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Résumé. On montre qu’il n’existe pas de corps de nombres pri-
mitif de degré 9 ramifié en un unique premier petit. Il n’existe
donc pas de corps de nombres de degré 9 ramifié en un unique
premier petit et ayant un groupe de Galois non résoluble.

Abstract. We prove that there is no primitive nonic number
field ramified only at one small prime. So there is no nonic number
field ramified only at one small prime and with a nonsolvable
Galois group.

1. Introduction

Serre’s conjecture [14] (p. 226 to 234) predicts the nonexistence of certain
nonsolvable number fields which are unramified outside one small prime p.
This has been proved by J. Tate [16] for p = 2 by using discriminant bound-
ing techniques. Later Serre [14] (p. 710) showed that Tate’s argument could
be extended to the case p = 3 with the same conclusion.

Contrary to the works of Serre and Tate, B. Gross [7] has conjectured
the existence of nonsolvable number fields ramified at exatcly one prime
p < 11. This paper follows the previous [9] which studies these fields with
Galois group inside S8. Here we will show that there are no such number
fields in degree nine. As in [9], we use the method of J. Jones [8] and S.
Brueggeman [1] who studied all such fields with Galois group inside S6 and
S7 respectively.

In order to minimize the number of polynomials to be studied, we used,
on one hand, methods issuing from the geometry of numbers [11] and on
the other, the method developed by Odlyzko, Poitou and Serre [13] for the
determination of lower bounds for discriminants.
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For degree nine, the minima for discriminants are only known for totally
real signature [15]. We restrict our search to all primitive number fields (see
section 3) generated by an irreducible degree nine monic polynomial and
which are ramified at only one prime less than 11. To eliminate number
fields only ramified at 5, we use discriminant bounding techniques depend-
ing on GRH. And then we apply another method which is unconditionally
the computer search. For the rest of primes we search for the degree nine
polynomials with a 2-power field discriminant, a 3-power field discriminant
and those with the 7-power discriminant. The result at the end shows that
only the ramification at 3 is possible, and also shows that the Galois groups
inside S9 of all such fields are solvable.

Section 2 describes theoretical aspects of ramification. We discuss the
bounds on the coefficients of the polynomials generating the number fields
in section 3. In the final section, we present our computer search results.

2. Ramification at the prime p

2.1. Discriminant lower and upper bounds. K. Takeuchi established
in [15] the first minima for discriminants of totally real nonic number fields.
He has computed the minimum for discriminants of totally real signature,
and its value is 9685993193. For the other signatures, all minimum known
up to date are those concerned with the imprimitive nonic number fields
containing a cubic subfield [3]. Diaz Y Diaz [4] established that a lower
bound for degree nine number fields is 23007468. So the absolute value of
the discriminant in degree nine cannot be less than this value.

Our main theorem given by Ore [17] on the discriminant upper bound
of a number field ramified at a prime p is the following:

Theorem 2.1. Let K be a number field of degree n and dK its discriminant.
Let p be a prime dividing dK and let e℘ (resp.f℘) be the ramification index
(resp. the inertia degree) of a prime ideal ℘ lying above p. Let n =

∑q
i=0 bip

i

(0 ≤ bi < p and bq 6= 0) be the p-adic representation of n. Then
i) the maximal possible valuation of dK in prime p is:

Nn,p =
q∑

i=0

bi(i + 1)pi − h,

where h is the number of the coefficients bi which are different from zero.
ii) more precisely we have:

vp(dK) ≤
∑
℘|p

f℘(e℘ + e℘vp(e℘)− 1). (1)

And then vp(dK) can assume all values from 0 to Nn,p inclusive except
αpα − 1 if n = pα or if α ≥ 2 and n = pα + 1.
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Butler and Mckay [2] have given in their work all the Galois groups of
degree nine. And we notice that those which are nonsolvable i.e T+

27, T+
32,

T+
33 and T34 are primitive [5]. So in section 3, our search for number fields

will be on those which are primitive.
Throughout the paper when the context is clear, K = Q(θ) will denote a

nonic field where θ is a root of an irreducible degree nine monic polynomial
and L will denote a fixed Galois closure. Its ring of integers is denoted by
ZK and its discriminant by dK . The discriminant of L is denoted dL. First
we eliminate as many cases as possible by discriminant bounding arguments
on either the nonic field K or its Galois closure L.

2.2. Discriminant bounding arguments. The number field K and its
Galois closure L are ramified (resp. wildly ramified) at the same single
prime p. For more informations about it and the proofs of the following
results, see [10].

Proposition 2.2. If L is ramified only at 2, the possible prime ideal decom-
positions of the prime 2 in K is 2ZK = ℘8

1℘2. Moreover the discriminant
dK takes its values among {±225,±226,±227,±228,±229,±230,±231}.

Proof. If K is tamely ramified at 2, then by (1) we obtain v2(dK) ≤ 8.
Hence |dK | ≤ 28 which is less than 23007468; this case is impossible.

So if K is ramified at 2 then it is wildly ramified. We get the prime
ideal decompositions result by studying the different decompositions 2ZK =∏

℘|2 ℘e℘ which give the largest values of v2(dK). Using ii) of theorem
2.1 and the discriminant lower bound given by Diaz y Diaz, we obtain
the only one ramification structure. We obtain the different values of the
discriminant by the fact that the minimal absolute discriminant is greater
than 224, and by theorem 2.1 which gives v2(dK) ≤ 31. �

Assuming that L is ramified only at 2, the following proposition is es-
sential to eliminate T+

27 and T+
32 as Galois groups inside S9.

Proposition 2.3. If the Galois closure L of K is ramified only at 2 then
its Galois group is not isomorphic to T+

27 nor T+
32.

Proof. Modifying (1) for Galois extension yields v2(dL) ≤ |G|(1 + v2(e) −
1/e). Hence |dL|1/|G| ≤ 2(1+v2(e)−1/e). We obtain |dL|1/504 ≤ 15.978 for
G = T+

27 (resp. |dL|1/1512 ≤ 15.993 for G = T+
32). On the other hand, using

the lower bound of the root discriminant in [4], we obtain |dL|1/504 ≥ 20.114
(resp. |dL|1/1512 ≥ 21.253). This is a contradiction. �

Proposition 2.4. If L is ramified only at 3, the possible decompositions of
p = 3 in ZK are 3ZK = ℘9 or 3ZK = ℘6

1℘
3
2. Moreover the discriminant dK

takes its values among {316, 318,−319, 320,−321, 322,−323, 324,−325, 326}.
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Proof. Use the method developed in the proof of Proposition 2.2. Then we
apply the Stickelberger identity, dK ≡ 0, 1 (mod 4) to have the sign of the
discriminant. �

Remark. By using unconditionally in [13] the local corrections correspond-
ing to small prime numbers, we can eliminate the values dK = ±225,
dK = ±226 and dK = 316 of the discriminant. And we also show that
the decomposition 3ZK = ℘6

1℘
3
2 is not possible.

Proposition 2.5. a) Assuming GRH, the Galois closure L of K cannot be
ramified only at 5.
b) If GRH does not hold, the possible ramification structures at p = 5 in
K are 5ZK = ℘5

1℘
4
2, 5ZK = ℘5

1℘
3
2℘3, 5ZK = ℘5

1℘
2
2℘

2
3 or 5ZK = ℘5

1℘
2
2 with

inertia degree f℘2 = 2 in this last case. And then the discriminant of K is
dK = 511 or dK = 512.

Proof. a) If L is tamely ramified at 5, then K is also tamely ramified at 5
and by (1) we have v5(dK) ≤ 8. Hence |dK | would be less than 23007468
in this case. This is a contradiction.

Now suppose L is wildly ramified at 5 and let G be its Galois group.
We show that 45 divides |G|, and so G is T34 or T+

33. Let dL be the dis-
criminant of L and let e be the ramification index of a chosen prime ideal
P lying over 5 in the ring of integers of L. Also, the inertia subgroup,
denoted G0, has order e. Since the size of the Galois group G is divisible
by 5 and not by 25, this implies that v5(e) = 1. So the wild inertia sub-
group G1 has order 5. The normalizer of a 5-cycle has order 480 in S9 and
240 in A9. Since G0/G1 is cyclic, we show that e cannot be 480; and so
e divides 240. Modifying (1) of theorem 2.1 for a Galois extension yields
v5(dL) ≤ f(e + e− 1)g ≤ |G|(2− 1/e). Hence |dL|1/|G| ≤ 5

479
240 ≈ 24.833.

On the other hand, the GRH implies that we have Poitou’s following in-
equality [1]

1
|G| log |dL| ≥

(
3.801− 20.766

(log |G|)2 −
157.914(1+1/|G|)

(log |G|)3
“
1+ π2

(log |G|)2

”2

)
.

We obtain |dL|1/|T34| ≥ 36.22 and |dL|1/|T+
33| ≥ 35.09. This a contradiction.

b) Use the technique developed in the proof of Proposition 2.2. �
Let move now to the last case i.e for p = 7.

Proposition 2.6. If L is ramified only at 7, the possible decompositions
of p = 7 in K are 7ZK = ℘7

1℘
2
2 or 7ZK = ℘7

1℘2℘3 or 7ZK = ℘7
1℘2 with

inertia degree f2 = 2 in the last case. Moreover the discriminant dK takes
its values among {78,−79, 710,−711, 712,−713, 714}.
Proof. If K is ramified at only 7, then it is wildly ramified. Using theorem
2.1, we have v7(dK) ≤ 14. Then we apply the Stickelberger identity and
the fact that |dK | ≥ 23007468. �
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3. Polynomials generating the nonic number fields

We have shown in the previous section that the set of nonic number fields
K can be restricted to those which are primitive. For the rest of the paper
K will be considered primitive and p will be the prime 2, 3, 5 or 7.

3.1. Notation. We use here the notations of [1]. Let I be the product
of all prime ideals in ZK above primes dividing the discriminant dK of
K. Each θ ∈ I\Z has a minimal polynomial fθ(x) in Z[x] of the form
fθ(x) = x9 + a1x

8 + a2x
7 + a3x

6 + a4x
5 + a5x

4 + a6x
3 + a7x

2 + a8x + a9.
It will be sufficient to search for polynomials having a root contained in I.
We need the quadratic form T2 = T2(θ) =

∑n
i=1 |θi|2 in the roots of fθ, (θ)i

where 1 ≤ i ≤ 9.
We must reduce the search set of polynomials to a finite set. The coef-

ficients ai of fθ are restricted by the quadratic form T2. We use a version
of Hunter’s theorem [8] adapted to this context by Jones and Roberts (see
below). It guarantees the existence of one θ ∈ I\Z with the correspond-
ing coefficients ai satisfying the congruence pαi |ai, where αi is a positive
integer.

Theorem 3.1 (Jones et Roberts 1999). Let K be a degree n ≥ 3, primi-
tive number field, with discriminant dK . Let l be the least positive integer
contained in I and let m be the order of ZK/I. Finally, let γn be Hermite’s
constant of n−dimensional lattices. Then there exists an element θ ∈ I\Z
such that

i) T2(θ) ≤
a2
1

n + γn−1

(
m2|dK |

l2n

)1/n−1

ii) 0 ≤ a1 ≤ n.l/2.

3.2. Newton-Ore exponents. Jones and Roberts define a Newton-Ore
exponent, αi , to be the largest integer such that pαi divides ai for all
polynomial fθ with θ in the search ideal I. We search for the required
minimal power of the prime p to guarantee that the polynomial discriminant
is divided by a power of p. See the following tables.

In the totally ramified case, we notice that p divides the constant term
a9. We find the required power of p for the other ai by using the fact that
if π is a uniformizer with polynomial F (x), then the different is generated
by F

′
(π). Details are given in [11]. For the other ramification structures,

we use the method described in [8].

Corollary 3.2. Let K be a degree 9, primitive number field, with absolute
discriminant 2r. Then there exists an element θ ∈ I\Z such that

1) T2(θ) ≤ U2 = a2
1
9 +

(
210+r

9

)1/8

2) a1 = 0, 2, 4, 6 or 8.
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Table 1

Newton-Ore exponents for the different ramification structures at p.

2ZK = ℘8
1℘2

dK a1 a2 a3 a4 a5 a6 a7 a8 a9

±231 1 3 4 2 3 3 4 1 2
±230 1 3 4 2 3 3 4 1 2
±229 1 2 3 2 3 3 4 1 2
±228 1 2 3 2 3 3 4 1 2
±227 1 2 3 1 2 3 4 1 2

3ZK = ℘9
1

dK a1 a2 a3 a4 a5 a6 a7 a8 a9

326 3 3 2 3 3 2 3 3 1
−325 2 3 2 3 3 2 3 3 1
324 2 2 2 3 3 2 3 3 1
−323 2 2 1 3 3 2 3 3 1
322 2 2 1 2 3 2 3 3 1
−321 2 2 1 2 2 2 3 3 1
320 2 2 1 2 2 1 3 3 1
−319 2 2 1 2 2 1 2 3 1
318 2 2 1 2 2 1 2 2 1

Corollary 3.3. Let K be a degree 9, primitive number field, with absolute
discriminant 3s. Then there exists an element θ ∈ I\Z such that
1) T2(θ) ≤ U2 = a2

1
9 + 2× 3

s−2
8 .

2) If dK = 326 then a1 = 0. If dK ∈ {318,−319, 320,−321, 322,−323, 324,
−325} then a1 = 0 or a1 = 9.

5ZK = ℘5
1℘

4
2

dK a1 a2 a3 a4 a5 a6 a7 a8 a9

512 1 1 1 1 1 2 2 2 2
511 1 1 1 1 1 2 2 2 2

5ZK = ℘5
1℘

3
2℘3

dK a1 a2 a3 a4 a5 a6 a7 a8 a9

511 1 1 1 2 1 2 2 2 3

5ZK = ℘5
1℘

2
2℘

2
3 or

5ZK = ℘5
1℘

2
2

dK a1 a2 a3 a4 a5 a6 a7 a8 a9

511 1 1 2 2 1 2 2 3 3
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When GRH does not hold, we have given the different ramification struc-
tures at 5. We show also that there exists an element θ ∈ I\Z such that its
trace a1 = 0, 5, 10, 15 or 20.

7ZK = ℘7
1℘

2
2

dK a1 a2 a3 a4 a5 a6 a7 a8 a9

714 1 1 2 2 2 2 1 2 2
−713 1 1 2 2 2 2 1 2 2
712 1 1 2 2 2 2 1 2 2
−711 1 1 1 2 2 2 1 2 2
710 1 1 1 1 2 2 1 2 2
−79 1 1 1 1 1 2 1 2 2

7ZK = ℘7
1℘2℘3

or
7ZK = ℘7

1℘2

dK a1 a2 a3 a4 a5 a6 a7 a8 a9

−713 1 2 2 2 2 2 1 2 3
712 1 2 2 2 2 2 1 2 3
−711 1 1 2 2 2 2 1 2 3
710 1 1 1 2 2 2 1 2 3
−79 1 1 1 1 2 2 1 2 3

Corollary 3.4. Let K be a degree 9, primitive number field, with absolute
discriminant 7c. Then there exists an element θ ∈ I\Z such that

1) i) If 7ZK = ℘7
1℘

2
2 then T2(θ) ≤ U2 = a2

1
9 + 2×

(
7c+2

9

)1/8

ii) If 7ZK = ℘7
1℘2℘3 or 7ZK = ℘7

1℘2 then T2(θ) ≤ U2 = a2
1
9 +2×

(
7c+4

9

)1/8

.

2) a1 ∈ {0, 7, 14, 21, 28}.

3.3. Coefficients bounds. The bounds on a1 were discussed previously.
We use the method developed by M. Pohst in [12] and Newton-Ore expo-
nents to give the values of the other coefficients ai of the minimal poly-
nomial fθ. Bounding fθ(±1), we obtain better bounds on a6 and a7 by
using the fact that a6 = fθ(1)−fθ(−1)

2 − (1 + a1 + a2 + a4 + a8) and a7 =
fθ(1)+fθ(−1)

2 − (a1 + a3 + a5 + a9).

We can improve the results in [4] by using unconditionally the local
corrections corresponding to small prime numbers for all signatures of nonic
number fields. With the results given in [13] we can eliminate much values
of the constant term a9 and discriminants dK because of the signature.
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4. Computer search results

In this section, we explain in more detail, how one can make much quicker
searches for primitive nonic fields with p-power discriminant, where p =
2, 3, 5 or 7. The program we use for these searches is written in C, using
the Pari programming library [6].

Fixing the signature for the first stage, we eliminate over half the polyno-
mials. Then using the relation dfθ

= dKa2, where dfθ
is the discriminant of

fθ, we discard all but finitely many polynomials because of the valuation at
the single prime p. We check the few remaining polynomials for irreducibil-
ity: most of them are irreducible. In the final stage, we compute the field
discriminants: no polynomial is found with 2-power, 5-power or 7-power
field discriminant. For the polynomials with 3-power field discriminant, we
determine the Galois group and a minimal polynomial which generates the
same field by ’polgalois’ and ’polredabs’ commands in [6].

Table 2

Search results with dK of the form ±3s.

s polynomials fθ(x) signature Gal(L/Q)
19 x9 − 3x6 − 6x3 − 1 (3, 3) T4

21 x9 − 3x6 + 1 (3, 3) T13

22 x9 − 6x6 + 12x3 + 1 (1, 4) T+
11

22 x9 − 9x7 + 27x5 − 30x3 + 9x− 1 (9, 0) T+
1

23 x9 − 6x6 + 9x3 − 3 (3, 3) T22

23 x9 − 3x6 + 3 (3, 3) T22

23 x9 − 3x6 − 9x3 + 3 (3, 3) T22

25 x9 − 9x7 − 3x6 + 27x5 + 18x4 − 24x3 (3, 3) T20

−27x2 − 9x + 23
25 x9 − 9x7 − 6x6 + 27x5 + 36x4 − 24x3 (3, 3) T20

−54x2 − 9x + 22
25 x9 − 9x7 − 3x6 + 27x5 + 18x4 − 15x3 (3, 3) T20

−27x2 − 36x− 4
26 x9 − 9x6 + 27x3 − 3 (1, 4) T+

3

26 x9 − 3 (1, 4) T+
10

26 x9 − 9x6 + 27x3 − 24 (1, 4) T+
10

After eliminating duplicate fields, there are 13 distinct number fields
ramified only at 3. The search for primitive number fields of degree nine
and 2-power, 5-power or 7-power discriminant came up empty in all cases.
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Since all of the fields found are imprimitive and so have a solvable Galois
group (see the table 2), we have proved the following results.

Theorem 4.1. There is no primitive nonic number field ramified at only
a single prime p, where p < 11.

Corollary 4.2. Let K be a nonic number field which is ramified at only a
single prime p and p < 11. Then the Galois group of its Galois closure is
not nonsolvable.
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