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ON THE RANKS OF FINITE SIMPLE GROUPS
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Abstract. Let G be a finite group and let X be a conjugacy class of G. The
rank of X in G, denoted by rank(G:X) is defined to be the minimal number
of elements of X generating G. In this paper we review the basic results on
generation of finite simple groups and we survey the recent developments on
computing the ranks of finite simple groups.

1. Introduction

Generation of finite groups by suitable subsets is of great interest and has many
applications to groups and their representations. For example, the computations
of the genus of simple groups can be reduced to the generations of the relevant
simple groups (see Woldar [23] for details). Also Di Martino et al. [16] established
a useful connection between generation of groups by conjugates and the existence
of elements representable by almost cyclic matrices. Their motivation was to
study irreducible projective representations of sporadic simple groups. Recently
more attention was given to the generation of finite groups by conjugate elements.
In his PhD Thesis [22], Ward considered generation of a simple group by conjugate
involutions satisfying certain conditions.

We are interested in generation of finite simple groups by the minimal number of
elements from a given conjugacy class of the group. This motivates the following
definition.

Definition 1.1. Let G be a finite group and let X be a conjugacy class of G.
The rank of X in G, denoted by rank(G:X) is defined to be the minimal number
of elements of X generating G.
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One of the applications of ranks of conjugacy classes of a finite group is that
they are involved in the computations of the covering number of the finite group
(see Zisser [24]).

In [17, 18, 19] the second author computed the the ranks of the involutary
classes of the Fischer sporadic simple groups Fi22.He found that rank(Fi22:2B) =
rank(Fi22:2C) = 3, while rank(Fi22:2A) ∈ {5, 6}. The work of Hall and Soicher
[15] implies that rank(Fi22:2A) = 6. Then in a considerable number of publi-
cations (for example but not limited to, see [1, 2, 3, 4, 5] or [19]) J. Moori, F.
Ali and M.A.F. Ibrahim explored a large number of ranks of the sporadic simple
groups.

2. Preliminaries

Let G be a finite group and C1, C2, · · · , Ck be k ≥ 3 (not necessarily distinct)
conjugacy classes of G with g1, g2, · · · , gk being representatives for these classes,
respectively.

For a fixed representative gk ∈ Ck and for gi ∈ Ci, 1 ≤ i ≤ k − 1, denote by
∆G = ∆G(C1, C2, · · · , Ck) the number of distinct (k−1)-tuples (g1, g2, · · · , gk−1) ∈
C1 ×C2 × · · · ×Ck−1 such that g1g2 · · · gk−1 = gk. This number is known as class
algebra constant or structure constant. With Irr(G) = {χ1, χ2, · · · , χr}, the num-
ber ∆G is easily calculated from the character table of G through the formula

∆G(C1, C2, · · · , Ck) =

k−1∏
i=1

|Ci|

|G|

r∑
i=1

χi(g1)χi(g2) · · ·χi(gk−1)χi(gk)
(χi(1G))k−2

.

Also for a fixed gk ∈ Ck we denote by ∆∗G(C1, C2, · · · , Ck) the number of distinct
(k − 1)-tuples (g1, g2, · · · , gk−1) satisfying

g1g2 · · · gk−1 = gk and G = 〈g1, g2, · · · , gk−1〉 . (2.1)

Definition 2.1. If ∆∗G(C1, C2, · · · , Ck) > 0, the groupG is said to be (C1, C2, · · · ,
Ck)-generated.

Furthermore if H ≤ G is any subgroup containing a fixed element gk ∈ Ck,
we let ΣH(C1, C2, · · · , Ck) be the total number of distinct tuples (g1, g2, · · · , gk−1)
such that g1g2 · · · gk−1 = gk and 〈g1, g2, · · · , gk−1〉 ≤ H. The value of ΣH(C1, C2, · · · ,
Ck) can be obtained as a sum of the structure constants ∆H(c1, c2, · · · , ck) of
H-conjugacy classes c1, c2, · · · , ck such that ci ⊆ H ∩ Ci.

Theorem 2.2. Let G be a finite group and H ≤ G containing a fixed element
g such that gcd(o(g), [NG(H):H]) = 1. Then the number h(g,H) of conjugates
of H containing g is χH(g), where χH(g) is the permutation character of G with
action on the conjugates of H. In particular

h(g,H) =
m∑
i=1

|CG(g)|
|CNG(H)(xi)|

,

where x1, x2, · · · , xm are representatives of the NG(H)-conjugacy classes fused to
the G-class of g.
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Proof. See Ganief and Moori [12, 13]. �

The above number h(g,H) is useful in giving a lower bound for ∆∗G(C1, C2, · · · ,
Ck), namely ∆∗G(C1, C2, · · · , Ck) ≥ ΘG(C1, C2, · · · , Ck), where

ΘG(C1, C2, · · · , Ck) = ∆G(C1, C2, · · · , Ck)−
∑

h(gk, H)ΣH(C1, C2, · · · , Ck),

gk is a representative of the class Ck and the sum is taken over all the representatives
H of G-conjugacy classes of maximal subgroups of G containing elements of all the
classes C1, C2, · · · , Ck. Since we have all the maximal subgroups of the sporadic simple
groups (except for G = M the Monster group), it is possible to build a small subroutine
in GAP [14] or Magma [8] to compute the values of ΘG = ΘG(C1, C2, · · · , Ck) for any
collection of conjugacy classes and a sporadic simple group.

If ΘG > 0 then certainly G is (C1, C2, · · · , Ck)-generated. In the case C1 = C2 =
· · · = Ck−1 = C, G can be generated by k − 1 elements suitably chosen from C and
hence rank(G:C) ≤ k − 1.

We now quote some results establishing generation and non-generation of finite sim-
ple groups, where these results are important in determining the ranks of finite simple
groups.

Lemma 2.3 (See Ali and Moori [5] or Conder et al. [9]). Let G be a finite simple group
such that G is (lX,mY, nZ)-generated. Then G is (lX, lX, · · · , lX︸ ︷︷ ︸

m−times

, (nZ)m)-generated.

Proof. Since G is a (lX,mY, nZ)-generated group, it follows that there exists x ∈ lX
and y ∈ mY such that xy ∈ nZ and 〈x, y〉 = G. Let N :=

〈
x, xy, xy

2
, · · · , xym−1

〉
.

Then N EG. Since G is a simple group and N is a non-trivial subgroup we obtain that
N = G. Furthermore, we have

xxyxy
2
xy

m−1
= x(yxy−1)(y2xy−2) · · · (ym−1xy1−m)

= (xy)m ∈ (nZ)m.

Since xy
i ∈ lX for all i, the result follows. �

Corollary 2.4 (See Ali and Moori [5]). Let G be a finite simple group such that G is
(lX,mY, nZ)-generated. Then rank(G:lX) ≤ m.

Proof. Follows immediately by Lemma 2.3. �

Lemma 2.5 (See Ali and Moori [5]). Let G be a finite simple (2X,mY, nZ)-generated
group. Then G is (mY,mY, (nZ)2)-generated.

Proof. Since G is a (2X,mY, nZ)-generated group, it is also a (mY, 2X, tK)-generated
group. The result follows immediately by Lemma 2.3. �

Corollary 2.6. If G is a finite simple (2X,mY, nZ)-generated group. Then
rank(G:mY ) = 2.

Proof. By Lemma 2.5 and Corollary 2.4 we have rank(G:mY ) ≤ 2. But a non-abelian
simple group can not be generated by one element. Thus rank(G:mY ) = 2. �

The following two results are in some cases useful in establishing non-generation for
finite groups.
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Lemma 2.7 (See Ali and Moori [5] or Conder et al. [9]). Let G be a finite centerless
group. If ∆∗G(C1, C2, · · · , Ck) < |CG(gk)|, gk ∈ Ck, then ∆∗G(C1, C2, · · · , Ck) = 0 and
therefore G is not (C1, C2, · · · , Ck)-generated.

Proof. We prove the contrapositive of the statement, that is if ∆∗G(C1, C2, · · · , Ck)
> 0 then ∆∗G(C1, C2, · · · , Ck) ≥ |CG(gk)|, for a fixed gk ∈ Ck. So let us assume that
∆∗G(C1, C2, · · · , Ck) > 0. Thus there exists at least one (k−1)-tuple (g1, g2, · · · , gk−1) ∈
C1 × C2 × · · · × Ck−1 satisfying Equation (2.1). Let x ∈ CG(gk). Then we obtain

x(g1g2 · · · gk−1)x−1 = (xg1x
−1)(xg2x

−1) · · · (xgk−1x−1) = (xgkx
−1) = gk.

Thus the (k − 1)-tuple (xg1x
−1, xg2x

−1, · · · , xgk−1x−1) will generate G. Moreover, if
x1 and x2 are distinct elements of CG(gk), then the (k−1)-tuples (x1g1x

−1
1 , x1g2x

−1
1 , · · · ,

x1gk−1x
−1
1 ) and (x2g1x

−1
2 , x2g2x

−1
2 , · · · , x2gk−1x−12 ) are also distinct since G is center-

less. Thus we have at least |CG(gk)|, (k − 1)-tuples (g1, g2, · · · , gk−1) generating G.
Hence ∆∗G(C1, C2, · · · , Ck) ≥ |CG(gk)|. �

The following result is due to Ree [20].

Theorem 2.8. Let G be a transitive permutation group generated by permutations
g1, g2, · · · , gs acting on a set of n elements such that g1g2 · · · gs = 1G. If the generator

gi has exactly ci cycles for 1 ≤ i ≤ s, then
s∑
i=1

ci ≤ (s− 2)n+ 2.

Proof. See for example Ali and Moori [5]. �

The following result is due to Scott ([9] and [21]).

Theorem 2.9 (Scott’s Theorem). Let g1, g2, · · · , gs be elements generating a group G
with g1g2 · · · gs = 1G and V be an irreducible module for G with dimV = n ≥ 2. Let
CV(gi) denote the fixed point space of 〈gi〉 on V and let di be the codimension of CV(gi)

in V. Then
s∑
i=1

di ≥ 2n.

With χ being the ordinary irreducible character afforded by the irreducible module
V and 1〈gi〉 being the trivial character of the cyclic group 〈gi〉 , the codimension di of
CV(gi) in V can be computed using the following formula ([11]):

di = dim(V)− dim(CV(gi)) = dim(V)−
〈
χ↓G〈gi〉,1〈gi〉

〉
= χ(1G)− 1

| 〈gi〉 |

o(gi)−1∑
j=0

χ(gji ).

3. The Ranks of the Simple Groups

The determination of the ranks of the sporadic simple groups is almost completed.
With G being a sporadic simple group and nX a non-identity class of G (as listed in
the ATLAS [10]) the results on sporadic simple groups can be summarized as follows:

(1) If G 6= M and nX is not an involutary class (n 6= 2), then rank(G:nX) = 2
unless:

(G,nX) ∈ {(J2, 3A), (HS, 4A), (McL, 3A), (Ly, 3A),

(Co1, 3A), (Fi22, 3A), (Fi22, 3B), (Fi23, 3A),

(Fi23, 3B), (Fi
′
24, 3A), (Fi

′
24, 3B), (Suz, 3A)},
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where in these cases rank(G:nX) = 3.
(2) If G 6= M and nX is an involutary class, then rank(G:2X) = 3 unless:

• (G, 2X) ∈ {(J2, 2A), (Co2, 2A), (B, 2A)}, where in these cases we have
rank(G:2A) = 4
• (G, 2X) ∈ {(Fi22, 2A), (Fi23, 2A)}, where in these cases we have
rank(Fi22:2A) = 6 and rank(Fi23:2A) ∈ {5, 6}.

(3) If G = M and nX is not an involutary class, then rank(M:nX) ∈ {2, 3}.
(4) If G = M and nX is an involutary class, then rank(M:2X) ∈ {3, 4}.

Therefore we can see that only very few cases are remaining as far as sporadic
simple groups are concerned. The authors are currently considering some of these
cases together with other non-abelian simple groups such as the alternating groups,
classical groups and groups of Lie type.

In the following we give an example of some of the results that the authors established
(see [6]) on some of the classes of the alternating groups An, n ≥ 5.

The alternating group An, n ≥ 5 has bn3 c conjugacy classes of elements of order 3.

The cycle structures of these classes are 3m1n−3m, 1 ≤ m ≤ bn3 c. For m = 1, let 3A
denote the class of elements of An of cycle structure (a, b, c). In [6] we determined the
rank of this class in An. We use (An)[k1,k2,··· ,kr] to denote the subgroup of An fixing the
points k1, k2, · · · , kr and if it fixes a single point ki, we use (An)ki .

Lemma 3.1. rank(A5:3A) = 2.

Proof. We claim that A5 = 〈(1, 2, 3), (1, 4, 5)〉 . The element (1, 2, 3)(1, 4, 5)
= (1, 4, 5, 2, 3) has order 5. This implies that 15|| 〈(1, 2, 3), (1, 4, 5)〉 |. By looking at the
maximal subgroups of A5 (see the ATLAS [10] for example) we can see that there is no
maximal subgroup of A5 with order divisible by 15. It follows that 〈(1, 2, 3), (1, 4, 5)〉 =
A5 and hence rank(A5:3A) = 2. �

Lemma 3.2. rank(An:3A) 6= 2, ∀ n ≥ 6.

Proof. Suppose that x, y ∈ 3A of An, n ≥ 6 and let x = (a, b, c) and y = (d, e, f).
If xy = yx then 〈x, y〉 ∼= Z3 × Z3. If xy 6= yx, then x and y are not disjoint cycles
and have some common points, i.e, {a, b, c} ∩ {d, e, f} 6= φ. Thus the number of moved
points by 〈x, y〉 is at most 5 and it follows that 〈x, y〉 ≤ A5. Hence rank(An:3A) 6= 2
for n ≥ 6. �

Lemma 3.3. rank(A6:3A) = 3.

Proof. We show that A6 = 〈(1, 2, 3), (1, 4, 5), (1, 5, 6)〉 . Let H = 〈(1, 2, 3), (1, 4, 5)〉 .
Then H ∼= A5 and H = (A6)6, which is a maximal subgroup of A6. Since (1, 5, 6) 6∈ H,
we have 〈H, (1, 5, 6)〉 = A6. Now since rank(A6:3A) 6= 2 by Lemma 3.2, it follows that
rank(A6:3A) = 3. �

The next theorem states an important result on the rank of the class 3A of An, n ≥ 5.

Theorem 3.4. For the alternating group An, n ≥ 5 we have

rank(An:3A) =

{
n−1
2 if n is odd,

n
2 if n is even.

Proof. We use the mathematical induction on n. The result is true for n = 5 and n = 6
by Lemmas 3.1 and 3.3, respectively. We will show that

An =

{
〈(1, 2, 3), (1, 4, 5), (1, 6, 7), · · · , (1, n− 3, n− 2), (1, n− 1, n)〉 if n is odd,
〈(1, 2, 3), (1, 4, 5), (1, 6, 7), · · · , (1, n− 2, n− 1), (1, n− 1, n)〉 if n is even.

(3.1)
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Suppose that the result is true for n odd, then we will show that the result will be
true for n + 1 and n + 2. So assume that Equation (3.1) is true for n odd. Note that
if H = 〈(1, 2, 3), (1, 4, 5), (1, 6, 7), · · · , (1, n− 1, n)〉 , then Equation (3.1) implies that
An ∼= (An+1)n+1 = H. Since (1, n, n+ 1) ∈ An+1 \An and H is a maximal subgroup of
An+1, we have

K = 〈H, (1, n, n+ 1)〉 = An+1.

Since n + 1 is even, we have proven the result for the even case. Now since K is a
maximal subgroup of An+2 (K = (An+2)n+2), then 〈K, (1, n+ 1, n+ 2)〉 = An+2 as
(1, n+ 1, n+ 2) ∈ An+2 \An+1. Thus

〈H, (1, n, n+ 1), (1, n+ 1, n+ 2)〉 = An+2. (3.2)

We now show that we do not need the element (1, n, n+1) in Equation (3.2) to generate
An+2; that is (1, n, n+1) is redundant. Let α = (1, n−1, n) ∈ H and β = (1, n+1, n+2).
Then αβ = (n − 1, n, n + 1) := γ and γα = (1, n + 1, n) = (1, n, n + 1)−1. This shows
that 〈H, (1, n, n+ 1), (1, n+ 1, n+ 2)〉 can actually be reduced to 〈H, (1, n+ 1, n+ 2)〉 .
That is 〈H, (1, n+ 1, n+ 2)〉 = An+2, i.e

〈(1, 2, 3), (1, 4, 5), (1, 6, 7), · · · , (1, n− 1, n), (1, n+ 1, n+ 2)〉 = An+2,

completing the proof. �

In Section 4 of [6] we completely determined the ranks of all the classes of A8 and
A9. Also in [7] we supplied further general results on some of the classes of An, n ≥ 5
and we completely determined the ranks of all the classes of A10.
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