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GEODESIC FLOWS ON THE QUOTIENT OF THE UPPER
HALF PLANE OVER THE HECKE GROUP
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Abstract. The Hecke groupGα is a family of discrete sub-groups of PSL(2, R).
The quotient space of the action of Gα on the upper half plane gives a Riemann
surface. The geodesic flows on this surface are ergodic. Here, by constructing
a phase space for the geodesic flows hitting an appropriate cross section, we
find the arithmetic code of these flows and show that their code space is a
topological Markov chain.

1. Introduction and preliminaries

Let H = {z = x+ i y : y > 0} be the upper half plane with hyperbolic metric
ds = |dz|

y
. With this metric, the geodesics on H are of the form x = a or they are

semicircles with center on x-axis [6].

By identifying the transformation az+b
cz+d

with the matrix
(
a b
c d

)
, the group of

orientation preserving isometries on H is the group

PSL(2, R) =

{
A =

(
a b
c d

)
: detA = 1, a, b, c, d ∈ R

}
.

The discrete subgroups of PSL(2, R) are called the Fuchsian groups and the
action of them on H is discontinuous. This means that if G ≤ PSL(2, R) is a
Fuchsian group, then for any z = x + iy ∈ H, the orbit G(z) = {g(z), g ∈ G}
has no accumulation point in H. A Fuchsian group is called of the first kind if
its limit set Λ(G) equals R ∪ {∞}.

Let Tα(z) = z + α and S(z) = −1
z
. Hecke proved that Gα = 〈Tα, S〉 is a

Fuchsian subgroup of PSL(2, R) if and only if α = 2 cos π
q
, for some integer
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q ≥ 3 [4]. Under this condition, Gα is called the Hecke group. When q = 3, then
α = 1 and G1 is called the modular group. The action of the Hecke group Gα

on H gives a Riemann surface denoted by Mα = H/Gα. This surface is called
the Hecke surface and topologically is a punctured sphere with two elliptic fixed
points of orders 2 and q. Any oriented geodesic γ onMα lifts to infinitely many
oriented geodesics on H. All of these geodesics are Gα-equivalent; this means
that if γ1, γ2 ∈ H are two lifts of γ ∈ Mα, then there exists g ∈ Gα such that
γ1 = gγ2.

Let T 1H = ∪z∈HT 1
zH and T 1Mα = ∪x∈MαT

1
xMα be the unit tangent bundles

of H and Mα, respectively. The projection map π : T 1H → T 1Mα projects
the vectors tangent to equivalent geodesics on H to the vectors tangent to the
corresponding geodesic onMα.

The geodesic flow ϕt : T 1H → T 1H is defined as ϕt(v) = w, where v, w ∈ T 1H
are tangent to a geodesic and hyperbolic distance of their base points equals t.
Also, ϕt+s = ϕt ◦ ϕs.

In Section 2, we give the Rosen algorithm to compute the α-minus continued
fraction of real numbers [7] with a little adjustment via a function Hα. Then in
Section 3 using the notion of reduced geodesics and the orbit of the point 2

α
under

Hα, we will introduce an appropriate phase space for the cross section of geodesic
flows on a Hecke surface. In Section 4, we give a coding which is a useful tool to
verify the dynamical properties of geodesic flows on this surface. The obtained
code space is topologically Markov chain.

2. α-minus continued fraction

There are different ways to find the α-minus continued fraction (α-MCF) ex-
pansion for a given x ∈ R, but when the algorithm of finding the coefficients
of the fraction is given by a function, then x can be uniquely expressed by an
α-MCF expansion. Here we define such a function as follows.

For x ∈ R, let

Hα(x) =

{ −1
x−b x

α
+ 1

2
cα if x ∈ R− {αZ}

0 if x ∈ αZ,

where b.c is the floor function. This function is simply the composition of a
reflection function −1

x
and a translation function x− b x

α
+ 1

2
cα, which are similar

to the action of the elements of Gα with generators S(z) = −1
z

and Tα(z) = z+α.
Note that if 2k−1

2
α ≤ x < 2k+1

2
α, then b x

α
+ 1

2
c = k. Here we give an algorithm to

find α-MCF expansion of x ∈ R.

Definition 2.1. Let x = x0 ∈ R and a0 = b x
α

+ 1
2
c. Define

xj =
−1

x− aj−1α
and aj = bxj

α
+

1

2
c.
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If xj ∈ αZ, then the algorithm stops. For x ∈ R, we obtain a finite or infinite
sequence of non-zero integers a0, a1, a2, · · · . So, x can be expressed by

x = [a0, a1, · · · ]α = αa0 −
1

αa1 − 1
αa2− 1

...

. (2.1)

Definition 2.2. Define c+α : R → {Z − {0}}N to be the forward code map as
c+α (x) = [a0, a1, · · · ]α whose entries are the coefficients of the α-MCF expansion
of x obtained in (2.1).

Remark 2.3. 1) If x = [a0, a1, · · · , an]α, then x = αa0 − 1
αa1− 1

...− 1
αan

as in

(2.1). Using the generators of Gα, we have x = T a0α ST
a1
α S · · ·ST anα (0).

If x = [a0, a1, · · · , an, · · · ]α has an infinite α-MCF expansion, then x =
limn→∞ T

a0
α ST

a1
α S · · ·ST anα (0) which is a limit point for Gα.

2) Two points x = x = [a0, a1, · · · ]α and y = x = [b0, b1, · · · ]α are equivalent
if they have the same tail i.e., there exist i0, j0 ≥ 1 such that for all k ≥ 0
, ai0+k = bj0+k.

Let A = Z − {0} be the set of alphabets. Any finite sequence of non-zero
integers ai, · · · , ai+n is called a block. Let

Σ+
α = {(a0, a1, · · · )α : x = [a0, a1, · · · ]α, x ∈ R− αZ} ⊆ AZ.

Define the shift map σ : Σ+
α → Σ+

α as σ(ai) = ai+1, i ∈ N. The pair (Σ+
α , σ) is

called symbolic dynamics.

Remark 2.4. The forward code map is a conjugacy between the maps Hα and σ.
That is, c+(Hα(x)) = σ(c+(x)).

3. Phase space

Recall that Mα = H/Gα. A fundamental region Dα corresponds to Mα or
equivalently to the group Gα. For any side si of Dα, there exist a generator
g ∈ Gα and a side sj of Dα such that sj = g(si) or sj = g−1(si). The closure of
the region Dα for the Hecke group Gα is the region

Dα = {z ∈ H : |z| ≤ 1, |x| ≤ α

2
}.

Since Gα is a discrete group, it acts discontinuously on H; that is for any gi ∈ Gα

and z ∈ H, limn→∞ g1 ◦ g2 ◦ · · · ◦ gn(z) does not have any accumulation point
inside H. Therefore,

⋃
g∈Gα gDα will tile H. Let Nα be the net of the sides of the

regions gDα, for all g ∈ Gα.
Let γ̃ be a geodesic on Mα. This geodesic lifts to infinitely many geodesics

γi = (wi, ui) ∈ H such that for any two geodesics γ1 and γ2, there exists g ∈ Gα

such that γ1 = gγ2. Let v be a vector tangent to γ in the direction of the geodesic
with base point at p ∈ γ. Let g(v) be the vector with base point g(p) ∈ g(γ) and
tangent to γ in the direction of the geodesic. The vectors g(v) for all g ∈ Gα are
equivalent and project to just one vector on Mα. We use this property to find
an appropriate cross section for the set of geodesic flows.
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A natural cross section for geodesic flows usually called the geometric cross
section is the set of all vectors with base point on the sides of Dα and pointing
inward Dα. These vectors have the property that they are tangent to the geodesic
γ = (w, u) with |u| ≤ 1 and |w| ≥ 1.

Since the geodesic flow moves the unit vectors tangent to the geodesics with
speed one, we can deal with the geodesic itself instead of the geodesic flow.

Any geodesic γ = (w, u) corresponds to a unique point (w, u) in the wu-plane.
A simple calculation shows that the corresponding geodesics on wu-plane form
a curvilinear region [1], but since we aim to find the arithmetic codes of the
geodesics in which the code of w is independent from the code for u, we should
choose a rectangular region. Therefore, we will pick an equivalent fundamental
region Rα instead of Dα by considering the vector g(v) instead of v for an appro-
priate g ∈ Gα with base point on the boundary of g(Dα). The region Rα has the
property that the set of geodesics meeting it, forms a rectangular phase space in
uw-plane denoted by Tα. Such a region Rα is not unique.

Definition 3.1. A geodesic γ = (w, u) ∈ H with |u| ≤ 1 and |w| ≥ 1 is called a
reduced geodesic, if it meets Rα.

Let Tα be the set of all reduced geodesics γ = (w, u) for a fixed Rα. Clearly,
Rα being a fundamental region, means that if γ = (w, u) ∈ Tα, then Sγ or
T kαγ 6∈ Tα, for k ∈ Z − {0}. Since the geodesic flows on Mα is ergodic [5], it
suffices to find the rectangular phase space Tα such that for any γ = (w, u) ∈ Tα,
ST−kα (γ) ∈ Tα, for some k ∈ Z− {0}.

For α = 2 cos π
q
, let

hq =

{
q−2
2

if q is even
q−3
2

if q is odd.
The orbits of the points ±α

2
play an important rule to find the boundaries of the

phase space. In the following lemma, we obtain the orbit of these points and later
in Definitions 3.3 and 3.4, we use them to construct the phase space.

Lemma 3.2. The point 2
α
has the finite α-MCF expansion

2

α
=


[−1, · · · ,−1︸ ︷︷ ︸

hq−1 times

]α if q is even

[−1, · · · ,−1︸ ︷︷ ︸
hq−1 times

, 2,−1, · · · ,−1︸ ︷︷ ︸
hq−1 times

]α if q is odd.

Proof. First, let q = 2p. From U q
α = (STα)q = Id, we have Up

α(x) = (U−1α )p(x).
Therefore,

− 1

α− 1
α− 1

...− 1
x+α

= −α− 1

−α− 1

...−α− 1
x

.

This implies that
1

α− 1
α− 1

...− 1
x+α

= α− 1

α− 1

...α− 1
−x

. (3.1)
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Figure 1. The phase space T+
α together with S+

α for even q.

To obtain the orbit of x = −α
2
, let A = TαU

p−1
α (x). Then (3.1) becomes 1

A
= α− 1

A
.

So, A = 2
α
and we are done.

For an odd q, a similar argument or using the relations in [7], gives the result.
�

Definition 3.3. For q even, set

Aα = {w0 =
2

α
,w1 = Hα(w0), · · · , whq−1 = Hhq−1

α (w0), whq =
3

2
α}.

Define the step function

fq(x) =

{
ui = −1

ui+1
+ α if 1 ≤ i ≤ hq − 1 , and wi−1 ≤ x ≤ wi

uhq = α− 1 if w ≥ whq .

See Figure 1.
For q odd and hq = q−3

2
, let

Aα = {w0 =
2

α
, w1 = Hα(w0), · · · , wq−3 = Hq−3

α (w0), wq−2 =
3

2
α, }.

Also, set u1 = ST−2α (uq−2), ui = ST−1α (ui−1), 2 ≤ i ≤ hq+1, uhq+2 = ST−2α (uhq+1)
and uj = ST−1α (uj−1) for hq + 3 ≤ j ≥ q− 2. See Figure 2. In this case define the
step function as

fq(x) =

 ui if i ∈ {1, · · · , q − 2} − {hq + 1},
wi−1 ≤ x ≤ wi+hq( mod q−2)

uhq+1 if w ≥ whq .
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Figure 2. The phase space T+
α together with S+

α for odd q.

Definition 3.4. For even q, let T+
1 be the region consisted of the union of rect-

angles Ri whose vertical and horizontal sides are on x = wi−1, x = wi, y = −1
and y = ui, 1 ≤ i ≤ hq See Figure 1. Let T+

k , k ≥ 2 be the square with vertices
on
(
2k−1
2
α, α− 1

)
and

(
2k+1
2
α, −1

)
.

For an odd q, let T+
1 = ∪q−3i=1Ri ∪Rq−2, where Ri’s are rectangles with sides on

w = wi−1, w = wi+hq( mod q−2), u = uhq+1−α, u = ui, i ∈ {1, · · · , q−2}−{hq+1}
and the sides of Rq−2 are on w = wq−3, w = wq−2, u = uhq+1 − α and u =
uq−2. Let T+

2 be the union of two rectangles one of them has the vertices at
(3α

2
, uq−2) and (whq , uhq+1 − α) and the other one has vertices on (whq , uhq+1)

and (2k+1
2
α, uhq+1−α). For k ≥ 3, T+

k is a square with vertices at (2k−1
2
α, uhq+1),

(2k+1
2
α, uhq+1 − α).

For any region A+ in the wu-plain, let A− = −A+ and T+
k = −T−−k for k ≥ 1.

For both cases q even or odd, let T+
α = ∪∞k=1T

+
k , Tα = T−α ∪ T+

α , S
+
k = T−kT+

k ,
S+
α = ∪k≥1S+

k and Sα = S+
α ∪ S−α . The notion T±i means T+

i or T−i for i > 0 or
i < 0, respectively.

For k 6= 0, define the function TR on Tα ∪ Sα as

TR(w, u) =

{
T−kα (w, u) = (w − kα, u− kα), on T±k
S(w, u) =

(−1
w
, −1
u

)
, on Sα.

In the next theorem, we want to show that the region Tα introduced in Definition
(3.4) is a phase space.

Theorem 3.5. The function TR is invariant on Tα ∪ Sα i.e., TR(Tα ∪ Sα) =
Tα ∪ Sα.
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Proof. The boundaries of Tα and Sα are consisted of segments parallel to the
x and y axis and TR maps them to another segments parallel to x and y axis,
respectively. To prove the theorem it suffices to show that the set of horizontal
boundary sides and the set of vertical boundary sides are closed under TR.

By our construction, Sα = ∪k=−∞
k 6=0

T−kα T±k . It suffices to show that Tα =

∪k=−∞
k 6=0

ST−kα T±k . The regions T+
k and T−−k are symmetric. Hence without loss

of generality, let k ≥ 1.
First, let q be even. For k = 1, T+

1 has vertical boundaries on w = w0,
w = w1, · · · , whq−1 and whq = 3α

2
. By Lemma 3.2 and the choice of wi’s by

Definition 3.3, we know that ST−1α wi = wi+1, 0 ≤ i ≤ hq − 2, T−1α whq−1 = 0 and
ST
−(2+k)
α whq+k = w0 for k ≥ 0. In fact the union of the right vertical sides of

T−iα T+
i for i ≥ 2 and the union of the left vertical sides of T−iα T+

i for i ≥ 1 form
the left and right vertical sides of S−, respectively. The reflection of the left and
right vertical sides of S− under S will map to the positive parts of left and right
vertical sides of T+

1 and T−−1, respectively.
On the other hand, since the height of T+

i for i ≥ 2 equals α, one gets
ST−1α (uhq) = −(uhq − α). This leads to uhq = α − 1, because |u| < 1 and
1 ≤ α ≤ 2. According to the relations between wi’s, ui’s should be found such
that ST−1α (ui) = ui+1 for 1 ≤ i ≤ hq − 1. This is equivalent to say ui = −1

ui+1
+ α,

1 ≤ i ≤ hq− 1. Denote by Qi, the ith quadrant of the wu-plane. All of the above
arguments show that S(S+

α ∩Q3) = T+
α ∩Q1 and S(S+

α ∩Q4) = T−α ∩Q2.
Now let q be odd. Again Lemma 3.2 and the construction of wi’s in Definition

3.3 show that ST−1α wi = wi+1, i ∈ {1, · · · , q − 3} − {hq}, ST−2α whq = whq+1,
T−1α wq−2 = 0. We need to show that there are values ui, 1 ≤ i ≤ q − 2 satisfying
the rules between wi’s. We prove the existence of such ui’s by induction on q.
According to Figure 2 for any odd q,

(ST−1α )hqST−2α uhq+1 = −(uhq+1 − α). (3.2)
The value q = 3 gives a rectangular region for Tα. Let q = 5. Then (3.2) gives
−1
A−α − α = 1

B
, where A = B = uhq+1 − α (For further use denote uhq+1 − α with

different symbols A and B in different side of the equation). Now

(Aα− α2 + 1)B + A− α = 0. (3.3)
By letting x = α, y = z − αx, z = 1 and w = −x, equation (3.3) can be written
as

(Ax+ y)B + zA+ w = 0. (3.4)
Since A = B, we have A2x+ (y + z)A+w = 0. This equation has solution for A
and consequently for uhq+1, because w = −x.

Now, suppose for an arbitrary odd q, the equation (3.4) holds for appropriate
xq, yq, zq and wq. Consider the integer q+2. Then (3.2) and (3.4) gives ( −1

A−αxq +

yq)B + zq(
−1
A−α) + wq = 0 which is equal to

((zq − αxq)A− xq − (zq − αxq)α)B + Awq − zq + xqα = 0.

Now for q+ 2, we have xq+2 = zq−αxq = yq, yq+2 = −xq−xq+2α = zq+2−αxq+2,
zq+2 = −xq and wq+2 = −xq+2. Again letting A = B, A will have solution
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since wq+2 = −xq+2. Now, Finding uhq from (3.2), and letting ST−1α (ui) = ui+1,
1 ≤ i ≤ hq, ST−2α (uhq+1) = uhq+2 and ST−1α (ui) = ui+1, hq + 2 ≤ i ≤ q − 3, we
will find the remaining ui’s.

By an argument as in the previous case, we have TR(Tα ∪ Sα) = Tα ∪ Sα. �

Corollary 3.6. Let α = 2 cos π
q
. Then the reduced region is a rectangular region

with q−2
2

or q − 2 steps for q being even or odd, respectively. The vertices of the
region is given by Definitions 3.3 and 3.4.

4. Coding

In this section, we will verify the dynamical properties of geodesics on the
Hecke surface via the coding of the geodesics.

For a point (w, u) ∈ T±k , define c
+ : π1(Tα)→ Aα by w 7→ k and c− : π2(Tα)→

Aα by u 7→ k′, where T k′α S(w, u) ∈ T±k′ .
Since we are interested in bi-infinite sequences, we do not consider the points

αQ. These points are exactly the orbit of the point 0 under the elements of Gα.
In other words, we do not consider the countable set of points Gα(0) which has
the Lebesgue measure zero.

For (w0, u0) ∈ Tα, w0, u0 6∈ αQ, let C+ : π1(Tα) → AN be defined by w0 7→
(n0, n1, n2, · · · )α, where ni = c+(π1(T

±
ni

)) with (wni , uni) = ST−(ni−1)(wni−1
, uni−1

)

∈ T±ni , i ≥ 0. Similarly, let C− : π2(Tα) → AN by u0 7→ (n−1, n−2, · · · )α, where
ni = c−(π1(T

±
n−i

)) with (wn−i , un−i) = ST ni(wn−i+1
, un−i+1

) ∈ T±n−i . Now de-
fine the code function C : Tα → AZ as C(w, u) = C−(u) × C+(w). That is
C(w, u) = (· · · , n−2, n−1, n0, n1, n2, · · · )α where C+(w) = (n0, n1, n2, · · · )α and
C−(u) = (n−2, n−1, · · · )α

Let Σα = {x = (· · · , n−2, n−1, n0, n1, n2, · · · )α : x = C(w, u), (w, u) ∈ Tα}.
Finite sequeces of elements in Σα are called words or admissible blocks. Other
blocks of AZ where do not appear in elements of Σα and have minimal length are
called forbidden blocks and are denoted by Fα. If all of the blocks in Fα have
length less than a number M + 1, then Σα is called a countable M -step Markov
chain.

Remark 4.1. 1) For (w, u) ∈ Tα, the following diagram commutes

Tα ∪ Sα
TR−→ Tα ∪ Sα

C ↓ ↓ C
Σα

σ−→ Σα.

2) Since for any k ∈ Z − {0}, ST−k(π1(T±k )) = ∪π1T±i , i ∈ Z − {0}, the
intervals {π1(T±i ) : i ∈ Z− {0}} form a Markov partition.

Theorem 4.2. Σα is a countable hq-step and (q − 2)-step Markov chain for q
even and odd, respectively.

Proof. Let q be even. For |i| ≥ 2, ST−iα T±i ∩ T±j 6= ∅, j ∈ Z − {0}. If |i| = 1,
then (ST−iα )k(T±i ∩ T±j ) 6= ∅ only for 1 ≤ k ≤ hq. This shows that for q even,
Fα = {[1, 1, · · · , 1︸ ︷︷ ︸

hq times

,m], [−1,−1, · · · ,−1︸ ︷︷ ︸
hq times

,−m], m ∈ N}.
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Let q be odd. Then Fq = {[1, 1, · · · , 1︸ ︷︷ ︸
hq times

, 2 1, 1, · · · , 1︸ ︷︷ ︸
hq times

,m], [−1,−1, · · · ,−1︸ ︷︷ ︸
hq times

, −2

−1,−1, · · · ,−1︸ ︷︷ ︸
hq times

,−m], m ∈ N}.

Therefore, in both cases the length of forbidden blocks is finite. Thus Σα is a
countable hq-step or (q−2)-step Markov chain for q even or odd, respectively. �

Remark 4.3. 1) In Theorem 3.5, TR is an invariant function on Tα ∪ Sα for
real numbers α such that Gα is a Hecke group. In [2] and [3], Ahmadi
Dastjerdi and the author showed that the reduced region Tα satisfying
TR(Tα ∪ Sα) = Tα ∪ Sα is a rectangle if and only if α ∈ {1, 2

√
3

3
,
√

2, 2},
but α = 2

√
3

3
and α = 2 do not generate a Hecke group. Also, for α = 1,

there are three types of rectangle regions Tα where each of which induced
a special type of α-MCF expansion.

2) If α does not correspond to a Hecke group, Mα is not defined but as in
the first part of this remark, Tα may exist. Therefore, (Tα ∪ Sα, TR) can
be considered as an abstract dynamical system not necessarily realizing
geodesics on Mα. There is not known result showing that if there exist
real numbers other than {2

√
3

3
, 2, 2 cos π

q
} defining the region Tα satisfying

TR(Tα ∪ Sα) = Tα ∪ Sα.
Such abstract systems give a wide variety of dynamical systems whose

code space Σα is defined by an infinite alphabet set. In all cases in this
paper and in [2] and [3], Σα is anM -step Markov chain for an appropriate
M , but this may not be the case for Σα if α is other than {2

√
3

3
, 2, 2 cos π

q
}.
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