “Thermal lensing compensation for AIGO high
optical power test facility”, Class. Quantum Grav., 21, S903–S908, (2004). [ |
|
| 15 | Di Paulo Emilio, M., personal communication. | |
| 16 | Durnin, J., Miceli Jr, J.J., and Eberly, J.H., “Diffraction-Free Beams”, Phys. Rev. Lett., 58,
1499–1501, (1987). [ |
|
| 17 | Fejer, M.M., Rowan, S., Cagnoli, G., Crooks, D.R.M., Gretarsson, A.M., Harry, G.M., Hough, J.,
Penn, S.D., Sneddon, P.H., and Vyatchanin, S.P., “Thermoelastic dissipation in inhomogeneous
media: loss measurements and displacement noise in coated test masses for interferometric
gravitational wave detectors”, Phys. Rev. D, 70, 082003, (2004). [ |
|
| 18 | Harry, G.M., Gretarsson, A.M., Saulson, P.R., Kittelberger, S.E., Penn, S.D., Startin, W.J.,
Rowan, S., Fejer, M.M., Crooks, D.R.M., Cagnoli, G., Hough, J., and Nakagawa, N., “Thermal
noise in interferometric gravitational wave detectors due to dielectric optical coatings”, Class.
Quantum Grav., 19, 897–917, (2002). [ |
|
| 19 | Hello, P., Modele physique et simulation de l’antenne interferometrique gravitationnelle Virgo, Ph.D. Thesis, (Université Paris-Sud, Orsay, 1990). | |
| 20 | Hello, P., and Vinet, J.-Y., “Analytical models of thermal aberrations in massive mirrors heated
by high power laser beams”, J. Phys. France, 51, 1267–1282, (1990). [ |
|
| 21 | Hello, P., and Vinet, J.-Y., “Analytical models of transient thermoelastic deformations of mirrors
heated by high power cw laser beams”, J. Phys. France, 51, 2243–2261, (1990). [ |
|
| 22 | Ju, L., Aoun, M., Barriga, P., Blair, D.G., Brooks, A., Burman, R., Burston, R., Chin, X.T.,
Chin, E.J., Lee, C.Y., Coward, D., Cusack, B., de Vine, G., Degallaix, J., Dumas, J.C., Garoi,
F., Gras, S., Gray, M., Hosken, D.J., Howell, E., Jacob, J.S., Kelly, T.L., Lee, B., Lee, K.T.,
Lun., T., McClelland, D.E., Mow-Lowry, C.M., Mudge, D., Munch, J., Schediwy, S., Scott, S.,
Searle, A., Sheard, B., Slagmolen, B.J.J., Veitch, P.J., Winterflood, J., Woolley, A., Yan, Z., and
Zhao, C., “ACIGA’s high optical power test facility”, Class. Quantum Grav., 21, S887–S893,
(2004). [ |
|
| 23 | Katz, J.I., “Temperature Dependence of the Index of Refraction of Fused Silica. Answer to
Question #50”, Am. J. Phys., 65, 942–943, (1997). [ |
|
| 24 | Landau, L.D., and Lifshitz, E.M., Theory of Elasticity, Course of Theoretical Physics, vol. 7, (Pergamon Press, Oxford; New York, 1986), 3rd edition. | |
| 25 | Lawrence, R., Ottaway, D., Zucker, M., and Fritschel, P., “Active correction of thermal lensing
through external radiative thermal actuation”, Opt. Lett., 29, 2635–2637, (2004). [ |
|
| 26 | Levin, Y., “Internal thermal noise in the LIGO test masses: A direct approach”, Phys. Rev. D,
57, 659–663, (1998). [ |
|
| 27 | “LIGO Laboratory Home Page”, project homepage, California Institute of Technology. URL
(cited on 10 July 2008): |
|
| 28 | Liu, Y.T., and Thorne, K.S., “Thermoelastic noise and homogeneous thermal noise in finite sized
gravitational-wave test masses”, Phys. Rev. D, 62, 122002, 1–10, (2000). [ |
|
| 29 | Lovelace, G., “The dependence of test-mass thermal noises on beam shape in gravitational-wave
interferometers”, Class. Quantum Grav., 24, 4491–4512, (2007). [ |
|
| 30 | Lück, H., Freise, A., Goßler, S., Hild, S., Kawabe, K., and Danzmann, K., “Thermal correction
of the radii of curvature of mirrors for GEO 600”, Class. Quantum Grav., 21, S985–S989, (2004).
[ |
|
| 31 | Mours, B., Tournefier, E., and Vinet, J.-Y., “Thermal noise reduction in interferometric
gravitational wave antennas: using high order TEM modes”, Class. Quantum Grav., 23,
5777–5784, (2006). [ |
|
| 32 | Nakagawa, N., “Thermal noise in half-infinite mirrors with nonuniform loss: A slab of excess
loss in a half-infinite mirror”, Phys. Rev. D, 65, 102001, (2002). [ |
|
| 33 | O’Shaughnessy, R., Strigin, S., and Vyatchanin, S.P., “The implications of Mexican-hat mirrors:
calculations of thermoelastic noise and interferometer sensitivity to perturbation for the
Mexican-hat-mirror proposal for advanced LIGO”, arXiv e-print, (2004). [ |
|
| 34 | Rowan, S., Cagnoli, G., Sneddon, P.H., Hough, J., Route, R., Gustafson, E.K., Fejer, M.M., and
Mitrofanov, V., “Investigation of mechanical loss factors of some candidate materials for the
test masses of gravitational wave detectors”, Phys. Lett. A, 265, 5–11, (2000). [ |
|
| 35 | Savov, P., and Vyatchanin, S., “Estimate of tilt instability of mesa-beam and Gaussian-beam
modes for advanced LIGO”, Phys. Rev. D, 74, 082002, 1–10, (2006). [ |
|
| 36 | Somiya, K., and Yamamoto, K., “Coating thermal noise of a finite-size cylindrical mirror”, Phys.
Rev. D, 79, 102004, (2009). [ |
|
| 37 | Thorne, K.S., “Gravitational radiation”, in Hawking, S.W., and Israel, W., eds., Three Hundred
Years of Gravitation, pp. 330–458, (Cambridge University Press, Cambridge; New York, 1987).
[ |
|
| 38 | Timoshenko, S., and Goodier, J.N., Theory of Elasticity, (McGraw-Hill, New York, 1951), 2nd edition. | |
| 39 | Uchiyama, T., Tatsumi, D., Tomaru, T., Tobar, M.E., Kuroda, K., Suzuki, T., Sato,
N., Yamamoto, A., Haruyama, T., and Shintomi, T., “Cryogenic cooling of a sapphire
mirror-suspension for interferometric gravitational wave detectors”, Phys. Lett. A, 242, 211–214,
(1998). [ |
|
| 40 | Vinet, J.-Y., “Mirror thermal noise in flat-beam cavities for advanced gravitational wave
interferometers”, Class. Quantum Grav., 22, 1395–1404, (2005). [ |
|
| 41 | “Virgo”, project homepage, INFN. URL (cited on 10 July 2008): |
|
| 42 | Willems, P., “Thermal Compensation in LIGO”, Joint LSC/VIRGO Meeting, Baton Rouge, LA,
March 19 – 22, 2007, conference paper, (2007). Related online version (cited on 22 July 2008): |
|
| 43 | Zhao, C., Degallaix, J., Ju, L., Fan, Y., Blair, D.G., Slagmolen, B.J.J., Gray, M.B., Mow Lowry,
C.M., McClelland, D.E., Hosken, D.J., Mudge, D., Brooks, A., Munch, J., Veitch, P.J., Barton,
M.A., and Billingsley, G., “Compensation of Strong Thermal Lensing in High-Optical-Power
Cavities”, Phys. Rev. Lett., 96, 231101, (2006). [ |
| http://www.livingreviews.org/lrr-2009-5 | This work is licensed under a Creative Commons License. Problems/comments to |