

Khayyam Journal of Mathematics

URL: www.emis.de/journals/KJM/

HERMITE-HADAMARD TYPE INEQUALITIES FOR MAPPINGS WHOSE DERIVATIVES ARE s-CONVEX IN THE SECOND SENSE VIA FRACTIONAL INTEGRALS

ERHAN SET^{1*}, M. EMİN ÖZDEMİR², M. ZEKİ SARIKAYA³ AND FİLİZ KARAKOÇ⁴

Communicated by S. Hejazian

ABSTRACT. In this paper we establish Hermite-Hadamard type inequalities for mappings whose derivatives are s-convex in the second sense and concave.

1. Introduction

Let $f: I \subseteq \mathbb{R} \to \mathbb{R}$ be a convex function defined on the interval I of real numbers and $a, b \in I$ with a < b. Then

$$f\left(\frac{a+b}{2}\right) \le \frac{1}{b-a} \int_{a}^{b} f(x)dx \le \frac{f(a)+f(b)}{2} \tag{1.1}$$

is known that the Hermite-Hadamard inequality for convex function. Both inequalities hold in the reserved direction if f is concave. We note that Hadamard's inequality may be regarded as a refinement of the concept of convexity and it follows easily from Jensen's inequality. Hadamard's inequality for convex functions has received renewed attention in recent years and a remarkable variety of refinements and generalizations have been found; see, for example see ([1]-[21]).

Definition 1.1. ([18]) A function $f:[0,\infty)\to\mathbb{R}$ is said to be s-convex in the second sense if

$$f(\lambda x + (1 - \lambda)y) \le \lambda^s f(x) + (1 - \lambda)^s f(y)$$

Date: Received: 24 June 2014; Accepted: 17 October 2014.

^{*} Corresponding author.

²⁰¹⁰ Mathematics Subject Classification. Primary 26A33; Secondary 26A51, 26D07, 26D10. Key words and phrases. Hermite-Hadamard type inequality, s—convex function, Riemann-Liouville fractional integral.

for all $x, y \in [0, \infty)$, $\lambda \in [0, 1]$ and for some fixed $s \in (0, 1]$. This class of s-convex functions is usually denoted by K_s^2 .

In ([15]) Dragomir and Fitzpatrick proved a variant of Hadamard's inequality which holds for s—convex functions in the second sense:

Theorem 1.2. Suppose that $f:[0,\infty)\to [0,\infty)$ is an s-convex function in the second sense ,where $s\in (0,1)$ and let $a,b\in [0,\infty)$, a< b. If $f'\in L^1\left([a,b]\right)$, then the following inequalities hold:

$$2^{s-1}f\left(\frac{a+b}{2}\right) \le \frac{1}{b-a} \int_{a}^{b} f(x)dx \le \frac{f(a)+f(b)}{s+1}$$
 (1.2)

The constant $k = \frac{1}{s+1}$ is the best possible in the second inequality in (1.2)

The following results are proved by M.I.Bhatti et al. (see [8]).

Theorem 1.3. Let $f: I \subseteq \mathbb{R} \to \mathbb{R}$ be a twice differentiable function on I° such that |f''| is convex function on I. Suppose that $a, b \in I^{\circ}$ with a < b and $f'' \in L[a, b]$, then the following inequality for fractional integrals with $\alpha > 0$ holds:

$$\left| \frac{f(a) + f(b)}{2} - \frac{\Gamma(\alpha + 1)}{2(b - a)^{\alpha}} \left[J_{a^{+}}^{\alpha} f(b) + J_{b^{-}}^{\alpha} f(a) \right] \right|$$

$$\leq \frac{\alpha(b - a)^{2}}{2(\alpha + 1)(\alpha + 2)} \left[\frac{|f''(a)| + |f''(b)|}{2} \right]$$

$$\leq \frac{(b - a)^{2}}{\alpha + 1} \beta(2, \alpha + 1) \left[\frac{|f''(a)| + |f''(b)|}{2} \right]$$
(1.3)

where β is Euler Beta function.

Theorem 1.4. Let $f: I \subseteq \mathbb{R} \to \mathbb{R}$ be a twice differentiable function on I° . Assume that $p \in \mathbb{R}, p > 1$ such that $|f''|^{\frac{p}{p-1}}$ is convex function on I. Suppose that $a, b \in I^{\circ}$ with a < b and $f'' \in L[a, b]$, then the following inequality for fractional integrals holds:

$$\left| \frac{f(a) + f(b)}{2} - \frac{\Gamma(\alpha + 1)}{2(b - a)^{\alpha}} \left[J_{a^{+}}^{\alpha} f(b) + J_{b^{-}}^{\alpha} f(a) \right] \right|$$

$$\leq \frac{(b - a)^{2}}{\alpha + 1} \beta^{\frac{1}{p}} \left(p + 1, \alpha p + 1 \right) \left(\frac{\left| f''(a) \right|^{q} + \left| f''(b) \right|^{q}}{2} \right)^{\frac{1}{q}}$$

$$(1.4)$$

where β is Euler Beta function.

Theorem 1.5. Let $f: I \subseteq \mathbb{R} \to \mathbb{R}$ be a twice differentiable function on I° . Assume that $q \geq 1$ such that $|f''|^q$ is convex function on I. Suppose that $a, b \in I^{\circ}$ with a < b and $f'' \in L[a,b]$, then the following inequality for fractional integrals holds:

$$\left| \frac{f(a) + f(b)}{2} - \frac{\Gamma(\alpha + 1)}{2(b - a)^{\alpha}} \left[J_{a^{+}}^{\alpha} f(b) + J_{b^{-}}^{\alpha} f(a) \right] \right|$$

$$\leq \frac{\alpha (b - a)^{2}}{4(\alpha + 1)(\alpha + 2)} \left[\frac{\left(\frac{2\alpha + 4}{3\alpha + 9} |f''(a)|^{q} + \frac{\alpha + 5}{3\alpha + 9} |f''(b)|^{q}\right)^{\frac{1}{q}}}{+\left(\frac{\alpha + 5}{3\alpha + 9} |f''(a)|^{q} + \frac{2\alpha + 4}{3\alpha + 9} |f''(b)|^{q}\right)^{\frac{1}{q}}} \right].$$

$$(1.5)$$

Theorem 1.6. Let $f: I \subseteq \mathbb{R} \to \mathbb{R}$ be a twice differentiable function on I° . Assume that $p \in \mathbb{R}, p > 1$ with $q = \frac{p}{p-1}$ such that $|f''|^q$ is concave function on I. Suppose that $a, b \in I^{\circ}$ with a < b and $f'' \in L[a, b]$, then the following inequality for fractional integrals holds:

$$\left| \frac{f(a) + f(b)}{2} - \frac{\Gamma(\alpha + 1)}{2(b - a)^{\alpha}} \left[J_{a^{+}}^{\alpha} f(b) + J_{b^{-}}^{\alpha} f(a) \right] \right|$$

$$\leq \frac{(b - a)^{2}}{\alpha + 1} \beta^{\frac{1}{p}} \left(p + 1, \alpha p + 1 \right) \left| f'' \left(\frac{a + b}{2} \right) \right|$$

$$(1.6)$$

where β is Euler Beta function.

We will give some necessary definitions and mathematical preliminaries of fractional calculus theory which are used further this paper.

Definition 1.7. Let $f \in L[a,b]$. The Reimann-Liouville integrals $J_{a^+}^{\alpha}f(x)$ and $J_{b^-}^{\alpha}f(x)$ of order $\alpha > 0$ with $a \geq 0$ are defined by

$$J_{a+}^{\alpha}f(x) = \frac{1}{\Gamma(\alpha)} \int_{a}^{x} (x-t)^{\alpha-1} f(t) dt, \quad x > a$$

and

$$J_{b^{-}}^{\alpha} f(x) = \frac{1}{\Gamma(\alpha)} \int_{x}^{b} (t - x)^{\alpha - 1} f(t) dt, \quad x < b$$

respectively, where $\Gamma(\alpha) = \int_0^\infty e^{-u} u^{\alpha-1} du$ is the Gamma function and $J_{a^+}^0 f(x) = J_{b^-}^0 f(x) = f(x)$.

In the case of $\alpha = 1$ the fractional integral reduces to the classical integral. For some recent results connected with fractional integral inequalities, see [3]-[25].

In this paper, we establish fractional integral inequalities of Hermite-Hadamard type for mappings whose derivatives are s-convex and concave.

2. Main results

In order to prove our main theorems we need the following lemma (see [8]).

Lemma 2.1. Let $f: I \subseteq \mathbb{R} \to \mathbb{R}$ be a twice differentiable function on I° , the interior of I. Assume that $a, b \in I^{\circ}$ with a < b and $f'' \in L[a, b]$, then the following identity for fractional integral with $\alpha > 0$ holds:

$$\frac{f(a) + f(b)}{2} - \frac{\Gamma(\alpha + 1)}{2(b - a)^{\alpha}} \left[J_{a^{+}}^{\alpha} f(b) + J_{b^{-}}^{\alpha} f(a) \right]$$

$$= \frac{(b - a)^{2}}{2(\alpha + 1)} \int_{0}^{1} t (1 - t^{\alpha}) \left[f''(ta + (1 - t)b) + f''((1 - t)a + tb) \right] dt$$
(2.1)

where $\Gamma(\alpha) = \int_0^\infty e^{-u} u^{\alpha-1} du$.

Theorem 2.2. Let $f: I \subseteq [0,\infty) \to \mathbb{R}$ be a twice differentiable function on I° and let $a,b \in I^{\circ}$ with a < b and $f'' \in L[a,b]$. If |f''| is s-convex in the second sense on I for some fixed $s \in (0,1]$, then the following inequality for fractional integrals with $\alpha > 0$ holds:

$$\left| \frac{f(a) + f(b)}{2} - \frac{\Gamma(\alpha + 1)}{2(b - a)^{\alpha}} \left[J_{a^{+}}^{\alpha} f(b) + J_{b^{-}}^{\alpha} f(a) \right] \right|$$

$$\leq \frac{(b - a)^{2}}{2(\alpha + 1)} \left[\frac{\alpha}{(s + 2)(\alpha + s + 2)} + \beta(2, s + 1) - \beta(\alpha + 2, s + 1) \right]$$

$$\times \left[|f''(a)| + |f''(b)| \right]$$
(2.2)

where β is Euler Beta function.

Proof. From Lemma 2.1 since |f''| is s-convex in the second sense on I, we have

$$\begin{split} &\left|\frac{f(a)+f(b)}{2}-\frac{\Gamma\left(\alpha+1\right)}{2\left(b-a\right)^{\alpha}}\left[J_{a^{+}}^{\alpha}f(b)+J_{b^{-}}^{\alpha}f(a)\right]\right| \\ &\leq \frac{\left(b-a\right)^{2}}{2\left(\alpha+1\right)}\int_{0}^{1}\left|t\left(1-t^{\alpha}\right)\right|\left[\left|f''\left(ta+\left(1-t\right)b\right)\right|+\left|f''\left(\left(1-t\right)a+tb\right)\right|\right]dt \\ &\leq \frac{\left(b-a\right)^{2}}{2\left(\alpha+1\right)}\left[\int_{0}^{1}t(1-t^{\alpha})\left[t^{s}\left|f''(a)\right|+\left(1-t\right)^{s}\left|f''(b)\right|\right]dt \\ &+\int_{0}^{1}t(1-t^{\alpha})\left[\left(1-t\right)^{s}\left|f''(a)\right|+t^{s}\left|f''(b)\right|\right]dt \right] \\ &= \frac{\left(b-a\right)^{2}}{2\left(\alpha+1\right)}\left[\int_{0}^{1}t^{s+1}\left(1-t^{\alpha}\right)dt+\int_{0}^{1}t(1-t^{\alpha})\left(1-t\right)^{s}dt\right]\left[\left|f''(a)\right|+\left|f''(b)\right|\right] \\ &= \frac{\left(b-a\right)^{2}}{2\left(\alpha+1\right)}\left[\frac{\alpha}{\left(s+2\right)\left(\alpha+s+2\right)}+\beta\left(2,s+1\right)-\beta\left(\alpha+2,s+1\right)\right] \\ &\times \left[\left|f''(a)\right|+\left|f''(b)\right|\right] \end{split}$$

where we used the fact that

$$\int_0^1 t^{s+1} (1 - t^{\alpha}) dt = \frac{\alpha}{(s+2)(\alpha + s + 2)}$$

and

$$\int_0^1 t(1-t^{\alpha})(1-t)^s dt = \beta(2,s+1) - \beta(\alpha+2,s+1)$$

which completes the proof.

Remark 2.3. In Theorem 2.2 if we choose s = 1 then (2.2) reduces the inequality (1.3) of Theorem 1.3.

Theorem 2.4. Let $f: I \subseteq [0, \infty) \to \mathbb{R}$ be a twice differentiable function on I° . Suppose that $a, b \in I^{\circ}$ with a < b and $f'' \in L[a, b]$. If $|f''|^q$ is s-convex in the second sense on I for some fixed $s \in (0, 1]$, p, q > 1, then the following inequality for fractional integrals with $\alpha \in (0, 1]$ holds:

$$\left| \frac{f(a) + f(b)}{2} - \frac{\Gamma(\alpha + 1)}{2(b - a)^{\alpha}} \left[J_{a^{+}}^{\alpha} f(b) + J_{b^{-}}^{\alpha} f(a) \right] \right|$$

$$\leq \frac{(b - a)^{2}}{\alpha + 1} \beta^{\frac{1}{p}} \left(p + 1, \alpha p + 1 \right) \left[\frac{|f''(a)|^{q} + |f''(b)|^{q}}{s + 1} \right]^{\frac{1}{q}}$$
(2.3)

where β is Euler Beta function and $\frac{1}{p} + \frac{1}{q} = 1$.

Proof. From Lemma 2.1, using the well known Hölder inequality and $|f''|^q$ is s-convex in the second sense on I, we have

$$\begin{split} &\left|\frac{f(a)+f(b)}{2}-\frac{\Gamma\left(\alpha+1\right)}{2\left(b-a\right)^{\alpha}}\left[J_{a}^{\alpha}+f(b)+J_{b-}^{\alpha}f(a)\right]\right| \\ &\leq \frac{(b-a)^{2}}{2\left(\alpha+1\right)}\int_{0}^{1}\left|t\left(1-t^{\alpha}\right)\right|\left[\left|f''\left(ta+(1-t)\,b\right)\right|+\left|f''\left((1-t)\,a+tb\right)\right|\right]dt \\ &\leq \frac{(b-a)^{2}}{2\left(\alpha+1\right)}\left(\int_{0}^{1}t^{p}\left(1-t^{\alpha}\right)^{p}dt\right)^{\frac{1}{p}} \\ &\times\left[\left(\int_{0}^{1}\left|f''(ta+(1-t)b)\right|^{q}dt\right)^{\frac{1}{q}}+\left(\int_{0}^{1}\left|f''((1-t)a+tb)\right|^{q}dt\right)^{\frac{1}{q}}\right] \\ &\leq \frac{(b-a)^{2}}{2\left(\alpha+1\right)}\left(\int_{0}^{1}t^{p}\left(1-t^{\alpha}\right)^{p}dt\right)^{\frac{1}{p}} \\ &\times\left[\left(\int_{0}^{1}\left(t^{s}\left|f''(a)\right|^{q}+(1-t)^{s}\left|f''(b)\right|^{q}\right)dt\right)^{\frac{1}{q}} \right] \\ &=\frac{(b-a)^{2}}{2\left(\alpha+1\right)}\left(\int_{0}^{1}t^{p}\left(1-t^{\alpha}\right)^{p}dt\right)^{\frac{1}{p}}\left[\left(\left|f''(a)\right|^{q}\frac{1}{s+1}+\left|f''(b)\right|^{q}\frac{1}{s+1}\right)^{\frac{1}{q}} \right] \\ &\leq \frac{(b-a)^{2}}{2\left(\alpha+1\right)}\beta^{\frac{1}{p}}\left(p+1,\alpha p+1\right)\left[\frac{\left|f''(a)\right|^{q}+\left|f''(b)\right|^{q}}{s+1}\right]^{\frac{1}{q}} \end{split}$$

where we used the fact that

$$\int_0^1 t^s dt = \int_0^1 (1-t)^s dt = \frac{1}{s+1}$$

and

$$\int_{0}^{1} t^{p} (1 - t^{\alpha})^{p} dt \le \int_{0}^{1} t^{p} (1 - t)^{\alpha p} dt = \beta (p + 1, \alpha p + 1)$$

which completes the proof.

Remark 2.5. In Theorem 2.4 if we choose s = 1 then (2.3) reduces the inequality (1.4) of Theorem 1.4.

Theorem 2.6. Let $f: I \subseteq [0, \infty) \to \mathbb{R}$ be a twice differentiable function on I° . Suppose that $a, b \in I^{\circ}$ with a < b and $f'' \in L[a, b]$. If $|f''|^q$ is s-convex in the second sense on I for some fixed $s \in (0, 1]$ and $q \ge 1$ then the following inequality for fractional integrals with $\alpha > 0$ holds:

$$\left| \frac{f(a) + f(b)}{2} - \frac{\Gamma(\alpha + 1)}{2(b - a)^{\alpha}} \left[J_{a^{+}}^{\alpha} f(b) + J_{b^{-}}^{\alpha} f(a) \right] \right|$$

$$\leq \frac{\alpha (b - a)^{2}}{4 (\alpha + 1) (\alpha + 2)}$$

$$\times \left[\left(|f''(a)|^{q} \frac{2\alpha + 4}{(s + 2)(\alpha + s + 2)} + |f''(b)|^{q} \frac{[\beta(2, s + 1) - \beta(\alpha + 2, s + 1)](2\alpha + 4)}{\alpha} \right)^{\frac{1}{q}} \right]$$

$$+ \left(|f''(a)|^{q} \frac{[\beta(2, s + 1) - \beta(\alpha + 2, s + 1)](2\alpha + 4)}{\alpha} + |f''(b)|^{q} \frac{2\alpha + 4}{(s + 2)(\alpha + s + 2)} \right)^{\frac{1}{q}} \right].$$

$$(2.4)$$

Proof. From Lemma 2.1, using power mean inequality and $|f''|^q$ is s-convex in the second sense on I we have

$$\begin{split} & \left| \frac{f(a) + f(b)}{2} - \frac{\Gamma\left(\alpha + 1\right)}{2\left(b - a\right)^{\alpha}} [J_{a^{+}}^{\alpha}f(b) + J_{b^{-}}^{\alpha}f(a)] \right| \\ & \leq \frac{\left(b - a\right)^{2}}{2\left(\alpha + 1\right)} \int_{0}^{1} \left| t\left(1 - t^{\alpha}\right) \right| \left[\left| f''\left(ta + (1 - t)b\right) \right| + \left| f''\left((1 - t)a + tb\right) \right| \right] dt \\ & \leq \frac{\left(b - a\right)^{2}}{2\left(\alpha + 1\right)} \left(\int_{0}^{1} t\left(1 - t^{\alpha}\right) dt \right)^{1 - \frac{1}{q}} \left[\left(\int_{0}^{1} t\left(1 - t^{\alpha}\right) \left| f''(ta + (1 - t)b) \right|^{q} dt \right)^{\frac{1}{q}} \right. \\ & \quad + \left(\int_{0}^{1} t\left(1 - t^{\alpha}\right) \left| f''((1 - t)a + tb) \right|^{q} dt \right)^{\frac{1}{q}} \right] \\ & \leq \frac{\left(b - a\right)^{2}}{2\left(\alpha + 1\right)} \left(\int_{0}^{1} t\left(1 - t^{\alpha}\right) dt \right)^{1 - \frac{1}{q}} \\ & \quad \times \left[\left(\int_{0}^{1} \left[t^{s + 1} \left(1 - t^{\alpha}\right) \left| f''(a) \right|^{q} + t\left(1 - t^{\alpha}\right) \left(1 - t\right)^{s} \left| f''(b) \right|^{q} \right] dt \right)^{\frac{1}{q}} \\ & \quad + \left(\int_{0}^{1} t\left(1 - t^{\alpha}\right) \left(1 - t\right)^{s} \left| f''(a) \right|^{q} + t^{s + 1} \left(1 - t^{\alpha}\right) \left| f''(b) \right|^{q} dt \right)^{\frac{1}{q}} \right] \\ & \quad = \frac{\left(b - a\right)^{2}}{2\left(\alpha + 1\right)} \left(\frac{\alpha}{2\left(\alpha + 2\right)} \right)^{1 - \frac{1}{q}} \\ & \quad \times \left[\left(\left| f''(a) \right|^{q} \frac{\alpha}{\left(s + 2\right)\left(\alpha + s + 2\right)} + \left| f''(b) \right|^{q} \left[\beta\left(2, s + 1\right) - \beta\left(\alpha + 2, s + 1\right) \right] \right)^{\frac{1}{q}} \\ & \quad + \left(\left| f''(a) \right|^{q} \left[\beta\left(2, s + 1\right) - \beta\left(\alpha + 2, s + 1\right) \right] + \left| f''(b) \right|^{q} \frac{\alpha}{\left(s + 2\right)\left(\alpha + s + 2\right)} \right)^{\frac{1}{q}} \right] \end{split}$$

$$= \frac{\alpha (b-a)^{2}}{4 (\alpha + 1) (\alpha + 2)} \times \left[\left(|f''(a)|^{q} \frac{(2\alpha+4)}{(s+2)(\alpha+s+2)} + |f''(b)|^{q} \frac{[\beta(2,s+1)-\beta(\alpha+2,s+1)](2\alpha+4)}{\alpha} \right)^{\frac{1}{q}} + \left(|f''(a)|^{q} \frac{[\beta(2,s+1)-\beta(\alpha+2,s+1)](2\alpha+4)}{\alpha} + |f''(b)|^{q} \frac{2\alpha+4}{(s+2)(\alpha+s+2)} \right)^{\frac{1}{q}} \right]$$

where we used the fact that

$$\int_0^1 t^{s+1} (1 - t^{\alpha}) dt = \frac{\alpha}{(s+2)(\alpha + s + 2)}$$

and

$$\int_0^1 t (1 - t^{\alpha}) (1 - t)^s dt = \beta (2, s + 1) - \beta (\alpha + 2, s + 1)$$

which completes the proof.

Remark 2.7. In Theorem 2.6 if we choose s = 1 then (2.4) reduces the inequality (1.5) of Theorem 1.5.

The following result holds for s-concavity.

Theorem 2.8. Let $f: I \subseteq [0, \infty) \to \mathbb{R}$ be a twice differentiable function on I° . Suppose that $a, b \in I^{\circ}$ with a < b and $f'' \in L[a, b]$. If $|f''|^q$ is s-concave in the second sense on I for some fixed $s \in (0, 1]$ and p, q > 1, then the following inequality for fractional integrals with $\alpha \in (0, 1]$ holds:

$$\left| \frac{f(a) + f(b)}{2} - \frac{\Gamma(\alpha + 1)}{2(b - a)^{\alpha}} \left[J_{a^{+}}^{\alpha} f(b) + J_{b^{-}}^{\alpha} f(a) \right] \right|$$

$$\leq \frac{(b - a)^{2}}{\alpha + 1} \beta^{\frac{1}{p}} \left(p + 1, \alpha p + 1 \right) 2^{\frac{s - 1}{q}} \left| f'' \left(\frac{a + b}{2} \right) \right|$$
(2.5)

where $\frac{1}{p} + \frac{1}{q} = 1$ and β is Euler Beta function.

Proof. From Lemma 2.1 and using the Hölder inequality we have

$$\left| \frac{f(a) + f(b)}{2} - \frac{\Gamma(\alpha + 1)}{2(b - a)^{\alpha}} \left[J_{a^{+}}^{\alpha} f(b) + J_{b^{-}}^{\alpha} f(a) \right] \right|$$

$$\leq \frac{(b - a)^{2}}{2(\alpha + 1)} \int_{0}^{1} |t(1 - t^{\alpha})| \left[|f''(ta + (1 - t)b)| + |f''((1 - t)a + tb)| \right] dt$$

$$\leq \frac{(b - a)^{2}}{2(\alpha + 1)} \left(\int_{0}^{1} t^{p} (1 - t^{\alpha})^{p} dt \right)^{\frac{1}{p}}$$

$$\times \left[\left(\int_{0}^{1} |f''(ta + (1 - t)b)|^{q} dt \right)^{\frac{1}{q}} + \left(\int_{0}^{1} |f''((1 - t)a + tb)|^{q} dt \right)^{\frac{1}{q}} \right]$$

Since $|f''|^q$ is s-concave using inequality (1.2) we get (see [2])

$$\int_{0}^{1} |f''(ta + (1-t)b)|^{q} dt \le 2^{s-1} \left| f''\left(\frac{a+b}{2}\right) \right|^{q}$$
 (2.7)

and

$$\int_{0}^{1} \left| f''((1-t)a + tb) \right|^{q} dt \le 2^{s-1} \left| f''\left(\frac{b+a}{2}\right) \right|^{q} \tag{2.8}$$

Using (2.7) and (2.8) in (2.6), we have

$$\left| \frac{f(a) + f(b)}{2} - \frac{\Gamma\left(\alpha + 1\right)}{2\left(b - a\right)^{\alpha}} \left[J_{a^{+}}^{\alpha} f(b) + J_{b^{-}}^{\alpha} f(a) \right] \right|$$

$$\leq \frac{\left(b - a\right)^{2}}{\alpha + 1} \beta^{\frac{1}{p}} \left(p + 1, \alpha p + 1\right) 2^{\frac{s - 1}{q}} \left| f''\left(\frac{a + b}{2}\right) \right|$$

which completes the proof.

Remark 2.9. In Theorem 2.8 if we choose s = 1 then (2.5) reduces inequality (1.6) of Theorem 1.6.

References

- 1. M. Alomari, M. Darus, On the Hadamard's inequality for log-convex functions on the coordinates, J. Inequal. Appl. **2009** (2009), 13. Article ID 283147.
- 2. M. Alomari, M. Darus, S.S. Dragomir, P. Cerone, Ostrowski type inequalities for functions whose derivatives are s-convex in the second sense, Appl. Math. Lett. 23 (2010), 1071–1076.
- 3. G. Anastassiou, M.R. Hooshmandasl, A. Ghasemi, F. Moftakharzadeh, *Montogomery identities for fractional integrals and related fractional inequalities*, J. Ineq. Pure Appl. Math. **10** (2009), no. 4, Art 97.
- 4. A.G. Azpeitia, Convex functions and the Hadamard inequality, Revista Colombiana Mat. 28 (1994), 7–12.
- 5. M.K. Bakula, M.E. Ozdemir, J. Pečarić, Hadamard type inequalities for m-convex and (α, m) -convex functions, J. Ineq. Pure Appl. Math. **9** (2008), no. 4, Art. 96.
- M.K. Bakula, J. Pečarić, Note on some Hadamard-type inequalities, J. Ineq. Pure Appl. Math. 5 (2004), no. 3, Article 74.
- S. Belarbi, Z. Dahmani, On some new fractional integral inequalities, J. Ineq. Pure Appl. Math. 10 (2009), no. 3, Art. 86.
- 8. M.I. Bhatti, M. Iqbal and S.S. Dragomir, Some new fractional integral Hermite-Hadamard type inequalities, RGMIA Res. Rep. Coll., 16 (2013), Article 2.
- Z. Dahmani, New inequalities in fractional integrals, Int. J. Nonlinear Sci. 9 (2010), no. 4, 493–497.
- 10. Z. Dahmani, On Minkowski and Hermite-Hadamard integral inequalities via fractional integration, Ann. Funct. Anal. 1 (2010), no. 1, 51–58.
- 11. Z. Dahmani, L. Tabharit, S. Taf, Some fractional integral inequalities, Nonlinear. Sci. Lett. A 1 (2010), no. 2, 155–160.
- 12. Z. Dahmani, L. Tabharit, S. Taf, New generalizations of Gruss inequality using Riemann–Liouville fractional integrals, Bull. Math. Anal. Appl. 2 (2010), no. 3, 93–99.
- 13. S.S. Dragomir, On some new inequalities of Hermite-Hadamard type for m-convex functions, Tamkang J. Math. 3 (2002), no. 1.
- S.S. Dragomir, R.P. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, Appl. Math. lett. 11 (1998), no. 5, 91–95.

- 15. S.S.Dragomir, S. Fitzpatrik, *The Hadamard's inequality for s-convex functions in the second sense*, Demonstratio Math **32** (1999), no. 4, 687–696.
- S.S. Dragomir, C.E.M. Pearce, Selected topics on Hermite-Hadamard inequalities and applications, RGMIA Monographs, Victoria University, 2000.
- 17. P.M. Gill, C.E.M. Pearce, J. Pečarić, *Hadamard's inequality for r-convex functions*, J. Math. Anal. Appl. **215** (1997), no. 2, 461–470.
- 18. H. Hudzik, L. Maligranda, Some remarks on s-convex functions, Aequationes Math. 48 (1994), 100–111.
- 19. U.S. Kırmacı, M.K. Bakula, M.E. Özdemir, J. Pečarić, *Hadamard-tpye inequalities for s-convex functions*, Appl. Math. Comput. **193** (2007), 26–35.
- 20. M.E. Özdemir, M. Avci, E. Set, On some inequalities of Hermite-Hadamard type via m-convexity, Appl. Math. Lett. 23 (2010), no. 9, 1065–1070.
- 21. J.E. Pečarić, F. Proschan, Y.L. Tong, Convex Functions, Partial Orderings and Statistical Applications, Academic Press, Boston, 1992.
- M.Z. Sarikaya, H. Ogunmez, On new inequalities via Riemann-Liouville fractional integration, Abstract and Applied Analysis, Volume 2012, Article ID 428983, 10 pages, doi:10.1155/2012/428983.
- 23. M.Z. Sarikaya and H. Yaldiz, On weighted Montogomery identities for Riemann-Liouville fractional integrals, Konural Journal of Mathematics, 1 (2013), no. 1, 48–53.
- M.Z. Sarikaya, E.Set, H.Yaldiz and N.Basak, Hermite-Hadamard's inequalities for fractional integrals and related fractional inequalities, Mathematical and Computer Modelling, 57 (2013), 2403–2407.
- 25. E. Set, New inequalities of Ostrowski type for mappings whose derivatives are s-convex in the second sense via fractional integrals, Comp. Math. Appl. 63 (2012), no. 7, 1147–1154.
- 26. E. Set, M.E. Ozdemir, S.S. Dragomir, On the Hermite-Hadamard inequality and other integral inequalities involving two functions, J. Inequal. Appl. (2010), 9. Article ID 148102.
- 27. E. Set, M.E. Özdemir, S.S. Dragomir, On Hadamard-type inequalities involving several kinds of convexity, J. Inequal. Appl. (2010), 12. Article ID 286845.
- $^{\rm 1}$ Department of Mathematics, Faculty of Science and Arts, Ordu University, Ordu, Turkey

E-mail address: erhanset@yahoo.com

 2 Atatürk University, K.K. Education Faculty, Department of Mathematics, 25240, Campus, Erzurum, Turkey

E-mail address: emos@atauni.edu.tr

 3 Department of Mathematics, Faculty of Science and Arts, Düzce University, Düzce, Turkey

E-mail address: sarikayamz@gmail.com

 4 Department of Mathematics, Faculty of Science and Arts, Düzce University, Düzce, Turkey

E-mail address: filinz_41@hotmail.com