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FEKETE-SZEGÖ INEQUALITIES FOR CERTAIN SUBCLASSES
OF STARLIKE AND CONVEX FUNCTIONS OF COMPLEX
ORDER ASSOCIATED WITH QUASI-SUBORDINATION
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Communicated by A.K. Mirmostafaee

Abstract. In this paper, we find Fekete-Szegö bounds for a generalized class
Mδ,λ

q (γ, ϕ). Also, we discuss some remarkable results.

1. Introduction

Let A denote the class of functions of the form

f(z) = z +
∞∑
n=2

anz
n (1.1)

which are analytic in the open unit disc U = {z : z ∈ C and |z| < 1}. Further,
by S we shall denote the class of all functions in A which are univalent in U.

For two functions f and g, analytic in U, we say that the function f(z) is
subordinate to g(z) in U, and write

f(z) ≺ g(z) (z ∈ U)

if there exists a Schwarz function w(z), analytic in U, with

w(0) = 0 and |w(z)| < 1 (z ∈ U)

such that

f(z) = g(w(z)) (z ∈ U) .
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In particular, if the function g is univalent in U, the above subordination is
equivalent to

f(0) = g(0) and f(U) ⊂ g(U).

An analytic function f(z) is quasi-subordinate to an analytic function g(z) in
the open unit disc U if there exist analytic function h with |h(z)| ≤ 1, such that
f(z)
h(z)

is analytic in U and

f(z)

h(z)
≺ g(z) (z ∈ U).

We also denote the above expression by

f(z) ≺q g(z) (z ∈ U)

and this is equivalent to

f(z) = h(z)g(w(z)) (z ∈ U)

where w, is analytic with w(0) = 0 and |w(z)| < 1.
If h(z) ≡ 1, then f(z) = g(w(z)), which implies that f(z) ≺ g(z) in U. Further,

if w(z) = z, then f(z) = h(z)g(z) and denoted by f(z) � g(z) in U (see [3, 13,
14]).

Let ϕ(z) be an analytic function with positive real part on U with ϕ(0) = 1,
ϕ′(0) > 0 which maps the unit disk U onto the region starlike with respect to 1,
ϕ(U) is symmetric with respect to the real axis. The Taylor’s series expansion of
such function is

ϕ(z) = 1 + φ1z + φ2z
2 + φ3z

3 + . . . , (1.2)

where all coefficients are real and φ1 > 0.
Recently, El-Ashwah and Kanas [5] introduced and studied the following two

subclasses:

S∗q (γ, ϕ) :=

{
f : f ∈ A and

1

γ

(
zf ′(z)

f(z)
− 1

)
≺q ϕ(z)− 1; z ∈ U, γ ∈ C \ {0}

}
(1.3)

and

Kq(γ, ϕ) :=

{
f : f ∈ A and

1

γ

zf ′′(z)

f ′(z)
≺q ϕ(z)− 1; z ∈ U, γ ∈ C \ {0}

}
. (1.4)

We note that, when h(z) ≡ 1, the classes S∗q (γ, ϕ) and Kq(γ, ϕ) reduce respectively,
to the familiar classes S∗(γ, ϕ) and K(γ, ϕ) of Ma-Minda starlike and convex functions
of complex order γ (γ ∈ C\{0}) in U (see [12]). For γ = 1, the classes S∗(γ, ϕ) and
K(γ, ϕ) reduce respectively to the unified classes S∗(ϕ) and K(ϕ) of starlike and convex
functions of Ma-Minda type (see [10]). For γ = 1, the classes S∗q (γ, ϕ) and Kq(γ, ϕ)
reduce to the classes S∗q (ϕ) and Kq(ϕ), respectively, introduced by Haji Mohd and
Darus [8]. Further, Gurusamy et al. [7] discussed these classes S∗q (ϕ) and Kq(ϕ) by

using the k−th root transformation.
Motivated by the works of Haji Mohd and Darus [8], in this paper we define the

following subclass:
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Definition 1.1. Let the classMδ,λ
q (γ, ϕ), 0 6= γ ∈ C, δ ≥ 0, consist of functions f ∈ A

satisfying the quasi-subordination

1

γ

(
(1− δ)

zH′λ(z)

Hλ(z)
+ δ

(
1 +

zH′′λ(z)

H′λ(z)

)
− 1

)
≺q ϕ(z)− 1, (1.5)

where

Hλ(z) = (1− λ)f(z) + λzf ′(z), (0 ≤ λ ≤ 1).

Example 1.2. A function f : U→ C defined by the following:

1

γ

(
(1− δ)

zH′λ(z)

Hλ(z)
+ δ

(
1 +

zH′′λ(z)

H′λ(z)

)
− 1

)
= z(ϕ(z)− 1), (1.6)

belongs to the class Mδ,λ
q (γ, ϕ), 0 6= γ ∈ C, δ ≥ 0.

Throughout this work, we assume ϕ(z) is an analytic function with ϕ(0) = 1.

For special values of the parameters and ϕ, the class Mδ,λ
q (γ, ϕ) reduces to the

following well known and new subclasses:

Remark 1.3. When λ = 0 in the above class, we have Mδ,0
q (γ, ϕ) := Mδ

q(γ, ϕ). For

γ = 1, we have Mδ
q(1, ϕ) := Mδ

q(ϕ) [8, Definition 1.7]. Also, for h(z) ≡ 1 we get

Mδ
q(ϕ) :=Mδ(ϕ) [2]. If

ϕ(z) =
1 + (1− 2α)z

1− z
(0 ≤ α < 1) (1.7)

in Mδ(ϕ), we have Mδ(α), [11] and setting

ϕ(z) =

(
1 + z

1− z

)β
(0 < β ≤ 1) (1.8)

in Mδ(ϕ), we have Mδ(β), [16].

Remark 1.4. When λ = 0 and δ = 0 in Mδ,λ
q (γ, ϕ), we have M0,0

q (γ, ϕ) := S∗q (γ, ϕ).
For γ = 1, S∗q (1, ϕ) := S∗q (ϕ). For h(z) ≡ 1, we have S∗q (γ, ϕ) := S∗(γ, ϕ) [12]. Also,
for h(z) ≡ 1, we get S∗q (ϕ) := S∗(ϕ). For ϕ(z) given by (1.7), we have S∗(α).

Remark 1.5. When λ = 0 and δ = 1 in Mδ,λ
q (γ, ϕ), we get M1,0

q (γ, ϕ) := Kq(γ, ϕ). For
γ = 1, we get Kq(1, ϕ) := Kq(ϕ). For h(z) ≡ 1, we have Kq(γ, ϕ) := K(γ, ϕ) [12] and
Kq(ϕ) := K(ϕ). For ϕ(z) given by (1.7), we have K(α).

Remark 1.6. When δ = 0, we get M0,λ
q (γ, ϕ) ≡ Pq(γ, λ, ϕ). For h(z) ≡ 1, we get the

class Pq(γ, λ, ϕ) := P(γ, λ, ϕ) of starlike and convex functions of Pascu type class.

Remark 1.7. When δ = 1, we obtain M1,λ
q (γ, ϕ) ≡ Kq(γ, λ, ϕ). For γ = 1, we have the

class Kq(λ, ϕ) [15].

Inspired by the aforecited works and from the literatures [1, 5, 7, 6, 8, 15], in this

paper we introduce an unified univalent function class Mδ,λ
q (γ, ϕ) as defined above

and obtain the upper bounds for |a2| and |a3| for f ∈ Mδ,λ
q (γ, ϕ). Also, we obtain

|a3 − µa22|. Moreover, we obtain the upper bounds for different new subclasses which
are obtained from our defined unified class. To discuss main results we consider the
following lemmas.



FEKETE-SZEGÖ INEQUALITIES USING QUASI-SUBORDINATION 115

Lemma 1.8. [9] Let w be the analytic function in U, with w(0) = 0, |w(z)| < 1 and
w(z) = w1z + w2z

2 + . . . , then |w2 − τw2
1| ≤ max[1; |τ |], where τ ∈ C. The result is

sharp for the functions w(z) = z2 or w(z) = z.

Lemma 1.9. [4] Let w be the analytic function in U, with w(0) = 0, |w(z)| < 1 and
let w(z) = w1z + w2z

2 + . . . . Then

|wn| ≤
{

1, n = 1;
1− |w1|2, n ≥ 2.

The result is sharp for the functions w(z) = zn or w(z) = z.

Lemma 1.10. [9] Let h(z) be the analytic function in U, with |h(z)| < 1 and let
h(z) = h0 + h1z + h2z

2 + . . . . Then |h0| ≤ 1 and |hn| ≤ 1− |h0|2 ≤ 1, for n > 0.

Let f be of the form (1.1), ϕ(z) = 1+φ1z+φ2z
2+φ3z

3+. . . , h(z) = h0+h1z+h2z
2+

. . . and w(z) = w1z + w2z
2 + . . . , throughout this article unless otherwise mentioned.

2. Fekete-Szegö Results

Theorem 2.1. If f ∈Mδ,λ
q (γ, ϕ). Then

|a2| ≤
|γ|φ1

(1 + δ)(1 + λ)
,

|a3| ≤
|γ|
{
φ1 +max

{
φ1,
∣∣∣ γ(1+3δ)
(1+δ)2(1+λ)2

∣∣∣φ21 + |φ2|
}}

2(1 + 2δ)(1 + 2λ)

and for µ ∈ C

∣∣a3 − µa22∣∣ ≤ |γ|
{
φ1 +max

{
φ1,
∣∣∣γ(1+3δ)−2µγ(1+2δ)(1+2λ)

(1+δ)2(1+λ)2

∣∣∣φ21 + |φ2|
}}

2(1 + 2δ)(1 + 2λ)
.

Proof. Let f ∈ A belongs to the class Mδ,λ
q (γ, ϕ). Then there exist analytic functions

h and w with |h(z)| ≤ 1, w(0) = 0 and |w(z)| < 1 such that

1

γ

(
(1− δ)

zH′λ(z)

Hλ(z)
+ δ

(
1 +

zH′′λ(z)

H′λ(z)

)
− 1

)
= h(z)(ϕ(w(z))− 1) (2.1)

and

h(z) (ϕ (w(z))− 1) = h0φ1w1z +
[
h1φ1w1 + h0(φ1w2 + φ2w

2
1)
]
z2 + · · · . (2.2)

From equations (2.1) and (2.2) we get

1

γ
(1 + δ)(1 + λ)a2 = h0φ1w1 (2.3)

and
1

γ

[
2(1 + 2δ)(1 + 2λ)a3 − (1 + 3δ)(1 + λ)2a22

]
= h1φ1w1 + h0φ1w2 + h0φ2w

2
1. (2.4)

Equation (2.3) gives

a2 =
γh0φ1w1

(1 + δ)(1 + λ)
. (2.5)

Subtracting equation (2.4) from equation (2.3) and applying equation (2.5) we get

a3 =
γ

2(1 + 2δ)(1 + 2λ)

[
h1φ1w1 + h0φ1w2 +

(
h0φ2 +

γh20φ
2
1(1 + 3δ)

(1 + δ)2

)
w2
1

]
. (2.6)
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From the hypothesis of the definition h(z) is analytic and bounded in U. Using the fact

|hn| ≤ 1− |h0|2 ≤ 1 (n > 0),

and the well-known inequality (see Lemma 1.9)

|w1| ≤ 1.

we have

|a2| ≤
|γ|φ1

(1 + δ)(1 + λ)
.

Further, for µ ∈ C

a3 − µa22 = γφ1
2(1+2δ)(1+2λ)

{
h1w1 + h0

(
w2 +

[
φ2
φ1

+ γh0φ1(1+3δ)
(1+δ)2

−γh0φ1(1+2δ)(1+2λ)
(1+δ)2(1+λ)2

+ γh0φ1(1−2µ)(1+2δ)(1+2λ)
(1+δ)2(1+λ)2

]
w2
1

)}
. (2.7)

Again using the inequalities |h1| ≤ 1 and |w1| ≤ 1, we get

|a3 − µa22| ≤
|γ|φ1

2(1 + 2δ)(1 + 2λ)

{
1 +

∣∣∣∣w2 −
[
−φ2
φ1

−γ(1 + 3δ)− γ(1 + 2δ)(1 + 2λ) + γ(1− 2µ)(1 + 2δ)(1 + 2λ)

(1 + δ)2(1 + λ)2
h0φ1

]
w2
1

∣∣∣∣} .
In view of Lemma 1.8 we have

∣∣a3 − µa22∣∣ ≤ |γ|
{
φ1 +max

{
φ1,
∣∣∣γ(1+3δ)−2µγ(1+2δ)(1+2λ)

(1+δ)2(1+λ)2

∣∣∣φ21 + |φ2|
}}

2(1 + 2δ)(1 + 2λ)
.

For µ = 0, we obtain

|a3| ≤
|γ|
{
φ1 +max

{
φ1,
∣∣∣ γ(1+3δ)
(1+δ)2(1+λ)2

∣∣∣φ21 + |φ2|
}}

2(1 + 2δ)(1 + 2λ)
,

which completes the proof of Theorem 2.1. �

Theorem 2.2. If f ∈ A satisfies

1

γ

(
(1− δ)

zH′λ(z)

Hλ(z)
+ δ

(
1 +

zH′′λ(z)

H′λ(z)

)
− 1

)
� ϕ(w(z))− 1, (2.8)

then

|a2| ≤
|γ|φ1

(1 + δ)(1 + λ)
,

|a3| ≤
|γ|
{
φ1 +

∣∣∣ γ(1+3δ)
(1+δ)2(1+λ)2

∣∣∣φ21 + |φ2|
}

2(1 + 2δ)(1 + 2λ)
,

and for µ ∈ C

∣∣a3 − µa22∣∣ ≤ |γ|
{
φ1 +

∣∣∣γ(1+3δ)−2µγ(1+2δ)(1+2λ)
(1+δ)2(1+λ)2

∣∣∣φ21 + |φ2|
}

2(1 + 2δ)(1 + 2λ)
.

In light of Remarks 1.3 to 1.7, we have following corollaries.



FEKETE-SZEGÖ INEQUALITIES USING QUASI-SUBORDINATION 117

Corollary 2.3. If f ∈ S∗q (γ, ϕ), then

|a2| ≤ |γ|φ1,

|a3| ≤
|γ|
2

[
φ1 +max

{
φ1, |γ|φ21 + |φ2|

}]
,

and for µ ∈ C ∣∣a3 − µa22∣∣ ≤ |γ|2 [
φ1 +max

{
φ1, |γ||1− 2µ|φ21 + |φ2|

}]
.

Remark 2.4. For γ = 1, Corollary 2.3 reduces to [8, Theorem 2.1].

Corollary 2.5. If f ∈ Kq(γ, ϕ), then

|a2| ≤
|γ|φ1

2
,

|a3| ≤
|γ|
6

[
φ1 +max

{
φ1, |γ|φ21 + |φ2|

}]
,

and for µ ∈ C ∣∣a3 − µa22∣∣ ≤ |γ|6
[
φ1 +max

{
φ1,
|γ||2− 3µ|

2
φ21 + |φ2|

}]
.

Remark 2.6. For γ = 1, Corollary 2.5 reduces to [8, Theorem 2.4].

Corollary 2.7. If f ∈Mδ
q(γ, ϕ), then

|a2| ≤
|γ|φ1
1 + δ

,

|a3| ≤
|γ|

2(1 + 2δ)

[
φ1 +max

{
φ1,

(1 + 3δ)

(1 + δ)2
|γ|φ21 + |φ2|

}]
,

and for µ ∈ C∣∣a3 − µa22∣∣ ≤ |γ|
2(1 + 2δ)

[
φ1 +max

{
φ1,

∣∣∣∣(1 + 3δ)− 2µ(1 + 2δ)

(1 + δ)2

∣∣∣∣ |γ|φ21 + |φ2|
}]

.

Remark 2.8. For γ = 1, Corollary 2.7 reduces to [8, Theorem 2.10].

Corollary 2.9. If f ∈ Pq(γ, λ, ϕ), then

|a2| ≤
|γ|φ1
1 + λ

,

|a3| ≤
|γ|

2(1 + 2λ)

[
φ1 +max

{
φ1,

|γ|φ21
(1 + λ)2

+ |φ2|
}]

,

and for µ ∈ C∣∣a3 − µa22∣∣ ≤ |γ|
2(1 + 2λ)

[
φ1 + max

{
φ1,
|1− 2µ(1 + 2λ)|

(1 + λ)2
|γ|φ21 + |φ2|

}]
.

Corollary 2.10. If f ∈ Kq(γ, λ, ϕ), then

|a2| ≤
|γ|φ1

2(1 + λ)
,

|a3| ≤
|γ|

6(1 + 2λ)

[
φ1 + max

{
φ1,

|γ|φ21
(1 + λ)2

+ |φ2|
}]

,
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and for µ ∈ C∣∣a3 − µa22∣∣ ≤ |γ|
6(1 + 2λ)

[
φ1 + max

{
φ1,

∣∣∣∣2− 3µ(1 + 2λ)

2(1 + λ)2

∣∣∣∣ |γ|φ21 + |φ2|
}]

.

Remark 2.11. For γ = 1, Corollary 2.10 correct the results in [15, Theorem 2.1].
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