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ABSTRACT. In this paper we establish Hermite-Hadamard type inequalities
for mappings whose derivatives are s—convex in the second sense and concave.

1. INTRODUCTION

Let f : I € R — R be a convex function defined on the interval I of real
numbers and a,b € [ with a < b. Then

f(“b)<bfaa/bf<sc>ozsc<M (1.1)

2 2

is known that the Hermite-Hadamard inequality for convex function. Both in-
equalities hold in the reserved direction if f is concave. We note that Hadamard’s
inequality may be regarded as a refinement of the concept of convexity and it fol-
lows easily from Jensen’s inequality. Hadamard’s inequality for convex functions
has received renewed attention in recent years and a remarkable variety of refine-
ments and generalizations have been found; see, for example see ([1]-[21]).

Definition 1.1. ([18]) A function f : [0,00) — R is said to be s—convex in the
second sense if

FOz4+ 1 =Ny) <Xf(z)+ (1= N)°f(y)
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for all z,y € [0,00), A € [0,1] and for some fixed s € (0, 1]. This class of s—convex
functions is usually denoted by K?2.

In ([15]) Dragomir and Fitzpatrick proved a variant of Hadamard’s inequality
which holds for s—convex functions in the second sense:

Theorem 1.2. Suppose that f : [0,00) — [0,00) is an s—convex function in the
second sense ,where s € (0,1) and let a,b € [0,00),a < b. If f' € L' ([a,b]), then
the following inequalities hold:

_ +b I f(a)+ f(b)
2s~1 a4 < de < —-F——~~ 1.2
f<2>_b—a/af<x>x_ s+ 1 (12)
The constant k = 54+1 is the best possible in the second inequality in (1.2)

The following results are proved by M.I.Bhatti et al. (see [8]).

Theorem 1.3. Let f : I C R — R be a twice differentiable function on I°
such that |f"| is convex function on I. Suppose that a,b € I° with a < b and

f" € Lla,b], then the following inequality for fractional integrals with o > 0
holds:

fla)+f(b)  T(a+1)
_ (0% b Ci
= R
o _ab=a* TIf"@]+]0)
T 2a+1)(a+2) 2
(b—a)’ /" (@)l + 1" (0)]
2 1
where B is Fuler Beta function.
Theorem 1.4. Let f : I C R — R be a twice differentiable function on I°.
Assume that p € R;p > 1 such that |f”|P}%1 is convex function on I. Suppose that
a,b € I° with a < b and f" € L[a,b], then the following inequality for fractional
integrals holds:

(1.3)

A+ F0) L@t D) e cgy 4 o )

2 2(b—a)
WMW+W%WY

(1.4)

b—a)? 1
<a+a1) ﬁp(p—l-l,ap—i-l)( 5

where B is Fuler Beta function.

Theorem 1.5. Let f : I C R — R be a twice differentiable function on I°.
Assume that ¢ > 1 such that | f"|? is convex function on I. Suppose that a,b € I°
with a < b and f" € L[a,b], then the following inequality for fractional integrals
holds:

<

fla)+ f(b) T(a+1) )
9 T2h—a) [J (D) + J f(a)]

o (b— a)’ (22 | fr(a)|7 4 255 | F7(b)[)
Aot 1) (a+2) | + (&5 f"(a)|" + 25 | ()]

(1.5)

Q=
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Theorem 1.6. Let f : I C R — R be a twice differentiable function on I°.
Assume that p € R,p > 1 with q = 1% such that | f"|* is concave function on I.
Suppose that a,b € 1° with a < b and f" € L[a,b], then the following inequality
for fractional integrals holds:

A+ fO) L@+ 1) ha g4 g (o)

2 2(b—a)
()

(b—a)’
a+1

We will give some necessary definitions and mathematical preliminaries of frac-

tional calculus theory which are used further this paper.

Definition 1.7. Let f € L[a,b]. The Reimann-Liouville integrals J¢ f(z) and
J f(z) of order a > 0 with a > 0 are defined by

(1.6)

Bv (p+1,ap+1)

where B 1s Fuler Beta function.

J& f(x) = ﬁ /z(x — )" f(t)dt, v >a

and

1

b
Ji-f(x) = m/ (t—z)* L f(t)dt, v <b

respectively, where '(a) = [~ e “u*"'du is the Gamma function and JY, f(z) =
B f(@) = f().

In the case of a = 1 the fractional integral reduces to the classical integral.

For some recent results connected with fractional integral inequalities, see [3]-
[25].

In this paper, we establish fractional integral ineqalities of Hermite-Hadamard
type for mappings whose derivatives are s—convex and concave.

2. MAIN RESULTS
In order to prove our main theorems we need the following lemma (see [8]).

Lemma 2.1. Let f : I C R — R be a twice differentiable function on I°,the
interior of 1. Assume that a,b € I° with a < b and f* € Lla,b], then the
following identity for fractional integral with o > 0 holds:

fl@)+ f) T(a+1) .
2 T 2(b—a) [Jar f(b) + Jp- f(a)] (2.1)

2(1;(;3)12) /Olt(l — ) [f" (ta+ (1 =1)b) + f" (1 —t) a+ tb)] di

where I'(a) = [;° e u*"du.
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Theorem 2.2. Let f: I C [0,00) — R be a twice differentiable function on I°
and let a,b € I° with a < b and f" € Lla,b]. If | f"| is s—convex in the second
sense on I for some fized s € (0, 1], then the following inequality for fractional
integrals with o > 0 holds:

‘f(a) ; f) 5 (fja%i [J& f(b) + T3 f(a)] (22)
(b—a)’ a
2(a+1) {(8—1—2)((1—1—5—1—2) +ﬁ(2’8+1)_6(&+2’8+1>}

< [f" (@) + 1/ (0)]]

where 3 is Euler Beta function.

Proof. From Lemma 2.1 since |f”| is s—convex in the second sense on I, we have

’f( @)+ f() T é@ja? 2 F(6) + T f(a)]

< B [ s 000+ 1= D+ m))a
< P [ oo

s [ mia- i@l e o) dt]

= —SZ; f)f) [/ B ) dt 4 / H1 - )1 —t>5df] 1£"(@)] + £ 0)]

_ (b—a)z[ «
2(a+1) [(s+2)(a+s+2)

<[ (@) + 1/ (0)]]

where we used the fact that
1
t8+1 dt «
/0 (1 =17 (s+2)(a+s+2)

1
/ t(1—t1—=t)’dt =5(2,s+1)—p(a+2,5s+ 1)
0
which completes the proof. Il

+ﬂ(2,s+1)—ﬂ(a+2,s+1)1

and

Remark 2.3. In Theorem 2.2 if we choose s = 1 then (2.2) reduces the inequality
(1.3) of Theorem 1.3.

Theorem 2.4. Let f : I C [0,00) — R be a twice differentiable function on I°.
Suppose that a,b € I° with a < b and f € L{a,b]. If | f"|? is s—convex in the
second sense on I for some fived s € (0,1], p,q > 1, then the following inequality
for fractional integrals with o € (0, 1] holds:
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fla)+fb) T(a+1)
2 2(b—a)"

(b—a)*
a+1

L2 f(b) + T f(a)]
" (@)| + \f”(b)rf] i

s+1

(2.3)

<

ﬁp (p+1,ap+1) [
where [ is Euler Beta function and % + % =1

Proof. From Lemma 2.1, using the well known Holder inequality and |f”]? is
s—convex in the second sense on I, we have

‘f(a)Jrf(b) _ e+ 1)
2(b—a)”
(b—a

< 2(a+1 / [t =[S (ta+ (L= ) b) + [/ (1 — t) a + tb)|] dt
X [(/01 |f"(ta + (1 —t)b)|th)é + (/01 If((1 —t)a+tb)|th);]

;?;—Jf)f)(/oltp(l—ta)pdt>;

(o @ 1@+ (=2 [ @)[*)at)
(o (@=er 1@+ e 1w )
=0 () [ @1 ) ﬁ){]
i ([ ro-ere) @I+ 1O 2)*
(b~ a)’

1" (a)]" + |f”(b)lq} :
a+1 s+1

[Ja+ f(0) + Jg- f(a)]

IN

<

B (p+1,ap+1) {

where we used the fact that

1 1 1
/tsdt:/ (1—t)%dt =
0 0 s+ 1

1 1
/tp(l—ta)pdtg/ #(1—0)°dt = B(p+1,ap+ 1)
0 0

which completes the proof. O

and

Remark 2.5. In Theorem 2.4 if we choose s = 1 then (2.3) reduces the inequality
(1.4) of Theorem 1.4.
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Theorem 2.6. Let f: I C [0,00) = R be a twice differentiable function on I°.
Suppose that a,b € I° with a < b and f* € L{a,b]. If | f"|? is s—convex in the
second sense on I for some fized s € (0,1] and ¢ > 1 then the following inequality
for fractional integrals with o > 0 holds:

[Jar (b) + i~ f(a)]

‘f(a) + () T(a+1) o)

2 2(b—a)”
a(b—a)’

ST CESICET)

1
a 2,54+1)—B(a+2,54+1)](2a+4
| ey + 17/ it tatizesn)

1S s—convex in

Q=

2,54+1)—B(a+2,54+1)](2a+4 a
+ <]f”(a)]q [B(2,5+1)—B( ;- +1)](20+4) + ‘f”( )lq (s+2§(o—jfs+2)>

Proof. From Lemma 2.1, using power mean inequality and |f”
the second sense on I we have

| q

‘ f(a) ' £ 2F(<ba_+a§g TS F(b) + Jg f(a)

=g /|t1—t°“)|[|f”(ta+(1—t) D+ 15" (1~ t)a + b)) dt

= 2(a+1)
< %([t(l—t“)dt)lq (/Olt(l—ta)|f”(ta+(1—t)b)|th)q

+ (/01 HL =) [f"(1 = t)a + tb)|th) ;]

oo /Onu_ta)dt)”

X [(/O [ @ =) [ (@) + £ (1 —17) (L= 1)° |f" (B[] dt)

IN

1
q

+ 175(1—lt‘”‘)(l—t)slf”(a)lq (L —1) [f7(0)) dt %
(f )|

B 2(1204_?12) (2(aa+ 2))1_}1 ;

(@ G + 1O B2+ 1) = -t 2.5+ 1))’

(I @F B+ 1) = plat 2+ D]+ PO Goaprs) |
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a(b—a)’
4(a+1)(a+2)

1
|:(’f//< ),t] (S+22a+4 + ’f//< ),t] [B(2,5+1)7,8(a+2,s+1)](2a+4)) q

)(a+s+2) a

1
2,8 1)—B(a 275 D](2a+4 =
+ (|£(@)] e rh-platterii +’+\f”(b)l"%>q}

where we used the fact that

/0 PRt d = e T

and
1
/ FL— ") (1=t dt = B (2.5 +1) = B(a+2,5+1)
0
which completes the proof. O

Remark 2.7. In Theorem 2.6 if we choose s = 1 then (2.4) reduces the inequality
(1.5) of Theorem 1.5.

The following result holds for s—concavity.

Theorem 2.8. Let f: I C [0,00) = R be a twice differentiable function on I°.
Suppose that a,b € I° with a < b and ' € Lla,b]. If |f"|? is s—concave in
the second sense on I for some fixred s € (0,1] and p,q > 1, then the following
inequality for fractional integrals with o € (0, 1] holds:

fla)+ f(b)  Tla+1) o
S i L )+ (@) (25)
b—a)’ 1 b
st (53)
where zla + % =1 and B is Euler Beta function.
Proof. From Lemma 2.1 and using the Holder inequality we have
[ 18 2 (ﬁf“_* o L F0) 4 J5 @) (26)
h—
< ;(afl / 60— )1t (1= 0)B)]+ 17 (1= 1) a -+ 1b)])

[(/ |f"(ta + (1 —t)b) |th) (/ If7((1 a—l—tb)|th)]
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Since | f”|? is s—concave using inequality (1.2) we get (see [2])

/01 |f"(ta+ (1 —t)b)|"dt < 2571 |f” (GTM) q (2.7)
and X
/0 1f(1—t)a +tb)|"dt <257t | f” (HTG) (2.8)

Using (2.7) and (2.8) in (2.6), we have
'f@%hﬂ@_lwa+ﬂ
2

[Ja+ (D) + Jg= f(a)]

2(b—a)"
(b—a)® 1 s |, (a+b
o Pt Loapt )2 e\ f1 —
which completes the proof. O

Remark 2.9. In Theorem 2.8 if we choose s = 1 then (2.5) reduces inequality
(1.6) of Theorem 1.6.
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