
Journal de Théorie des Nombres
de Bordeaux 18 (2006), 595–606

Solving conics over function fields

par Mark van HOEIJ et John CREMONA

Résumé. Soit F un corps de caractéristique différente de 2, et
K = F (t). Nous donnons un algorithme simple pour trouver,
étant donné a, b, c ∈ K∗, une solution non-triviale dans K (si elle
existe) à l’équation aX2 + bY 2 + cZ2 = 0. Dans certains cas,
l’algorithme a besoin d’une solution d’une équation similaire à
coefficients dans F ; nous obtenons alors un algorithme récursif
pour résoudre les coniques diagonales sur Q(t1, . . . , tn) (en uti-
lisant les algorithmes existants pour telles équations sur Q) et sur
Fq(t1, . . . , tn).

Abstract. Let F be a field whose characteristic is not 2 and
K = F (t). We give a simple algorithm to find, given a, b, c ∈ K∗,
a nontrivial solution in K (if it exists) to the equation aX2+bY 2+
cZ2 = 0. The algorithm requires, in certain cases, the solution
of a similar equation with coefficients in F ; hence we obtain a
recursive algorithm for solving diagonal conics over Q(t1, . . . , tn)
(using existing algorithms for such equations over Q) and over
Fq(t1, . . . , tn).

1. Introduction

Let K = F (t), where F is a field of characteristic other than 2, and
a, b, c ∈ K∗. Our goal is to find, if it exists, a solution X, Y, Z ∈ K, not all
zero, for which

(1) aX2 + bY 2 + cZ2 = 0.

We will use projective coordinates (X : Y : Z) ∈ P2(K) to indicate that at
least one of X, Y, Z ∈ K must be non-zero, and that (sX : sY : sZ) will be
identified with (X : Y : Z) for any nonzero s ∈ K.

The case K = Q was solved by Legendre, who gave a criterion (the local-
global principle for conics) to decide if a solution (X, Y, Z) ∈ P2(Q) exists.
He also gave an algorithm to find a solution. See Algorithm I in [CR03],
where a number of other algorithms are given for this case.

Manuscrit reçu le 5 janvier 2006.
MvH acknowledges support from the A. von Humboldt Foundation and NSF grant 0511544.

596 Mark van Hoeij, John Cremona

Legendre showed that a solution (X : Y : Z) ∈ P2(Q) exists if and
only if a so-called solubility certificate exists. The non-trivial part is to
show that existence of this certificate implies the existence of a solution
(X : Y : Z). We sketch a textbook proof, with an improvement given
in [CM98], because our algorithm will follow the same approach. Use the
solubility certificate to construct a certain lattice L ≤ Z3 which has the
property that aX2 + bY 2 + cZ2 ≡ 0 (mod abc) for every (X, Y, Z) ∈ L,
and use Minkowski’s theorem to show that L contains a non-zero element
(X, Y, Z) for which |a|X2 + |b|Y 2 + |c|Z2 < 2abc. If aX2 + bY 2 + cZ2

is not already 0, it must be ±abc, and a simple transformation yields new
X, Y, Z for which aX2+bY 2+cZ2 = 0. Alternatively, in [CM98] it is shown
that one can construct a lattice L′ ⊂ L such that aX2 + bY 2 + cZ2 ≡ 0
(mod 2abc) for every (X, Y, Z) ∈ L′ and moreover that this L′ still contains
a non-zero element (X, Y, Z) for which |a|X2 + |b|Y 2 + |c|Z2 < 2abc and
hence aX2 + bY 2 + cZ2 = 0. Given a solubility certificate, one can quickly
find such (X, Y, Z) with the LLL lattice reduction algorithm (see [LLL82])
and Lemma 2.7 in [CR03] (where an even faster algorithm was given as
well).

In the proof of Theorem 1 below we will follow the same ideas for
K = F (t). Although this involves additional notation, some details will
be easier since the lattice arguments for F = Q simplify to linear alge-
bra in the function field case. Moreover, the solution (X : Y : Z) pro-
duced by our algorithm satisfies the degree bounds deg(X) ≤ deg(bc)/2,
deg(Y) ≤ deg(ac)/2, deg(Z) ≤ deg(ab)/2.

In the algorithm for conics over K = F (t), it will sometimes be necessary
to solve a conic over the base field F : namely, when all irreducible factors of
abc have even degree. Hence our algorithm should be regarded as a recursive
one, which may be used to solve conics over F (t1, . . . , tn) whenever we are
able to solve them over F . As “base cases” we have K = Q, mentioned
above, and F = Fq where q is an odd prime power; in the latter case,
solution is trivial since a random line intersects the conic in two points
which with probability 1

2 are defined over Fq.
It has been pointed out by Miles Reid that the method used is essentially

the same as for proving Tsen’s Theorem: see [R97, p. 59]; in that context
the field F is algebraically closed.

When F = R (the field of real numbers) and K = R(t), the algorithm
presented in this paper was already given by Schicho (see Lemma 5 in
[Sch98], and also [Sch00]). So the algorithm presented here is a modest
generalization of Schicho’s algorithm, applying over more general ground
fields, and with certain improvements: notably that recursion is only nec-
essary when all irreducible factors of abc have even degree.

Solving conics over function fields 597

In the following sections we give the definition of a solubility certificate,
and then present the algorithm. We end with some examples.

The algorithm has been implemented by the authors in both Maple (see
[Maple]) and Magma(see [Magma]). The programs may be obtained from
http://www.math.fsu.edu/~hoeij/files/ConicProgram and
http://www.maths.nott.ac.uk/personal/jec/ftp/progs/magma/ .

2. The solubility certificate

After multiplying by denominators we may assume that

(2) a, b, c ∈ F [t].

Let g = gcd(a, b). If deg(g) > 0, then a, b, c will be replaced by a/g, b/g, cg.
The new conic is equivalent to the old conic under (X : Y : Z) 7→ (X : Y :
Z/g). The same is done for gcd(b, c) and gcd(c, a). After a finite number of
such steps (finite since the degree of abc is reduced by deg(g) at each step),
we have

(3) gcd(a, b) = gcd(b, c) = gcd(c, a) = 1.

By a “non-trivial square” we mean the square of a non-zero non-unit
d ∈ F [t] (so deg(d) > 0). If a, b or c is divisible by a non-trivial square then
we can divide and obtain an equivalent conic. Thus, we may assume that
a, b, c are square-free (i.e., not divisible by non-trivial squares); because
of (3), this is equivalent to

(4) abc is square-free.

Given equation (1), the above describes Legendre’s procedure to compute
a reduced form of this equation, which means:

Definition 1. An equation aX2+bY 2+cZ2 = 0 is in reduced form if a, b, c
satisfy assumptions (2), (3) and (4): a, b, c ∈ F [t] with abc square-free.

In Section 4 below, we give an algorithm (Algorithm ReduceConic)
to reduce a given equation.

Denote by da, db, dc ∈ N the degrees of a, b, c, and by la, lb, lc ∈ F the
leading coefficients of a, b, c. Set

case :=

{
0 if da ≡ db ≡ dc (mod 2) and abc has no root in F ;
1 otherwise.

Later we will see that the harder case (“case = 0”) can be restricted further
to only include equations where all irreducible factors of abc have even
degree; but we will first give the simpler form of the algorithm with cases
defined as above.

598 Mark van Hoeij, John Cremona

Lemma 1. If a solution (X : Y : Z) ∈ P2(K) of equation (1) exists, then

(5) lax
2 + lby

2 + lcz
2 = 0

has a solution in P2(F).

Proof. After scaling we may assume that X, Y, Z ∈ F [t]. Let d be the
maximum of the degrees of aX2, bY 2, and cZ2: either all three of these
polynomials have degree d, or two have degree d and one has strictly smaller
degree. In the first case (then da, db, dc have the same parity), taking leading
coefficients of the solution gives a solution (x : y : z) to (5). In the second
case, say with the degree of aX2 strictly less than d, we again find a solution
to (5) of the form (0 : y : z) where y, z are the leading coefficients of Y , Z
respectively. �

Let supp(a) denote the set of all monic irreducible p ∈ F [t] that divide
a. Denote

Lp := F [t]/(p),
which is a finite extension of F of degree deg(p). Introduce a new variable
u, and let fa, fb, fc ∈ F [t][u] be the following polynomials

fa := bu2 + c, fb := cu2 + a, fc := au2 + b.

For f ∈ F [t][u], the image in Lp[u] is denoted as f mod p.

Definition 2. Let aX2 + bY 2 + cZ2 = 0 be in reduced form (see Defini-
tion 1). Then a solubility certificate is a list containing the following:

• For every p ∈ supp(a), a root of fa mod p in Lp;
• For every p ∈ supp(b), a root of fb mod p in Lp;
• For every p ∈ supp(c), a root of fc mod p in Lp;
• If case = 0, either a solution or a solubility certificate for equa-

tion (5).

Note that over K = Q, the standard definition of a solubility certificate
is formulated slightly differently, namely the roots are combined by the
Chinese Remainder Theorem. So the usual definition of a solubility certifi-
cate over Q is a list of three integers ka, kb, kc that are roots of fa mod a,
fb mod b, and fc mod c respectively.

Lemma 2. Assume equation (1) is in reduced form and has a solution in
P2(K). Then a solubility certificate exists.

Proof. Let (X : Y : Z) be a solution. After scaling we may assume that
X, Y, Z ∈ F [t] with gcd(X, Y, Z) = 1. For case = 0, we have already shown
that equation (5) has a solution by considering the leading coefficients of
X, Y, Z. The remainder of the proof is the same as for the case K = Q, but
we include it for completeness since our notations are slightly different.

Solving conics over function fields 599

Let p ∈ supp(a). Now 0 = aX2 +bY 2 +cZ2 reduces to bY 2 +cZ2 mod p.
Since b, c do not vanish mod p, it follows that Y ,Z are either both zero or
both not zero, where Y ,Z denote the images of Y, Z in Lp. The first case
is ruled out since it would imply that bY 2 + cZ2, and hence aX2, would
be divisible by p2, which implies that X is divisible by p, contradicting
gcd(X, Y, Z) = 1. Thus, Y ,Z are not zero; and Y /Z ∈ Lp is a root
of fa mod p. Repeating this for fb (respectively fc) for the factors of b
(respectively c), it follows that a solubility certificate exists. �

2.1. Algorithmic remarks. To compute (if it exists) a solubility certifi-
cate we use the following tools:

(1) A factorization algorithm for F [t];
(2) An algorithm for computing square roots in L, where L is a finite

extension of F ;
(3) If case = 0, we need to recursively find a solubility certificate (or a

solution) for a conic over F . Hence, if K = Q(t1, . . . , tn) and if at each
stage of recursion we are in case 0, we eventually need a solubility
certificate (or a solution) over Q, which will require a factorization
algorithm for Z.

The factorization algorithms required are available in standard computer
algebra systems such as Maple and Magma. Integer factorization can take
much time (no polynomial time algorithm is known), while the time for
factorization of polynomials over number fields is small in comparison: for
fixed n, the time spent on items 1 and 2 is polynomially bounded in terms
of the degrees and logarithmic heights.

Thus for K = Q(t1, . . . , tn) with fixed n one can compute a solubility
certificate in polynomial time except if case = 0 at each of the recursive
stages. Having to factor integers can sometimes, but not always, be avoided
by interchanging variables.

2.2. A solubility certificate corresponds to a subset of the conic.
If equation (1) has a solution in P2(K) then the number of solubility cer-
tificates equals 2n for some integer n, because for each p, one has to choose
one of the two roots (one root if K = Q and p = 2). Every certificate corre-
sponds to a non-empty (by Theorem 1 below) subset of the set of K-rational
points on the conic in P2 defined by equation (1). Grouping together sub-
sets/certificates identified under (X : Y : Z) 7→ (±X : ±Y : ±Z), one may
write the conic as a disjoint union of non-empty subsets S1, S2, . . . , S2m for
some integer m ≥ 0. Given one point on the conic, one can write down a
parametrization, a birational map Ψ from P1(K) to the conic. Then every
point on the conic can be written as Ψ(u : v) for some (u : v) ∈ P1(K).
Nevertheless, one can construct examples with K = Q, m > 0, with a point

600 Mark van Hoeij, John Cremona

in one Si given, where it would require a breakthrough in integer factoriza-
tion to find a point in any Sj with j 6= i. This is because going from one
Si to another is equivalent to finding a non-trivial factor of a, b or c.

Although the above remark is not needed for our algorithm, it is useful
to know that a solubility certificate corresponds to a subset of the conic,
and that the algorithm in the next section finds an element of that subset.
So any certificate will lead to a point on the conic; however, a much nicer
point (with smaller degree or height of X, Y, Z) might be found by trying
one of the other certificates.

3. Finding a point on the conic

In this section we present the algorithm for finding a solution to (1), given
a solubility certificate. As pointed out in the introduction, this algorithm
is a modest generalization of Schicho’s algorithm.

Algorithm FindPoint
Input: a, b, c ∈ K∗ satisfying assumptions (2), (3), (4), and a solubility
certificate.
Output: A solution (X : Y : Z) ∈ P2(K) of aX2 + bY 2 + cZ2 = 0.

(1) Let da, db, dc be the degrees of a, b, c.
(2) Let Sa, Sb, Sc be the supports of a, b, c.
(3) If da ≡ db ≡ dc (mod 2) then: if Sa ∪ Sb ∪ Sc contains no element of

degree 1 then set case := 0, else set case := 1 and remove a single
degree 1 irreducible from one of Sa, Sb, Sc.
Otherwise (when the degrees have different parities): set case := 1.

(4) Set

A := ddb + dc

2
e − case, B := ddc + da

2
e − case, C := dda + db

2
e − case

and

X :=
A∑

i=0

Xit
i, Y :=

B∑
i=0

Yit
i, Z :=

C∑
i=0

Zit
i

where the Xi, Yi, Zi are new variables.
(5) If case = 0, let la, lb, lc ∈ F be the leading coefficients of a, b, c. Let

(x : y : z) be a solution of equation (5), see the Remark below.
Introduce a new variable W and set E := {XA − xW, YB − yW,ZC −
zW}. Otherwise (case = 1) let E := ∅.

(6) For every p ∈ Sa, let α ∈ Lp be a root of fa mod p. Lift α to F [t],
divide Y − αZ by p and let r be the remainder. Write r =

∑
i<d rit

i

where d = deg(p). Then ri is an F -linear combination of the Yj and
Zj . Now set E := E ∪ {r0, . . . , rd−1}.
Repeat this for fb (respectively fc) for all p in Sb (respectively Sc).

Solving conics over function fields 601

(7) Equating all elements of E to 0 gives a system of homogeneous linear
equations for the variables Xi, Yi, Zi (and W if case = 0). Solve this
system and substitute a non-trivial solution into X, Y, Z. Divide by
gcd(X, Y, Z). Return (X : Y : Z) and stop.

Remark on step 5: The solubility certificate in the input comes from
Algorithm Conic in section 4, and contains a solution of equation (5).

Theorem 1. Assume that equation (1) is in reduced form. Then it has a
solution in P2(K) if and only if a solubility certificate exists; in that case,
a solution may be found by Algorithm FindPoint.

Proof. Assume we have a solubility certificate. It suffices to prove that
Algorithm FindPoint works. For step 5 see the Remark above. We will
show that in each case, the system E in step 7 has a non-zero solution
because the number of variables is greater than the number of equations;
therefore, the notation (X : Y : Z) ∈ P2(K) in step 7 is correct. Secondly
we will argue that aX2+bY 2+cZ2 must be zero by simultaneously bounding
its degree and showing that it is divisible by a polynomial of larger degree.

Let D = da + db + dc = deg(abc). If case = 0 and we have removed a
degree 1 irreducible factor p from the support set, let D′ = deg(abc/p) =
D − 1, otherwise set D′ = D. By construction, r = aX2 + bY 2 + cZ2 has
degree ≤ max{da + 2A, db + 2B, dc + 2C} = D′ − case. Furthermore, r is
divisible by every irreducible element of Sa ∪Sb ∪Sc (from step 3), because
equations E are satisfied, so (since abc is square-free) r is divisible by a
polynomial of degree D′. If case = 1 this already gives r = 0. If case = 0,
we see that r can be written as s · abc for some constant s ∈ F ; but the tD

coefficient in aX2 + bY 2 + cZ2 is (see step 5) given by the left-hand side of
equation (5), which equals 0. It follows that r = aX2 + bY 2 + cZ2 = 0 in
all cases.

It remains to show that the linear system has more unknowns than equa-
tions. When case = 0, we have A + B + C = D, the number of unknowns
is (1 + A) + (1 + B) + (1 + C) + 1 = D + 4 while the number of equations
is D+3, since each irreducible p of degree d gives d equations and we have 3
extra equations from (5). When case = 1 and the degree parities are equal
and we deleted a degree 1 irreducible p, we have A + B + C = D − 3, the
number of unknowns is (1 + A) + (1 + B) + (1 + C) = D, and the num-
ber of equations is D − 1. Finally, when case = 1 and the degree parities
are not equal, we have A + B + C = D − 2, the number of unknowns is
(1 + A) + (1 + B) + (1 + C) = D + 1 and the number of equations is D.

Hence the algorithm will always return a (nontrivial) solution of equa-
tion (1). �

602 Mark van Hoeij, John Cremona

4. Algorithmic details

We now give an explicit algorithm to reduce an equation of the form (1).

Algorithm ReduceConic
Input: a, b, c ∈ F (t)∗.
Output: a1, b1, c1 ∈ F [t] for which a1X

2 + b1Y
2 + c1Z

2 = 0 is the re-
duced form of (1), together with λ, µ, ν ∈ F (t)∗ such that (X, Y, Z) satisfies
a1X

2 + b1Y
2 + c1Z

2 = 0 if and only if (λX, µY, νZ) satisfies (1).

(1) Multiply (a, b, c) by the least common multiple of the denominators,
and then divide (a, b, c) by gcd(a, b, c). Set λ = µ = ν = 1.

(2) Let g := gcd(a, b). Set a := a/g, b := b/g, c := cg, and ν := gν.
(3) Let g := gcd(a, c). Set a := a/g, c := c/g, b := bg, and µ := gµ.
(4) Let g := gcd(b, c). Set b := b/g, c := c/g, a := ag, and λ := gλ.
(5) Repeat the last 3 steps until g = 1 in all cases.
(6) Apply square-free factorization to write a as a1a

2
2 for some a1, a2 ∈

F [t] with a1 square-free. Set µ := a2µ, ν := a2ν. Apply a similar
process to b and c.

(7) Return (a1, b1, c1), (λ, µ, ν) and stop.

Finally we put everything together to give the complete algorithm. We
include here the singular cases.

Algorithm Conic
Input: a, b, c ∈ K = F (t).
Output: A solution (X : Y : Z) ∈ P2(K) of equation (1) if such solution
exists.

(1) If a = 0 then return (1 : 0 : 0) and stop.
If b = 0 then return (0 : 1 : 0) and stop.
If c = 0 then return (0 : 0 : 1) and stop.

(2) Replace (a, b, c) by the first output (a1, b1, c1) of Algorithm Reduce-
Conic, and let (λ, µ, ν) be the second output.

(3) Compute a solubility certificate:

(a) For each p in supp(a) (respectively supp(b), supp(c)), factor the
image of fa (respectively fb, fc) in Lp[u]. If irreducible, then
return “no solution exists” and stop. Otherwise, store one of the
roots (this root will be used in step 6 of Algorithm FindPoint).

(b) If case = 0 then find a solution (x : y : z) of (5). If this recursive
call returned “no solution exists” then return the same message
and stop.

(4) Let (X : Y : Z) be the output of Algorithm FindPoint.
(5) Return (λX : µY : νZ) and stop.

Solving conics over function fields 603

In the recursive step 3b we assume that it is possible to solve conics
over the base field F . By recursion, if F is a field for which the necessary
ingredients are available (an implementation to solve a conic over F , and
the factorization algorithms mentioned in section 2.1) then F (t1, . . . , tk) can
be handled in this way. If conic solving over F is not available, Algorithm
Conic as described here could still be useful, since it will still work when
case = 1.

5. Further remarks:

1. We may interpret our division into two cases as follows. We may avoid
recursion (i.e. case = 1) when there is a degree 1 place of the field F (t)
where the conic has bad reduction. For the “finite” places of F (t) this
occurs precisely when (for a reduced equation) there is a degree 1 irreducible
factor of abc. For the infinite place of F (t), with uniformizer 1/t, this occurs
when the degrees of a, b and c have different parities. So our division into
cases is invariant under F -automorphisms of F (t).

2. If there are no degree 1 places of bad reduction but there is a place
of bad reduction of odd degree m = 2d− 1, one can proceed as follows, to
avoid the need to solve the leading coefficient equation (5).

Let p be an irreducible factor of abc of odd degree. Extend the base field
to F ′ = F (α) of odd degree m, where α is a root of p. Over F ′(t), we
now have a degree 1 factor t−α of abc, so our existing algorithm gives (via
case 1, with no recursion) a solution P defined over F ′(t). Write m = 2d−1,
and consider functions on the conic of the form

f =
d∑

i=0

aiX
i + Y

d−1∑
j=0

bjX
j ,

with coefficients ai, bj ∈ F (t); these form a vector space of dimension 2d+1
over F (t). We may impose linear conditions on the coefficients by requiring
that f(P) = 0: expanding in powers of α this gives a system of 2d − 1
equations, which has a solution space of dimension exactly 2. (This follows
from the Riemann-Roch Theorem: we are computing the space L(D) where
D is the divisor D = dD∞ −

∑
σ(P σ), where D∞ is the divisor of poles

of X and P σ runs over the F ′/F -conjugates of P .) Taking f1, f2 to be
given by independent solutions to these equations, the quotient f1/f2 will
have a unique zero and a unique pole, both at F (t)-rational points, which
may then be found easily.

If the solution we find this way does not satisfy the degree bounds guar-
anteed by our main algorithm, this can be arranged as follows: we may use
the leading coefficients of any solution to obtain a solution to (5), and then
apply the original algorithm over F (t) itself.

604 Mark van Hoeij, John Cremona

Thus the recursive step is only necessary when all places of bad reduction
have even degree. However, in practice, it may only be worth using this
trick when F = Q; otherwise, solving (5) directly may be simpler than
working over a field extension.

3. In general one would like to solve conics given by more general ho-
mogeneous quadratics Q(X, Y, Z) = 0, where Q has coefficients in F (t).
In alternative notation, a conic is defined by a 3 × 3 symmetric matrix A
over F (t) which is not necessarily diagonal. Since we have excluded the
case of characteristic 2, one may readily convert this to diagonal form by
completing the square. There is a cost associated with this operation: we
need to factorize the diagonal entries, which might involve many more “bad
places” than in the original model, where the (finite) bad places are given
by irreducible factors of det(A). Over Q this is a major problem, since
integer factorization is hard, as was pointed out by D. Simon after the
appearance of [CR03]; Simon produced an alternative algorithm for conics
over Q which avoids this: see [S05].

In the function field case, since polynomial factorization is much cheaper
than integer factorization, this should not be a problem. Nevertheless, one
of us (Cremona) has implemented in Magma an alternative algorithm for
non-diagonal conics, which proceeds as follows (following a strategy used by
Gauss over Z: see [Gauss, Art. 272]). First, we reduce to the case of a 3×3
symmetric matrix A over F [t] which is unimodular (i.e., det(A) ∈ F ∗); this
only requires factorization of the original determinant, computing square
roots modulo its irreducible factors, and linear algebra over finite exten-
sions of F . This step corresponds roughly to the reduction and certificate
computation steps in the diagonal algorithm. Secondly, we use unimodular
transformations to reduce the degrees of the entries of A; one can show that
we can either reach the situation where A is both diagonal and constant
(entries in F ∗), or find a solution along the way. A similar method was
considered by Schicho in [Sch00], and again by van de Woestijne in [W06].

There are practical difficulties with this algorithm, though it does work.
If the base field F is a finite field there is no problem, but if F = Q or
F is itself a function field, although we steadily decrease the degrees of
the entries of the matrix, the coefficients of the entries are subject to ex-
pression swell, making the overall algorithm slow. The situation is entirely
analogous to the use of the Euclidean Algorithm to compute the gcd of two
polynomials in Q[t], which suffers from the same defect. In that case, the
usual solution is to use modular methods instead. That may be possible
here too, but we have not investigated this.

So at the moment, the most efficient method is as follows: first diag-
onalize, then use Algorithm Conic from section 4. If we started with a
conic over Q(t1, . . . , tn) then we may encounter a conic over Q later in the

Solving conics over function fields 605

computation (in the recursive step 3b of Algorithm Conic). It is possible
that diagonalizing the Q(t1, . . . , tn) conic increased the discriminant of the
Q conic encountered later. To prevent unnecessarily large integer factoriza-
tion, one must make a change at this point in our algorithm: Once we reach
a diagonal Q conic, we must reverse the diagonalization and obtain a non-
diagonal conic over Q. This non-diagonal Q conic can also be obtained by
specializing t1, . . . , tn in the original non-diagonal Q(t1, . . . , tn) conic. Then
compute a point on this non-diagonal conic with [S05]. Apply to that point
the same transformation (with t1, . . . , tn specialized) as was used to diag-
onalize the original Q(t1, . . . , tn) conic. This way one finds a point on the
diagonal Q conic without having to factor its discriminant (which could be
much larger than the discriminant of the non-diagonal Q-conic, see [S05]
for an example).

6. Examples

Example 1. Here K = Q(t1, t2). Let a := 1, b := 2t22 + 2t1t2 − t21, and
c := −3t42 − 4t1t

3
2 + 8t21t

2
2 + 16t31t2 − 48t41.

The implementation does not always find the same solution, for an expla-
nation see section 2.2. As output, one encounters for example

(t32 + t1t
2
2 + 4t21t2 − 4t31 : t22 − 4t21 : t2)

but also
(t32 + 2t21t2 + 8t31 : t22 + 2t1t2 − 4t21 : t2 + t1).

Example 2. a := t21 + 1, b := −(t21 + 1)t22 + (4t21 + 4)t2 − 1, c := (2t31 −
10t21 + 2t1 − 9)t42
−(6t31 + 6t1 − 2)t32 + (t41 − 8t31 − 2t21 − 6t1 − 2)t22 − (4t41 + 2t21 − 2t1 − 2)t2 − 1.
The implementation may find

(t32 − t22 + t2 − 1 : t22 + t2 + t1 : 1)

but may also find a more complicated solution, depending on which solu-
bility certificate it chose.

References
[CM98] T. Cochrane, P. Mitchell, Small solutions of the Legendre equation. J. Number

Theory 70 (1998), no. 1, pp. 62–66.
[CR03] J. Cremona, D. Rusin, Efficient solution of rational conics. Math. Comp. 72 (2003),

no. 243, pp. 1417–1441.
[Gauss] C. F. Gauss, Disquisitiones Arithmeticae. Springer-Verlag, 1986.
[LLL82] A. K. Lenstra, H. W. Lenstra, Jr., L. Lovász, Factoring polynomials with rational

coefficients. Math. Ann. 261 (1982), no. 4, pp. 515–534.

606 Mark van Hoeij, John Cremona

[Magma] W. Bosma, J. Cannon, C. Playoust, The Magma algebra system. I. The user lan-

guage. J. Symbolic Comput., 24 (1997), 235–265. Computational algebra and number
theory (London, 1993). See also http://magma.maths.usyd.edu.au/magma/.

[Maple] M. B. Monagan, K. O. Geddes, K. M. Heal, G. Labahn, S. M. Vorkoetter, J.

McCarron, Maple 6 Programming Guide. Waterloo Maple Inc. (Waterloo, Canada,
2000).

[R97] M. Reid, Chapters on Algebraic Surfaces, Chapter C: Guide to the classification of sur-

faces. In J. Kollár (Ed.), IAS/Park City lecture notes series 3 (1993), AMS, Providence
R.I., 1997, 1–154. See also www.maths.warwick.ac.uk/~miles/surf/ParkC/chC.ps.

[Sch98] J. Schicho, Rational parametrization of real algebraic surfaces. Proceedings of the

1998 International Symposium on Symbolic and Algebraic Computation (Rostock),
ACM, New York, 1998, 302–308.

[Sch00] J. Schicho, Proper parametrization of surfaces with a rational pencil. Proceedings of
the 2000 International Symposium on Symbolic and Algebraic Computation (St. An-

drews), ACM, New York, 2000, 292–300.

[S05] D. Simon, Solving quadratic equations using reduced unimodular quadratic forms.
Math. Comp. 74 (2005), no. 251, pp. 1531–1543.

[W06] C. van de Woestijne, Surface Parametrisation without Diagonalisation. Proceedings

of the 2006 International Symposium on Symbolic and Algebraic Computation (Genoa),
ACM, New York, 2006, 340–344.

Mark van Hoeij

Department of Mathematics
Florida State University

Tallahassee, FL 32306-3027, USA
E-mail : hoeij@math.fsu.edu

URL: http://www.math.fsu.edu/~hoeij/

John Cremona
School of Mathematical Sciences

University of Nottingham

University Park, Nottingham, NG7 2RD, UK
E-mail : john.cremona@nottingham.ac.uk

URL: http://www.maths.nott.ac.uk/personal/jec/

