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Rational approximations to 3
√

2 and other

algebraic numbers revisited

par Paul M. VOUTIER

Résumé. Dans cet article, nous améliorons des mesures effec-
tives d’irrationalité pour certains nombres de la forme 3

√
n en

utilisant des approximations obtenues à partir de fonctions hy-
pergéométriques. Ces résultats sont très proche du mieux que
peut donner cette méthode. Nous obtenons ces résultats grâce à
des informations arithmétiques très précises sur les dénominateurs
des coefficients de ces fonctions hypergéométriques.

Des améliorations de bornes pour les fonctions de Chebyshev
θ(k, l;x) =

∑
p≡l mod k;

p,prime, p≤x

log p. et ψ(k, l;x) =
∑

n≡l mod k;
n≤x

Λ(n) (k =

1, 3, 4, 6) sont aussi présentés.

Abstract. In this paper, we establish improved effective irra-
tionality measures for certain numbers of the form 3

√
n, using

approximations obtained from hypergeometric functions. These
results are very close to the best possible using this method. We
are able to obtain these results by determining very precise arith-
metic information about the denominators of the coefficients of
these hypergeometric functions.

Improved bounds for the Chebyshev functions in arithmetic
progressions θ(k, l;x) and ψ(k, l;x) for k = 1, 3, 4, 6 are also pre-
sented.

1. Introduction

In this article, we shall consider some refinements of a method due to
Alan Baker [1, 2] for obtaining effective irrationality measures for certain
algebraic numbers of the form zm/n. As an example, he showed that for
any integers p and q, with q 6= 0,∣∣∣∣21/3 − p

q

∣∣∣∣ > 10−6

|q|2.955
.

This method has its basis in the work of Thue. There are two infi-
nite families of hypergeometric polynomials in Q[z], {Xm,n,r(z)}∞r=0 and
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{Ym,n,r(z)}∞r=0, such that {Ym,n,r(z)/Xm,n,r(z)}∞r=0 is a sequence of good
approximations to zm/n. Under certain conditions on z, these approxima-
tions are good enough to enable us to establish an effective irrationality
measure for zm/n which is better than the Liouville measure.

Since it is easy to obtain sharp estimates for the other quantities involved,
the most important consideration in applying this method is the size of the
denominators of these hypergeometric polynomials.

Chudnovsky [5] improved on Baker’s results by showing that, if p is a suf-
ficiently large prime divisor of the least common denominator of Xm,n,r(z)
and Ym,n,r(z), then p must lie in certain congruence classes mod n and
certain subintervals of [1, nr].

In the case of zm/n = 21/3, he was able to show that for any ε > 0 there
exists a positive integer q0(ε) such that∣∣∣∣21/3 − p

q

∣∣∣∣ > 1
|q|2.4297...+ε

for all integers p and q with |q| > q0(ε). Moreover, since his estimates
for the relevant quantities are asymptotically correct, this exponent is the
best that one can obtain from this hypergeometric method although “off-
diagonal” or the method of “ameliorating factors” (à la Hata) still might
yield improvements.

Shortly after this work, Easton [6] obtained explicit versions for the cube
roots of various positive integers. For 21/3, he showed that∣∣∣∣21/3 − p

q

∣∣∣∣ > 2.2 · 10−8

|q|2.795

for all integers p and q with q 6= 0.
It is the purpose of this paper to establish effective irrationality measures

which come quite close to Chudnovsky’s. In the particular case of 21/3,∣∣∣∣21/3 − p

q

∣∣∣∣ > 0.25
|q|2.4325

for all integers p and q with q 6= 0.
This paper was initially written and circulated in 1996. Independently,

Bennett [3] obtained a result, which in the cubic case, is slightly weaker
than the theorem stated here. E.g., for 21/3, he showed that∣∣∣∣21/3 − p

q

∣∣∣∣ > 0.25
|q|2.45

for all integers p and q with q 6= 0.
In fact, this subject has been the topic of even more work. As part of his

Ph.D. Thesis (see [8]), Heimonen has also obtained effective irrationality
measures for numbers of the form n

√
a/b, as well as of the form log(a/b).
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His results are not as sharp as those of the author, but they are still sub-
stantially better than Easton’s.

The general method used in each of these three papers is essentially
the same. However, there are substantial differences in the presentations
due to the fact that the approach of Bennett and Heimonen shows more
apparently the role that Padé approximations play in this area, while the
author deals explicitly with hypergeometric polynomials.

Actually, the referee has pointed out that other work in this area has
been done, producing results not much weaker than our own. And this
work preceeded the results of Bennett, Heimonen and the author. We
are referring to the work of Nikishin [12] and, especially, Korobov [9]. In
particular, in 1990, Korobov showed that∣∣∣ 3

√
2− p/q

∣∣∣ > q−2.5,

for all natural numbers p and q with q 6= 1, 4. The reader looking for a
more accessible reference to these works is referred to [7, pp. 38–39].

The main differences between this version of the paper and the previous
version are Theorem 2.3 and improvements in computer hardware. This has
resulted in replacing 0.93 with 0.911 in the exponents on e in the expressions
for E and Q in Theorem 2.1 (which requires a larger value of c1), along
with the consequent improvements to Corollary 2.2 including new results
for 3

√
41 and 3

√
57.

The main incentive for publication of this paper now is completeness.
Several articles have since appeared in the literature (e.g., [11] and [15])
which depend on results in this article. Furthermore, the lemmas in this
article, which are either new or sharpen results currently in the literature,
are important in forthcoming articles by the author and others. They are
accompanied by an analysis showing that they are best-possible or else
what the best-possible results should be. And lastly, the main theorem
itself, along with its corollary, is an improvement on the present results in
the literature.

We structure this paper as follows. Section 2 contains the statements of
our results. In Section 3, we state and prove the arithmetic results that
we obtain for the coefficients of the hypergeometric polynomials. Section 4
is devoted to the proof of Theorem 2.3, as this theorem will be required
in Section 5, where we obtain the analytic bounds that we will require for
the proof of Theorem 2.1. Section 6 contains the diophantine lemma that
allows us to obtain an effective irrationality measure from a sequence of
good approximations. At this point, we have all the pieces that we need
to prove Theorem 2.1, which is done in Section 7. Finally, Corollary 2.2 is
proven in Section 8.
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Finally, I’d like to thank Gary Walsh for his encouragement and moti-
vation to resume my work in this area. Also, Clemens Heuberger deserves
my thanks for his careful reading of an earlier version of this paper and
accompanying suggestions. And, of course, I thank the referee for their
time and effort as well as their suggestions for improvements.

2. Results

Theorem 2.1. Let a and b be integers satisfying 0 < b < a. Define c1, d, E
and κ by

d =

 0 if 3 6 | (a− b),
1 if 3 ‖ (a− b) and
3/2 otherwise,

E = e−0.9113d
(
a1/2 − b1/2

)−2
,

κ =
log
{
e0.9113−d

(
a1/2 + b1/2

)2}
logE

and

c1 = 1040(κ+1)a.

If E > 1 then

(1)
∣∣∣(a/b)1/3 − p/q

∣∣∣ > 1
c1|q|κ+1

for all integers p and q with q 6= 0.

Remark. c1 grows quite rapidly as the absolute values of the arguments of
the exponential functions in the definition of E approach their best possible
value of π

√
3/6 = 0.9068 . . ..

In the earlier version of this paper with 0.911 replaced by 0.93, we could
have taken c1 = 107(κ+1)a. It is feasible to prove Theorem 2.1 with 0.911
replaced by 0.91, but then we would have to take c1 = 1086(κ+1)a.

The rate of growth is even more rapid as we continue to approach 0.9068.
For example, with 0.907, c1 > 102400(κ+1)a.

As an application of Theorem 2.1, we give effective irrationality measures
for all numbers of the form 3

√
n where n is a cube-free rational integer

with 2 ≤ n ≤ 100 and for which the hypergeometric method yields an
improvement over the Liouville bound.

Corollary 2.2. For the values of n given in Table 1, we have∣∣ 3
√
n− p/q

∣∣ > c2
|q|κ+1

,

for all integers p and q with q 6= 0 where c2 and κ are the values corre-
sponding to n in Table 1.
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n c2 κ n c2 κ n c2 κ
2 0.25 1.4325 25 0.07 1.7567 60 0.08 1.5670
3 0.37 1.6974 26 0.03 1.4860 61 0.06 1.5193
4 0.41 1.4325 28 0.03 1.4813 62 0.04 1.4646
5 0.29 1.7567 30 0.10 1.6689 63 0.02 1.3943
6 0.01 1.3216 31 0.14 1.9288 65 0.02 1.3929
7 0.08 1.6717 36 0.08 1.3216 66 0.04 1.4610
9 0.08 1.6974 37 0.01 1.2472 67 0.06 1.5125
10 0.15 1.4157 39 0.08 1.1848 68 0.08 1.5562
11 0.22 1.8725 41 0.41 1.9956 70 0.12 1.6314
12 0.28 1.9099 42 0.12 1.4186 76 0.08 1.5154
13 0.35 1.8266 43 0.01 1.2890 78 0.03 1.5729
15 0.19 1.4964 44 0.21 1.8164 83 0.09 1.6898
17 0.01 1.1996 49 0.13 1.6717 84 0.37 1.8797
18 0.37 1.9099 50 0.11 1.1962 90 0.09 1.3751
19 0.02 1.2718 52 0.26 1.8901 91 0.009 1.2583
20 0.009 1.1961 57 0.15 1.9825 98 0.38 1.4813
22 0.07 1.2764 58 0.12 1.6526 100 0.35 1.4158

Table 1. Results for 3
√
n

Remark. If α be an irrational element of Q ( 3
√
n), then we can write

α =
a1

3
√
n+ a2

a3
3
√
n+ a4

,

where a1, a2, a3, a4 ∈ Z with a1a4 − a2a3 6= 0. In this way, we can use
Corollary 2.2 to obtain effective irrationality measures for any such α (see
Section 8 of [5]).

These values of a and b were found from the convergents p/q in the
continued-fraction expansion of 3

√
n by setting a/b to be either (p/q)3/n or

its reciprocal, whichever is greater than one. For each cube-free positive
integer less than or equal to 100, we searched through all the convergents
with q < 10100.

In this way, we obtain measures for 3
√

5, 3
√

11 and 3
√

41 — values of n
within the range considered by Chudnovsky, but not treated by him — as
well as an improved irrationality measure for 3

√
7. Bennett also found the

same a and b for these n (along with n = 41 and 57, which we also consider
here). However, his version of our Theorem 2.1 was not sufficiently strong
to allow him to obtain effective irrationality measures for n = 41 and 57
which improve on Liouville’s theorem, so these remain as new results here.
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Given the scale of the search, the table is almost certainly complete for
n ≤ 100.

The values of a and b listed in Table 1 produced the minimal values of
κ < 2 satisfying the conditions of Theorem 2.1 for the given value of n.

A key element in translating the sharp result contained in Proposition 3.2
into tight numerical results is a strong bound for

θ(x; k, l) =
∑

p≡l mod k;p,prime
p≤x

log p.

Ramaré and Rumely [13] provide good bounds. However, due to re-
cent computational work of Rubinstein [14], we are able to improve these
bounds considerably for some k. So we present here the following results
on θ(x; k, l), and the closely-related ψ(x; k, l), for k = 1, 3, 4 and 6.

Theorem 2.3. (a) For 1 ≤ x ≤ 1012,
max

1≤y≤x
max (|θ(y)− y| , |ψ(y)− y|) ≤ 2.052818

√
x,

max
1≤y≤x

max (|θ(y; 3,±1)− y/2| , |ψ(y; 3,±1)− y|) ≤ 1.798158
√
x,

max
1≤y≤x

max (|θ(y; 4,±1)− y/2| , |ψ(y; 4,±1)− y|) ≤ 1.780719
√
x and

max
1≤y≤x

max (|θ(y; 6,±1)− y/2| , |ψ(y; 6,±1)− y|) ≤ 1.798158
√
x.

(b) For each (k, l), x0 and ε given in Table 2,∣∣∣∣θ(x; k, l)− x

ϕ(k)

∣∣∣∣ , ∣∣∣∣ψ(x; k, l)− x

ϕ(k)

∣∣∣∣ ≤ εx,

for x ≥ x0.

105 106 107 108 109 1010

(1, 0) 0.00474 0.00168 0.000525 0.0001491 0.0000459 0.0000186
(3, 1) 0.00405 0.00148 0.000401 0.0001260 0.0000371 0.0000351
(3, 2) 0.00217 0.00068 0.000180 0.0000428 0.0000351 0.0000351
(4, 1) 0.00494 0.00169 0.000471 0.0001268 0.0000511 0.0000511
(4, 3) 0.00150 0.00036 0.000197 0.0000511 0.0000511 0.0000511
(6, 1) 0.00405 0.00148 0.000401 0.0001260 0.0000371 0.0000351
(6, 5) 0.00217 0.00068 0.000180 0.0000428 0.0000351 0.0000351

Table 2. Analytic epsilons for x ≥ x0

Only the results for θ(x; 3, 2) and ψ(x; 3, 2) will be used here, but we
record the additional inequalities in this theorem for use in ongoing work
and by other researchers as they improve the current bounds of Ramaré
and Rumely [13] by a factor of approximately 30.
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Unless otherwise noted, all the calculations mentioned in this paper were
done using the Java programming language (release 1.4.2) running on an
IBM-compatible computer with an Intel P4 CPU running at 1.8 GHz with
256 MB of memory. Source code for all programs can be provided upon
request. Many of these computations were also checked by hand, using
MAPLE, PARI/GP and UBASIC. No discrepancies beyond round-off error
were found.

3. Arithmetic properties of hypergeometric polynomials

We use 2F1(a, b; c; z) to denote the hypergeometric function

2F1(a, b; c; z) = 1 +
∞∑

k=1

a(a+ 1) · · · (a+ k − 1)b(b+ 1) · · · (b+ k − 1)
c(c+ 1) · · · (c+ k − 1)k!

zk.

For our purposes here, we are interested in the following functions, which
we define for all positive integers m,n and r with (m,n) = 1. Let

Xm,n,r(z) = zr
2F1

(
−r,−r −m/n; 1−m/n; z−1

)
,

Ym,n,r(z) = 2F1 (−r,−r −m/n; 1−m/n; z) and

Rm,n,r(z) =
(m/n) · · · (r +m/n)
(r + 1) · · · (2r + 1) 2F1 (r + 1−m/n, r + 1; 2r + 2; 1− z) .

This differs from (4.3) of [5] where the expressions for Xr(z) and Yr(z)
have been switched. The same change must be made in (4.4) of [5] too.

Notations. We let Dm,n,r denote the smallest positive integer such that
Dm,n,rYm,n,r(z) has rational integer coefficients.
To simplify the notation in the case of m = 1 and n = 3, which is of
particular interest in this paper, we let Xr(z), Yr(z), Rr(z) and Dr denote
X1,3,r(z), Y1,3,r(z), R1,3,r(z) and D1,3,r, respectively.
We will use vp(r) to denote the largest power of a prime p which divides
into the rational number r.
Finally, we let b·c denote the floor function which maps a real number to
the greatest integer less than that number.

We first need a refined version of Chudnovsky’s Lemma 4.5 in order to
establish our criterion for the prime divisors of Dm,n,r.

Lemma 3.1. Suppose that m,n, p, u and v are integers with 0 < m < n
and (m,n) = (p, n) = 1. For each positive integer, i, define the integer
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1 ≤ ki ≤ pi by kin ≡ m mod pi. Then

vp

 v∏
j=u

(nj −m)

 =
∞∑
i=1

(⌊
v − ki

pi

⌋
−
⌊
u− 1− ki

pi

⌋)

=
∞∑
i=1

(⌊
−u+ ki

pi

⌋
−
⌊
−v − 1 + ki

pi

⌋)
.

Remark. It would be more typical to state the above lemma with the
condition 0 ≤ ki < pi rather than 1 ≤ ki ≤ pi. The proof below holds with
either condition. However, the above formulation suits our needs in the
proof of Proposition 3.2 below better.

Proof. For each positive integer i, we will count the number of j’s in u ≤ j ≤
v with nj −m ≡ 0 mod pi. That is, with nj − kin ≡ 0 mod pi. And, since
(n, p) = 1, with j ≡ ki mod pi. The remainder of the proof is identical to
Chudnovsky’s proof of his Lemma 4.5 [5], upon replacing his p with pi. �

Proposition 3.2. Let m,n and r be positive integers with 0 < m < n and
(m,n) = 1.

The largest power to which a prime p can divide Dm,n,r is at most the
number of positive integers i for which there exist a positive integer li sat-
isfying (li, n) = 1, lipi ≡ −m mod n such that

lip
i +m

n
≤ r mod pi ≤ (n− li)pi −m− n

n
.

Furthermore, all such i satisfy pi ≤ nr.

Remark. From the calculations done in the course of this, and other, work
(see, for example, the notes following Lemmas 3.3, 3.4 and 5.1), it appears
that the conditions given in this Proposition provide the exact power to
which a prime divides Dm,n,r. However, I have not been able to prove this.

Proof. Let ar,h denote the coefficient of zh in Ym,n,r(z) and let p be a prime
number. From our definition of Ym,n,r(z) above, we can write

ar,h =
(
r

h

)
Cr,h

Br,h
,

where

Br,h =
h∏

i=1

(in−m) and Cr,h =
r∏

i=r−h+1

(in+m).

We first show that if p divides Dm,n,r then (p, n) = 1.
If p does divide Dm,n,r then p must divide Br,h for some 0 ≤ h ≤ r. So

it must divide some number of the form in −m where 1 ≤ i ≤ r. But, if
p divides such a number and also divides n, then it must also divide m.
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However, our hypothesis that (m,n) = 1 does not allow this and so, if p
divides Dm,n,r then (p, n) = 1.

Therefore, for any positive integer i, we can find an integer ki with
1 ≤ ki ≤ pi, (ki, p

i) = 1 and kin ≡ m mod pi.
As 1 ≤ ki and m < n, we know that 0 < kin−m, and so there must be a

positive integer li with (li, n) = 1 and kin−m = lip
i. Furthermore, li < n.

Returning to our expression for ar,h, we have

vp (ar,h) = vp

((
r

h

))
+ vp (Cr,h)− vp (Br,h) .

It is well-known that

vp

((
r

h

))
=

∞∑
i=1

(⌊
r

pi

⌋
−
⌊
h

pi

⌋
−
⌊
r − h

pi

⌋)
.

From the first expression in Lemma 3.1 with u = 1 and v = h,

vp (Br,h) =
∞∑
i=1

(⌊
h− ki

pi

⌋
−
⌊
−ki

pi

⌋)
.

From the second expression in Lemma 3.1 with u = −r and v = −r+h−1,

vp (Cr,h) =
∞∑
i=1

(⌊
r + ki

pi

⌋
−
⌊
r + ki − h

pi

⌋)
.

Thus, we want to determine when

(2)
⌊
r

pi

⌋
−
⌊
h

pi

⌋
−
⌊
r − h

pi

⌋
−
⌊
h− ki

pi

⌋
+
⌊
−ki

pi

⌋
+
⌊
r + ki

pi

⌋
−
⌊
r + ki − h

pi

⌋
is negative.

This will suffice for the purpose of proving this proposition since, as we
shall show shortly, the expression in (2) can never be less than −1.

We now show that if pi > nr, then the expression in (2) cannot be
negative. This will establish the last statement in the Proposition.

Since 0 ≤ h ≤ r < pi for such i, the first three terms in (2) are 0.
Furthermore, the same inequalities for h and r along with the fact that
ki > 0 show that the sum of the last two terms cannot be negative.

We saw above that kin−m = lip
i for a positive integer li. So it follows

that kin ≥ pi + m > nr ≥ nh. In particular, ki > h. Furthermore,
1 ≤ ki ≤ pi. Therefore, b(h − ki)/pic and b−ki/p

ic, are both equal to −1,
so the sum of the remaining terms in (2) is also zero.

This establishes the last statement in the Proposition.
Moreover, if pi > nr +m, then

r + ki <
pi −m

n
+

(n− 1)pi +m

n
< pi.
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And so the expression in (2) is always 0 for such i. We will use this fact
in the proof of Lemmas 3.3 and 3.4 below.

For any positive integer i, we can write h and r uniquely as

h = hi1p
i + hi0 and r = ri1p

i + ri0,

where 0 ≤ hi0, ri0 < pi.
With this notation, we see that⌊

r

pi

⌋
−
⌊
h

pi

⌋
−
⌊
r − h

pi

⌋
= −

⌊
ri0 − hi0

pi

⌋
⌊
h− ki

pi

⌋
−
⌊
−ki

pi

⌋
= hi1 + 1 +

⌊
hi0 − ki

pi

⌋
and(3) ⌊

r + ki

pi

⌋
−
⌊
r + ki − h

pi

⌋
= hi1 +

⌊
ri0 + ki

pi

⌋
−
⌊
ri0 + ki − hi0

pi

⌋
.

The first relation holds since 1 ≤ hi0, ri0 < pi and so bhi0/p
ic =

bri0/pic = 0. The second relation holding since 1 ≤ ki ≤ pi and so
b−ki/p

ic = −1.
The last two quantities can only have the values hi1 or hi1 + 1, so if

the expression in (2) is to be negative then the first quantity here must be
zero, since it is never negative, the second must be hi1 + 1 and the third
must be hi1. This information also substantiates our claim above that the
expression in (2) is always at least −1.

Since 0 ≤ hi0, ri0 < pi, the first quantity in (3) is zero if and only if

(4) ri0 ≥ hi0.

The second quantity in (3) is hi1 + 1 if and only if

(5) hi0 ≥ ki.

Finally, if the last quantity in (3) is hi1, then b(ri0 + ki)/pic = b(ri0 +
ki−hi0)/pic. From (5), we find that ri0+ki−hi0 ≤ ri0 < pi, so ri0+ki < pi

also. Hence

(6) 0 <
ri0 + ki

pi
< 1,

the left-hand inequality being strict since ki > 0.
From (4), we have ki ≤ ri0 + ki − hi0, while from (5) and (6), it follows

that ri0 + ki − hi0 < pi − hi0 ≤ pi − ki. Combining these inequalities, we
find that

ki

pi
≤ ri0 + ki − hi0

pi
< 1− ki

pi
.
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In addition, from (4) and (5), we know that ki ≤ ri0 and from (6),
ri0 ≤ pi − ki − 1, so

ri1 +
ki

pi
≤ r

pi
≤ ri1 + 1− ki + 1

pi
.

Substituting (lipi +m)/n = ki into this expression completes the proof
of the Proposition. �

It will be helpful for applications to present a slightly weaker but more
immediately applicable result on the prime divisors of Dm,n,r. With that
in mind, we state the following.

Lemma 3.3. (a) Let r be a positive integer. If p|Dm,n,r, then

vp (Dm,n,r) ≤
⌊

log(nr)
log p

⌋
.

(b) If p is a prime number greater than (nr)1/2 which is a divisor of Dm,n,r,
then p2 6 |Dm,n,r and for some 1 ≤ l < n/2 with (l, n) = 1, lp ≡ −m mod n,
and

(7)
nr +m+ n

nA+ n− l
≤ p ≤ nr −m

nA+ l
,

for some non-negative integer A. Moreover, every such prime greater than
(nr +m)1/2 is a divisor of Dm,n,r.

Remark. The result in (a) is best possible. E.g., D2,3,17 is divisible by 49
and blog(3 · 17)/(log 7)c = 2. This example also shows that neither of the
statements in Lemma 3.4 holds here. Furthermore, 5 divides some of the
D2,3,10, so the congruence conditions in Lemma 3.4 do not hold in general
either.

Proof. (a) This follows immediately from the last statement in Proposi-
tion 3.2.

(b) Again from the last statement in Proposition 3.2 and our lower bound
for p, we need only consider i = 1.

From the inequality on r mod p in Proposition 3.2, we can write

(8) Ap+
lp+m

n
≤ r ≤ Ap+

(n− l)p−m− n

n
,

for some non-negative A. This provides our upper and lower bounds for p
in part (b), which suffices to prove the first statement in part (b).

To prove the second statement, we will show that these primes divide
the denominator of the leading coefficient of Yr(z). So we let the quantity
denoted by h in the proof of Proposition 3.2 be r. Using the arguments to
derive (3) in the proof of Proposition 3.2, (2) simplifies to

−1−
⌊
ri0 − ki

pi

⌋
+
⌊
ri0 + ki

pi

⌋
−
⌊
ki

pi

⌋
= −1−

⌊
ri0 − ki

pi

⌋
+
⌊
ri0 + ki

pi

⌋
,
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where r ≡ ri0 mod pi.
Therefore, as we saw in the proof of Proposition 3.2,

vp(ar,r) =
∞∑
i=1

(
−1−

⌊
ri0 − ki

pi

⌋
+
⌊
ri0 + ki

pi

⌋)
.

Notice that for i ≥ 2, pi > nr + m, so, as we saw in the proof of
Proposition 3.2, the summands for such i are zero and can be ignored.

For i = 1, from (8), (lp + m)/n ≤ ri0 ≤ ((n − l)p − m − n)/n. From
the relationship between k1 and l1 given in the proof of Proposition 3.2, we
also have k1 = (lp + m)/n. Therefore, 0 ≤ br10 − k1c, br10 + k1c ≤ p − 1
and the summand for i = 1 is -1. Hence vp(ar,r) = −1, so p divides the
denominator of ar,r precisely once, completing the proof of the Lemma. �

As n gets larger, the structure of the denominator becomes more com-
plicated and the above is the best that we can do. However, in the case of
m = 1 and n = 3, 4 or 6, we can obtain a sharper result which will be used
in this paper.

Lemma 3.4. Let m = 1 and n = 3, 4 or 6.
(a) Let r be a positive integer. If p|Dm,n,r then p ≡ n− 1 mod n and

vp (Dm,n,r) ≤
⌊

log(nr)
2 log p

+
1
2

⌋
.

(b) If p is a prime number greater than (nr)1/3 which is a divisor of Dm,n,r

then p ≡ n− 1 mod n, p2 6 |Dm,n,r and

(9)
nr + n+ 1
nA+ n− 1

≤ p ≤ nr − 1
nA+ 1

,

for some non-negative integer A. Moreover, every such prime greater than
(nr + 1)1/2 is a divisor of Dm,n,r.

Remark. The result in (a) is best possible. D42 is divisible by 25 and
blog(3 · 42)/(2 log 5) +1/2c = 2. Similarly, D1042 is divisible by 125 and
blog(3 · 1042)/(2 log 5) + 1/2c = 3. However, it is not true that vp(Dr) ≥ 2
for all p ≤ (3r)1/3 (e.g., v5(D43) = 1).

Remark. The second statement in (b) holds for all p > (nr)1/3, and this
is best possible as the example in the previous remark shows, however the
proof is technical and lengthy. Furthermore, the result here suffices for our
needs below.

Proof. (a) We apply Proposition 3.2. As we saw there, (p, n) = 1. For
these values of n, the only integers less than n and relatively prime to n
are 1 and n− 1.
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If p ≡ 1 mod n or if p ≡ n − 1 mod n and i is even, then we require
li ≡ n − 1 mod n to satisfy lip

i ≡ −1 mod n. However, with this value of
li,

(n− 1)pi + 1
n

=
lip

i +m

n
≤ r mod pi ≤ (n− li)pi −m− n

n
=
pi − n− 1

n
can never be satisfied.

If p ≡ n− 1 mod n and i is odd, then we can take li = 1. From the last
statement in Proposition 3.2, pi ≤ nr, so the largest possible i is at most
log(nr)/ log(p), a fact which completes the proof of part (a).

(b) The same argument as for p ≡ n− 1 mod n in the proof of part (a)
shows that we need only consider i = 1 for p > (nr)1/3.

The remainder of the proof is identical to the proof of Lemma 3.3(b). �

Lemma 3.5. Let m,n and r be positive integers with (m,n) = 1. Define
µn =

∏
p|n p

1/(p−1) and sn,r =
∏

p|n p
vp(r!).

(a) Let d be a positive divisor of n. The numerators of the coefficients of
the polynomials Xm,n,r(1− dz) and Ym,n,r(1− dz) are divisible by dr.
(b) The numerators of the coefficients of the polynomials Xm,n,r (1− nµnz)
and Ym,n,r (1− nµnz) are divisible by nrsn,r.

Proof. (a) This is a variation on part (b) which will prove useful both here
and elsewhere. Its proof is virtually identical to the proof of part (b).

(b) This is Proposition 5.1 of [5]. �

4. Proof of Theorem 2.3

(a) The bounds for x ≤ 1012 are determined through direct calculation.
We coded the Sieve of Eratosthenes in Java and ran it, in segments of
size 108, to determine all primes less than 1012 as well as upper and lower
bounds for θ(x; k, l) and ψ(x; k, l) for x ≤ 1012. The entire computation
took approximately 182, 000 seconds.

As Ramaré and Rumely note, considerable roundoff error can arise in the
sum of so many floating point numbers. We handled this issue in a similar
way to them. We multiply each log by 106, round the resulting number
down to the greatest integer less than the number as a lower bound and
round it up to the least integer greater than the number as an upper bound.
We then sum these integers and store the sums in variables of type long,
which have a maximum positive value of 263−1 = 9.233... ·1018 – a number
greater than our sums. This is more crude than Ramaré and Rumely’s
method, but sufficiently accurate for our needs here.

In addition to just establishing the desired inequalities, we also compute,
and have stored,
(i) our upper and lower bounds for θ(108i; k, l) and ψ(108i; k, l),
(ii) π(108i, k, l),
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(iii) min
x∈(108(i−1),108i]

θ(x; k, l)− x/ϕ(k)√
x

, min
x∈(108(i−1),108i]

ψ(x; k, l)− x/ϕ(k)√
x

and
(iv) max

x∈(108(i−1),108i]

θ(x; k, l)− x/ϕ(k)√
x

, max
x∈(108(i−1),108i]

ψ(x; k, l)− x/ϕ(k)√
x

,

for i = 1, ..., 10, 000.
(b) The bounds in part (b) are obtained by applying Theorem 5.1.1 of

[13] with the L-function zero information calculated by Michael Rubinstein
[14]. We include details of the values used in Table 3, where we round all
quantities up by one in the seventh significant decimal (sixth decimal for
Ãχ, B̃χ, C̃χ, D̃χ for the sake of space).

Note that for these values of k, there is only one character, χ, for each
d.

For the computation of Ãχ, we followed the advice of Ramaré and Rumely
[13, p. 414] regarding the evaluation of their K1 and K2. Using Simp-
son’s rule with an interval size of 0.001 (along with their Lemma 4.2.4),
we bound from above the integral for Kn(z, w) in their equation (4.2.4) for
u = w . . . 1000. We then apply their Lemma 4.2.3 with w = 1000, which is
sufficiently large to provide a good upper bound.

This provides us with an upper bound for ε(ψ, x, k).
Using the authors’ upper bound for ε(θ, x, k) on page 420 of [13], we see

that our results holds for x ≥ x0.
Proceeding as above, we found agreement with the data that Ramaré

and Rumely present in their Table 1 for k = 1, 3 and 4.

k 1 3 4
m 14 14 14

δ 6.289071 · 10−7 1.256642 · 10−6 1.798450 · 10−6

A(m, δ) 1.082027 · 1091 6.691384 · 1086 4.425147 · 1084

R̃ 2.721552 · 10−11 9.085095 · 10−11 1.207835 · 10−10

ε(ψ, x, k) 3.613190 · 10−5 7.097148 · 10−5 1.001340 · 10−4

d 1 1 3 1 4
Hχ 8000000.365 4000000.042 4000000.413 2800000.0623 2800000.340

Ãχ 5.81243 · 10−98 8.94572 · 10−94 9.83501 · 10−94 1.27527 · 10−91 1.43730 · 10−91

B̃χ 9.09392 · 10−103 2.85005 · 10−98 3.04716 · 10−98 5.86164 · 10−96 6.37182 · 10−96

C̃χ 7.30396 · 10−98 1.13798 · 10−93 1.23103 · 10−93 1.63333 · 10−91 1.80646 · 10−91

D̃χ 1.14495 · 10−102 3.63318 · 10−98 3.82113 · 10−98 7.52419 · 10−96 8.02375 · 10−96

Ẽχ 31.414915 28.3898896 33.1560902 26.8928884 32.8584828

Table 3. Data for the Proof of Theorem 2.3

Since 2.052818 < 0.0000186x1/2 for x ≥ 12.2 · 109, the stated inequal-
ities for θ(x) and ψ(x) holds for such x. Using the above sieve code, it
is straightforward to calculate θ(x) and ψ(x) for x < 12.2 · 109. These
calculations complete the proof of (b) for θ(x) and ψ(x).

Similarly, 1.798158 < 0.0000351x1/2 for x ≥ 2.7 · 109 and a computation
completes the proof of (b) for k = 3 and 6.
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Finally, 1.780719 < 0.0000511x1/2 for x ≥ 2.7 · 109 and a computation
completes the proof of (b) for k = 4..

5. Analytic properties of hypergeometric polynomials

Lemma 5.1. Let r be a positive integer and define Nr to be the greatest
common divisor of the numerators of the coefficients of Xr(1− (a− b)x/a),
where a, b and d are as defined in Theorem 2.1.
(a) We have

1
200

<
0.29D2

r

r1/64r
.

(b) We have

3drDr

Nr
< 1.61·1039e0.911r and

(1/3) · · · (r + 1/3)
r!

3drDr

Nr
< 1.176·1040e0.911r.

Remark. These results are very close to best possible. Chudnovsky [5]
has shown that Dr ∼ eπ

√
3 r/6 = e0.9068...r as r →∞.

Remark. We were able to calculate the Dr exactly for all r ≤ 2000 (with
two different methods using both Java and UBASIC 8.8). These actual
values were equal to the values calculated using Proposition 3.2. This
strengthens our belief that Proposition 3.2 captures the precise behaviour
of the prime divisors of Dm,n,r (at least for m = 1, n = 3).

Proof. We will establish both parts of this lemma via computation for r
up to the point where Theorem 2.3 can be used to prove the lemma for all
larger r.

(a) We computed the quantity on the right-hand side for all r ≤ 2000,
as part of the computation for part (b). We found that its minimum is
0.00501 . . ., which occurs at r = 13.

From the second statement in Lemma 3.4(b), we know that if p is a prime
congruent to 2 mod 3 with (3r + 4)/2 ≤ p ≤ 3r − 1, then p|Dr. Since we
may now assume that r > 2000, we know that (3r + 4)/2 > 3000.

From Theorem 2.3 and a bit of computation, for x > 3000, we find that
|θ(x; 3, 2)−x/2| < 0.011x, so the product of the primes congruent to 2 mod
3 in that interval is at least e0.7r−1.511. Therefore, Dr/4r > e0.014r−1.511.
Since r1/6 = e(log r)/6 < e0.0007r for r ≥ 2000, the desired result easily
follows.

(b) Here the computation needs to include much larger values of r, so
we need to proceed more carefully.

We break the computation into several parts.
(1) The computation of the factorial and factorial-like product on the

left-hand side of the second inequality. We shall see below that the product
of these terms grows quite slowly and they have a simple form, so this
computation is both easy and fast.
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(2) The computation of 3dr/Nr. From Lemma 3.5, we find that if d = 0
then (3, Nr) = 1, if d = 1 then 3r|Nr and if d = 3/2 then 3r+v3(r!)|Nr. For
d = 3/2, one can often do better, by directly calculating the numerators of
the coefficients of Xr(1− 3

√
3x), by means of equations (5.2)–(5.4) in the

proof of Chudnovsky’s Proposition 5.1 [5].
Directly calculating Nr is substantially more time-consuming than cal-

culating 3r+v3(r!), so we always calculate 3r+v3(r!), continue with calcu-
lating Dr and only perform the direct calculation of Nr if the size of
33r/2Dr/3r+v3(r!) warrants it.

(3) The computation of the contribution to Dr from the small primes,
that is those less than 3

√
3r, using Proposition 3.2.

To speed up this part of the calculation, and the following parts, the
primes and their logarithms do not have to be recalculated for each r.
Instead, we calculate and store the first million primes congruent to 2 mod
3 (the last one being 32,441,957) and their logarithms before we start the
calculations for any of the r’s.

(4) The computation of the contribution to Dr of all primes from 3
√

3r
to (3r− 1)/(3A(r) + 1) for some non-negative integer A(r), which depends
only on r. Again, we use Proposition 3.2 as well as the cached primes and
their logarithms here.

(5) The computation of the contribution to Dr from the remaining larger
primes.

From Lemma 3.4(b), we can see that for any non-negative integer A, the
contribution to Dr from the primes satisfying (9) changes, as we increment
r, by at most the addition of the log of one prime, if there is a prime
congruent to 2 mod 3 between 3(r− 1)/(3A+ 1) and 3r/(3A+ 1), and the
subtraction of another, if there is a prime congruent to 2 mod 3 between
3(r−1)/(3A+2) and 3r/(3A+2). This fact makes it very quick to compute
the contribution from these intervals for r from the contribution from these
intervals for r− 1 — much quicker than recomputing them directly. So we
incorporate this strategy here: for each i < A(r), we store the smallest and
largest primes in these intervals along with the sum of the logarithms of
the primes, p ≡ 2 mod 3, in these intervals.

Again, we use the cached primes and their logarithms for the intervals
that lie within the cache.

In this manner, we proceeded to estimate the size of the required quanti-
ties for all r ≤ 200, 000, 000. This computation took approximately 89,000
seconds.

The maximum of 3drDr/
(
Nre

0.911r
)

occurs at r = 19, 946 and is less than
1.61·1039, while the maximum of (1/3) · · · (r+1/3)3drDr/

(
Nre

0.911rr!
)

also
occurs at r = 19, 946 and is less than 1.176 · 1040.

For r > 200 · 106, we can use the analytic estimates in Theorem 2.3.
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From Lemma 3.5, we know that 3drN−1
r ≤ 3r/2−v3(r!). In addition, r/2−

v3(r!) ≤ (log r)/(log 3) + 0.5 and

(1/3) · · · (r + 1/3)
r!

≤ 4
9

exp
(∫ r

1

dx

3x

)
≤ 4r1/3

9
,

for r ≥ 1, so

(10)
3dr

Nr
< 1.8r and

3dr

Nr

(1/3) · · · (r + 1/3)
r!

< 0.8r4/3.

We divide the prime divisors of Dr into two sets, according to their size.
We let Dr,s denote the contribution to Dr from primes less than (3r)1/3

and let Dr,l denote the contribution from the remaining, larger, primes.
From Lemma 3.4(a), we know that

Dr,s ≤
∏

p<(3r)1/3

p≡2 mod 3

pblog(3r)/(2 log(p))+1/2c.

Now bx/2 + 1/2c ≤ 3/2bx/3c+ 1, so

Dr,s ≤ exp

{
3ψ
(

3
√

3r; 3, 2
)

2
+ θ

(
3
√

3r; 3, 2
)}

.

From Theorem 2.3, and some calculation, we find that θ(x; 3, 2),
ψ(x; 3, 2) < 0.51x, so

(11) Dr,s < exp
(
1.28 3

√
3r
)
.

From (10) and (11), we know that

(12)
Dr,s3dr

Nr
< e0.000006r and

Dr,s3dr

Nr

(1/3) · · · (r + 1/3)
r!

< e0.000006r,

for r > 200 · 106.
We next consider Dr,l.
From Lemma 3.4(b), we see that for any positive integer N satisfying

3r/(3N + 2) ≥ (3r)1/3, we have

Dr,l ≤ exp

{
N∑

A=0

θ(3r/(3A+ 1); 3, 2)−
N−1∑
A=0

θ(3r/(3A+ 2); 3, 2)

}
.

Let t+(x) denote the maximum of 0.5000351 and θ(y; 3, 2)/y for all y ≥ x
and let t−(x) denote the minimum of 0.4999649 and θ(y; 3, 2)/y for all
y ≥ x. With the choice N = 200, we can write

Dr,l ≤ exp

{
3r

(
200∑
A=0

t+(600 · 106/(3A+ 1))
3A+ 1

−
199∑
A=0

t−(600 · 106/(3A+ 2))
3A+ 2

)}
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since r > 200 · 106.
With Theorem 2.3(b), we calculate the necessary values of t+(x) and

t−(x) and find that
Dr,l < e0.910993r,

for r > 200 · 106.
Combining this inequality with (12) yields

3drDr

Nr
< e0.911r and

3dr

Nr

(1/3) · · · (r + 1/3)
r!

Dr < e0.911r,

for r > 200 · 106.
This completes the proof of the lemma. �

We now need to define our sequence of approximations to (a/b)1/3 and
find an upper bound on their size.

We start with bounds on the size of the polynomials.

Lemma 5.2. Let m,n and r be positive integers with m ≤ n/2 and let z
be any real number satisfying 0 ≤ z ≤ 1. Then

(13) (1 + z)r ≤ Ym,n,r(z) ≤
(
1 + z1/2

)2r
.

Remark. The upper bound is best possible as can be seen by considering
z near 0.

For hypergeometric applications, we are particularly interested in z near
1, where it appears that the upper bound could be sharpened to

4−r (2r)!
r!

Γ(1−m/n)
Γ(r + 1−m/n)

(
1 + z1/2

)2r
,

although we have been unable to prove this. This is an equality for z = 1.
In the case of m = 1 and n = 3, this extra factor is about 0.8r−1/6.

Proof. We start by proving the upper bound.
We can write(
1 + z1/2

)2r
=

2r∑
k=0

(
2r
k

)
zk/2 and

Yr(z) =
r∑

k=0

akz
k =

r∑
k=0

(
r

k

)
(r − k + 1 +m/n) · · · (r +m/n)

(1−m/n) · · · (k −m/n)
zk.

We shall show that(
r

k

)
(r − k + 1 +m/n) · · · (r +m/n)

(1−m/n) · · · (k −m/n)
zk ≤

(
2r

2k − 1

)
zk−1/2 +

(
2r
2k

)
zk.

This will prove that Yr(z) ≤
(
1 + z1/2

)2r
.
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Since 0 ≤ z ≤ 1, it suffices to show that
(14)

ak =
(
r

k

)
(r − k + 1 +m/n) · · · (r +m/n)

(1−m/n) · · · (k −m/n)
≤
(

2r
2k − 1

)
+
(

2r
2k

)
= bk.

We demonstrate this by induction.
For k = 0, (14) holds since a0 and b0 are both equal to 1. So we can

assume that (14) holds for some k.
Notice that

ak+1 =
(r − k)(r − k +m/n)
(k + 1−m/n)(k + 1)

ak and

bk+1 =
(r − k)(2r − 2k + 1)

(k + 1)(2k + 1)
bk.

Thus
ak+1

bk+1
=

(r − k +m/n)
(r − k + 1/2)

(k + 1/2)
(k + 1−m/n)

ak

bk
.

Since m ≤ n/2, it is apparent that (r− k+m/n)/(r− k+ 1/2) ≤ 1 and
that (k + 1/2)/(k + 1−m/n) ≤ 1. Since we have assumed that ak/bk ≤ 1,
it is also true that ak+1/bk+1 ≤ 1, which completes the proof of (14) and
hence the upper bound for Ym,n,r(z).

To establish the lower bound, we again compare coefficients. It is clear
that a0 =

(
r
0

)
and that ak ≥

(
r
k

)
for 1 ≤ k ≤ r. Since 0 ≤ z ≤ 1, the lower

bound holds. �

Lemma 5.3. Let r be a positive integer, a and b be positive integers with
b < a. Put

pr =
arDr

Nr
Xr(b/a) and qr =

arDr

Nr
Yr(b/a).

Then pr and qr are integers with prqr+1 6= pr+1qr and

(15)
Dr

Nr
(a+ b)r ≤ qr < 1.61 · 1039

{
e0.9113−d

(
a1/2 + b1/2

)2
}r

.

Proof. The first assertion is just a combination of our definitions of Dr

and Nr along with an application of Lemma 3.5, while the second one is
equation (16) in Lemma 4 of [2].

We now prove the upper bound for qr.
From Lemma 5.2,

arYr(b/a) ≤
(
a1/2 + b1/2

)2r
.

The upper bound for qr now follows from Lemma 5.1(b).
The lower bound for qr is an immediate consequence of the lower bound

for Ym,n,r(z) in Lemma 5.2. �



282 Paul M. Voutier

The next lemma contains the relationship that allows the hypergeometic
method to provide good sequences of rational approximations.

Lemma 5.4. For any positive integers m,n and r with (m,n) = 1 and for
any real number z satisfying 0 < z < 1,

(16) zm/nXm,n,r(z)− Ym,n,r(z) = (z − 1)2r+1Rm,n,r(z).

Proof. This is (4.2) of [5] with ν = m/n. �

We next determine how close these approximations are to (a/b)1/3.

Lemma 5.5. Let a, b and r be positive integers with b < a. Then
(17)
a− b

200aqr
<
∣∣∣qr(a/b)1/3− pr

∣∣∣ < 1.176 · 1040(a− b)
b

{
e0.9113−d

(
a1/2− b1/2

)2
}r

.

Proof. Using our definitions of pr, qr and Rr(z) and the equality expressed
in Lemma 5.4, we find that∣∣∣qr(a/b)1/3 − pr

∣∣∣ = arDr

Nr

(a
b

)1/3
(
a− b

a

)2r+1 (1/3) · · · (r + 1/3)
(r + 1) · · · (2r + 1)

× 2F1 (r + 2/3, r + 1; 2r + 2; (a− b)/a) .

Since (a − b)/a and the coefficients of this hypergeometric function are
all positive, we have 2F1 (r + 2/3, r + 1; 2r + 2; (a− b)/a) > 1.

Using the same arguments as in the proof of Lemma 5.1, we can also
show that

(1/3) · · · (r + 1/3)
(r + 1) · · · (2r + 1)

>
0.29

4rr1/6
.

Combining these inequalities with the lower bound for qr in Lemma 5.3,
we obtain

(18)
∣∣∣qr(a/b)1/3 − pr

∣∣∣ > (Dr

Nr

)2 0.29(a− b)2r(1 + b/a)r

4rr1/6

a− b

aqr

Recall that Nr is the greatest common factor of the numerators of the
coefficients ofXr (1− (a− b)z/a). SinceXr(z) is a monic polynomial, Nr ≤
(a − b)r. The desired lower bound for

∣∣qr(a/b)1/3 − pr

∣∣ now follows from
(18) and Lemma 5.1(a).

To obtain the upper bound, we apply Euler’s integral representation for
the hypergeometric function, we have∣∣∣qr(a/b)1/3 − pr

∣∣∣ = Dra
r

Nr

(
1− b

a

)2r+1 (1/3) · · · (r + 1/3)
r!

(a
b

)1/3

×

∣∣∣∣∣
∫ 1

0
tr(1− t)r

(
1− (a− b)t

a

)−r−2/3

dt

∣∣∣∣∣ .
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Easton (see the proof of his Lemma 8) showed that∣∣∣∣∣
∫ 1

0
tr(1− t)r

(
1− (a− b)t

a

)−r−2/3

dt

∣∣∣∣∣ ≤ (a/b)2/3

{
a
(
a1/2 + b1/2

)−2
}r

.

The lemma now follows from a little algebra and Lemma 5.1(b). �

6. A diophantine lemma

Finally, we state a lemma which will be used to determine an effective
irrationality measure from these approximations.

Lemma 6.1. Let θ ∈ R. Suppose that there exist k0, l0 > 0 and E,Q > 1
such that for all r ∈ N, there are rational integers pr and qr with |qr| < k0Q

r

and |qrθ − pr| ≤ l0E
−r satisfying prqr+1 6= pr+1qr. Then for any rational

integers p and q with p/q 6= pi/qi for any positive integer i and |q| ≥ 1/(2l0)
we have ∣∣∣∣θ − p

q

∣∣∣∣ > 1
c|q|κ+1

, where c = 2k0(2l0E)κ and κ =
logQ
logE

.

Proof. In the proof of Lemma 2.8 of [4], it is clearly noted that this is
true. The extra Q which appears in the expression for c in the statement
of Lemma 2.8 of [4] arises only from consideration of the case p/q = pi/qi
for some positive integer i. �

7. Proof of theorem 2.1

By the lower bound in Lemma 5.5, we need only prove Theorem 2.1 for
those rational numbers p/q 6= pi/qi for any positive integer i.

All that is required is a simple application of Lemma 6.1 using Lem-
mas 5.3 and 5.5 to provide the values of k0, l0, E and Q.

From these last two lemmas, we can choose k0 = 1.61 · 1039, l0 = 1.176 ·
1040(a−b)/b, E = e−0.9113d

(
a1/2 − b1/2

)−2
andQ = e0.911·3−d

(
a1/2 + b1/2

)2
.

Lemma 5.3 assures us that prqr+1 6= pr+1qr. In addition, Q ≥ e0.9113−1.5

(
√

2 + 1)2 > 2.78 > 1 and the condition a > b shows that l0 > 0. If E > 1
then we can use Lemma 6.1.

The quantity c in Lemma 6.1 is

3.22 · 1039

{
2.36 · 1040 · 3d

(
a1/2 + b1/2

)
e0.911b

(
a1/2 − b1/2

) }κ

.

Under the assumptions that a and b are positive integers with b < a,E >
1 and κ < 2, one can show, by means of calculation and arguments from
multivariable calculus, that 3de−0.911(

√
a +

√
b)/(b(

√
a −

√
b)) < 1.822,
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the maximum occurring for a = 14 and b = 11. So we can simplify the
expression above, bounding it above by

3.22 · 1039
(
4.3 · 1040

)κ
.

By the lower bound in Lemma 5.5 for the pi/qi’s, we know that the c1 in
Theorem 2.1 will be a constant times a. Furthermore, we know that, with
the exception of a = 5 and b = 4 (a case which we will return to below),
a ≥ 6 is required in order that E > 1 and κ < 2. So we can introduce a
factor of a/6 into our expression for c above, obtaining

3.22 · 1039
(
4.3 · 1040

)κ
<

1040a

3.1 · 6
(
4.3 · 1040

)κ
< 1040a

(
4.3 · 1040

√
18.6

)κ

< 1040(κ+1)a,

since κ < 2.
This leaves the case of a = 5 and b = 4. We obtain a much better result

for 3
√
a/b in the course of proving Corollary 2.2 below for n = 10, since

3
√

5/4 = 3
√

10/2.
The condition that E > 1 (so that a/2 < b < a) along with Liouville’s

theorem shows that Theorem 2.1 is also true if κ ≥ 2.
By these estimates and Lemma 6.1 we now know that Theorem 2.1 holds

once |q| ≥ 1/(2l0) > b/
(
2.36 · 1040(a− b)

)
. There is a simple argument we

can use to deal with q’s of smaller absolute value.
If p/q did not satisfy (1), then

∣∣(a/b)1/3 − p/q
∣∣ < 1/

(
2q2
)

would certainly
hold and p/q would be a convergent in the continued fraction expansion of
(a/b)1/3.

Since b < a, it follows that 3b2/3 < a2/3+(ab)1/3+b2/3. As a consequence,
3b2/3

(
a1/3 − b1/3

)
< a− b, or, more conveniently,

(a
b

)1/3
− 1 =

a1/3 − b1/3

b1/3
<
a− b

3b
.

So we know that the continued fraction expansion of (a/b)1/3 begins
[1;x, . . .] where x ≥ b3b/(a − b)c. Therefore p0 = q0 = 1 (here p0/q0 is
the 0-th convergent in the continued fraction expansion of (a/b)1/3), while
q1 ≥ b3b/(a− b)c and it is certainly true that q1 ≥ b/(2.36 · 1040(a− b)).

Hence p/q = 1, in which case a/b ≥ (b + 1)/b and E > 1 imply that
(a/b)1/3 − 1 > 1/(4b) ≥ 1/(8a) and (1) holds.

This completes the proof of the Theorem 2.1.
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8. Proof of corollary 2.2

To prove Corollary 2.2, we first need to obtain obtain a lower bound
for | 3

√
n − p/q| from the irrationality measure we have for the appropriate

3
√
a/b. There are two different ways of doing this.
(i) If 3

√
a/b is of the form s 3

√
n/t then, from Theorem 2.1, we obtain∣∣∣∣s 3

√
n

t
− sp

tq

∣∣∣∣ > 1
c1|tq|κ+1

.

and, as a consequence, ∣∣∣∣ 3
√
n− p

q

∣∣∣∣ > 1
sc1tκ|q|κ+1

.

Let us look at the case of n = 2 to see how we proceed here. We have
a = 128, b = 125, s = 4 and t = 5. From Theorem 2.1, we have c1 = 2 · 1097

and κ = 1.4321, so ∣∣∣∣ 3
√

2− p

q

∣∣∣∣ > 10−99

|q|2.4321
,

by the above reasoning.
We wrote a program in Java to calculate the first 500, 000 partial frac-

tions and bounds from below the convergents in the continued-fraction
expansion of 3

√
2. For this, we used the algorithm described by Lang and

Trotter [10] which uses only integer-arithmetic and does not require any
truncated approximations to 3

√
2.

The 500, 000-th convergent is greater than 10257,000 and it is easy to
verify that

10−99

|q|2.4321
>

0.25
|q|2.4325

for all q whose absolute value is larger than that. Thus, it only remains to
check that the desired inequality is satisfied for all q whose absolute value
is at most the denominator of the 500, 000-th convergent.

Rather than actually checking directly to see if∣∣∣∣ 3
√

2− p

q

∣∣∣∣ > 0.25
|q|2.4325

held for all these the convergents of 3
√

2, we simply looked at the partial
fractions in the following way.

From the theory of continued-fractions, one can show that

1
(ai+1 + 2) q2i

<

∣∣∣∣α− pi

qi

∣∣∣∣ ,
where ai+1 is the i+1-st partial fraction in the continued-fraction expansion
of α while pi/qi is the i-th convergent.
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As we see in Table 4, the largest partial fraction found for 3
√

2 was
a484708 = 4, 156, 269. Therefore, the corollary holds for |q| > 9 · 1013 >

((4156269 + 2)/4)(1/0.4325). Now a direct check among the smaller conver-
gents completes the proof of the corollary for n = 2 (the constant c2 = 0.25
arises here).

We proceeded in the same way for n = 9, 10, 18, 19, 20, 22, 25, 28, 30,
36, 43, 44, 49, 57, 65, 66, 67, 68, 70, 76, 83 and 84.

(ii) The other possibility is that 3
√
a/b is of the form s/(t 3

√
n). In this

case, we use the fact that |1/x− 1/y| = |(x− y)/(xy)| and find that∣∣∣∣ 3
√
n− q

p

∣∣∣∣ > 3
√
n

sc1|p|tκ|q|κ
.

We can assume that | 3
√
n− p/q| < 0.5 and so∣∣∣∣ 3

√
n− q

p

∣∣∣∣ > 3
√
n

sc1tκ( 3
√
n+ 1/2)κ|p|κ+1

.

We then proceed in the same way as in the previous case.
It is in this way that we prove the Corollary for n = 3, 4, 5, 6, 7, 11, 12,

13, 15, 17, 26, 31, 37, 39, 41, 42, 50, 52, 58, 60, 61, 62, 63, 78, 90, 91, 98
and 100.
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n a b i ai

2 2 · 43 53 484, 708 4, 156, 269

3 32 23 13, 628 738, 358

4 2 · 43 53 485, 529 8, 312, 539

5 2396457883 5 · 1401457073 266, 405 3, 494, 436

6 4673 6 · 2573 238, 114 466, 540

7 443 7 · 233 274, 789 12, 013, 483

9 9 23 97, 298 1, 063, 588

10 5 · 133 4 · 143 371, 703 1, 097, 381

11 250223 11 · 112513 217, 358 1, 352, 125

12 9 · 293 4 · 383 34, 767 1, 185, 798

13 573 13 · 373 55, 205 1, 406, 955

15 52 3 · 23 245, 733 1, 571, 507

17 183 17 · 73 169, 765 1, 536, 142

18 9 · 293 4 · 383 300, 238 3, 143, 844

19 19 · 33 83 138, 226 521, 398

20 20 · 73 193 72, 509 1, 840, 473

22 11 · 53 4 · 73 232, 141 595, 645

25 2396457883 5 · 1401457073 20, 862 2, 449, 303

26 33 26 252, 311 1, 722, 109

28 28 33 275, 575 1, 654, 773
30 10 9 228, 793 197, 558

31 223 31 · 73 205, 544 1, 643, 436

36 4673 6 · 2573 238, 549 2, 799, 247

37 103 37 · 33 494, 731 6, 591, 064

39 392 · 23 233 309, 275 483, 161

41 1003 41 · 293 321, 697 417, 960, 093

42 49 6 · 23 408, 968 409, 489

43 43 · 23 73 227, 706 1, 359, 766

44 44 · 23 73 260, 709 370, 994

49 443 7 · 233 273, 736 1, 716, 211

50 20 · 73 193 54, 577 2, 055, 429

52 2 · 23 13 379, 989 3, 958, 641

57 57 · 333 1273 110, 601 847, 651

58 4 · 23 29 172, 932 139, 963

60 2 · 23 15 44, 247 461, 876

61 43 61 76, 517 3, 405, 348

62 4 · 23 31 400, 816 330, 326

63 43 63 168, 229 2, 664, 200

65 65 43 183, 363 16, 950, 688

66 33 4 · 23 179, 933 589, 781

67 67 43 419, 845 937, 766

68 17 2 · 23 121, 095 1, 059, 335

70 35 4 · 23 376, 116 582, 245

76 19 · 11113 2 · 23533 300, 013 575, 574

78 473 78 · 113 421, 553 1, 145, 724

83 83 · 583 2533 431, 244 434, 543

84 84 · 338563 1482733 236, 330 5, 018, 560

90 3 · 33 10 · 23 43, 615 314, 175

91 93 91 · 23 123, 567 416, 579

98 28 33 274, 960 23, 166, 836

100 5 · 133 4 · 143 336, 362 1, 383, 591

Table 4. Data for the Proof of Corollary 2.2
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