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Abstract

We generalize the concept of a number derivative, and examine one particular

instance of a deformed number derivative for finite field elements. We find that the

derivative is linear when the deformation is a Frobenius map and go on to examine

some of its basic properties.

1 Introduction

The so-called “number derivative” seems to have been invented independently at least three
times [3, 1, 4]. Here we present a generalization of the number derivative that applies to
nearly anything one might reasonably call a number. Afterwards, we examine the case of a
specific number derivative on finite fields and some of its basic properties.

We generalize the concept of a number derivative to the following algorithm; in order
to illustrate each step, we will present the corresponding step from the standard number
derivative, denoted N , and our number derivative, denoted S.

The notation we use below requires some care. Multiplication is denoted by a dot [·] or
by concatenation of symbols: x · x2 = xx2 = x3. The notation xn denotes a function:

xn(y) = yn,

so x(y) = y is the identity function and x0(y) = 1 for all y. Parentheses, when preceded by
a function or operator, denote composition or application, respectively:

x2(xn) = (xn)2 = x2n.
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Application is left associative:
f(g)(h) = (f(g))(h),

and takes precedence over multiplication:

gh(f) 6= g(f) · h(f).

1. Choose a parameterized canonical form. In the case of N , this consists of representing
each integer as a product of prime powers; the parameters are the primes. In the case
of S, we choose a generator θ of the finite field GF(pk) and express each finite field
element as θn. Here, the parameter is θ.

2. Convert this canonical form into a function. The algorithm N takes each prime power
pki

i to a function x
ki

i (yi) = yki

i . The algorithm S replaces θn with the function xn(y) =
yn.

3. Differentiate the function with respect to the parameters. The algorithm N computes
D(f) = (

∑

i
∂

∂xi
)(f). The algorithm S computes the s-derivative Ds(f).

4. Evaluate the derivative at some function of the parameters, typically the identity func-
tion. The algorithm N computes D(f)|yi=pi

. The algorithm S computes Ds(f)|y=θ.

2 Exponential quantum calculus

We begin with the operator Ms(f) = f(xs). The s-differential is then ds = Ms − x and the
s-derivative is

Ds(f) =
ds(f)

ds(x)
.

The s-derivative of an element xn(θ) is

Ds(x
n)(θ) =

Ms(x
n)− xn

Ms(x)− x
(θ) =

xns − xn

xs − x
(θ) = ([n]xn−1)(θ),

where

[n] ≡
x(s−1)n − x0

xs−1 − x0
.

The s-deformation has many similarities to the q-deformation that results in the quantum
calculus [2]. To get the s-deformation from the q-deformation, one replaces the constant q
by the function xs−1. Since this is the same transformation we chose to use in the second
step of the algorithm S, both derivatives give rise to the same number derivative.

Since the notation is somewhat simpler for the q-derivative, we will adopt it through
most of the paper. The operator Mq =Ms:

Ms(f) = f(xs) = f(xs−1x) = f(qx) =Mq(f).
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The q-differential is dq =Mq − x and the q-derivative is

Dq(f) =
dq(f)

dq(x)
.

The q-derivative of an element xn(θ) is

Dq(x
n)(θ) =

Mq(x
n)− xn

Mq(x)− x
(θ) =

qnxn − xn

qx− x
(θ) = ([n]xn−1)(θ),

where

[n] ≡
qn − q0

q1 − q0
.

Also, in the portions of the paper directly concerning the algorithm S, we will usually
omit the final application of the functions to θ.

3 Identities

For what functions q = xs−1, if any, is this number derivative linear? Let θa+ θb = θc. Then

Dq(x
c)(θ) =

xsc − xc

xs − x
(θ) =

(θa + θb)s − θc

θs − θ
.

On the other hand,

(Dq(x
a) +Dq(x

b))(θ) =
xas + xbs − (xa + xb)

xs − x
(θ) =

θas + θbs − θc

θs − θ
,

so we want the cross terms in the binomial (θa + θb)s to be zero modulo p. This only occurs
when s is a power of p, so the derivative is linear if and only if Ms is a Frobenius map. In
the rest of the paper, we will only consider q = xs−1 of this form.

The derivation of the product rule is the same as that for the q-derivative:

Dq(fg) =
Mq(fg)− fg

Mqx− x

=
Mq(f)Mq(g)−Mq(g)f +Mq(g)f − fg

Mq(x)− x

=Mq(g)
Mq(f)− f

Mq(x)− x
+ f

Mq(g)− g

Mq(x)− x

=Mq(g)Dq(f) + fDq(g) (1)

= gDq(f) +Mq(f)Dq(g), (2)

where (2) follows by symmetry.
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The same is true for the quotient rule. Since by (1),

Dq(f) = Dq(g
f

g
)

=Mq(g)Dq(
f

g
) +

f

g
Dq(g),

we have

Dq(
f

g
) =

gDq(f)− fDq(g)

gMq(g)
(3)

=
Mq(g)Dq(f)−Mq(f)Dq(g)

gMq(g)
(4)

where (4) follows from (2) instead.
Note that while there is not a general chain rule for the standard q-derivative, we can

use the fact that every element is of the form xn(θ) to find one for this derivative:

Dq(g(x
n)) =

Mq(g(x
n))− g(xn)

Mq(x)− x
·
Mq(x

n)− xn

Mq(xn)− xn

=
Mq(g(x

n))− g(xn)

Mq(xn)− xn
·
Mq(x

n)− xn

Mq(x)− x

=
Mq(g(x

n))− g(xn)

Mq(x(xn))− x(xn)
·Dq(x

n)

= Dq(g)(x
n) ·Dq(x

n)

While the product and quotient rules (1)-(4) are the same as those typically given [2], this
rule differs: since q is the function xpj−1 instead of a constant, we evaluate it at xn rather
than take the qn-derivative of g in the first term.

Finally, the q-numbers [n] satisfy

[n+ 1] = q0 + q[n] and [n+ 1]− [n] = qn.

4 Constants

Under what conditions does

dq(x
n) = 0? (5)

We have
Mq(x

n)− xn = 0

which implies
qnxn = xn

and
qn = xn(pj−1) = x0 = 1
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if n 6= −∞. Therefore, Dqx
n = 0 if (pk − 1)|n(pj − 1). We call elements satisfying (5)

“constants.”
Constants behave as one might expect. Adding a constant obviously does not change the

derivative; multiplying by a constant m scales the derivative by the same amount:

Dq(mf) = fDq(m) +Mq(m)Dq(f)

= f · 0 +mDq(f)

= mDq(f)

5 The exponential function exp

Consider the equation Dqx
e = xe. Then

Dqx
e = [e]xe−1 = xe

[e]x−1 = x0

xes − x0

xs − x
= x0

xes = xs − x+ 1 (6)

so if θs − θ + 1 is generated by θs then the equation will hold for at least one e. We may
then define the function exp = xe; there is no reason to prefer one solution over another.

We use exp to illustrate a subtlety of the chain rule. One might conclude thatDq(exp
m) =

[m]xme+m−1:

Dqx
me = Dq(x

e(xm))

= Dq(x
e)(xm) ·Dq(x

m)

= xe(xm) · [m]xm−1 (7)

= xme · [m]xm−1

= [m]xme+m−1

but (7) does not follow. It is only when applied directly to θ that Dqx
e = xe. Here, Dqx

e is
applied to the function xm and then to θ.

The true equation may be found by examining the derivatives of the first few powers of
exp:

Dq(exp
2) = Dq(x

2e)

= Dq(x
e · xe)

= xeDq(x
e) +Mq(x

e)Dq(x
e)

= x2e + qex2e

= (q0(xe) + q1(xe)) · (xe)2

= ([2]x2)(xe)
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Dq(exp
3) = Dq(x

3e)

= Dq(x
e · x2e)

= x2eDq(x
e) +Mq(x

e)Dq(x
2e)

= x3e + qe · (q0 + qe)x3e

= (q0(xe) + q1(xe) + q2(xe))(xe)3

= ([3]x3)(xe)

The pattern is immedately clear: Dq(exp
m) = ([m]xm)(exp), as one would hope.

We can now prove the result by induction. Assume that Dq(exp
(m−1)) is of the form

([m− 1]xm−1)(exp). Then

Dq(exp
m) = Dq(x

me)

= Dq(x
ex(m−1)e)

= x(m−1)eDq(x
e) +Mq(x

e)Dq(x
(m−1)e)

= xme + qexe · ([m− 1]xm−1)(xe)

= ((q0 + q[m− 1])xm)(xe)

= ([m]xm)(xe)

= ([m]xm)(exp).

6 Commutation

As with the standard q-derivative, [Dq, x·] =Mq:

[Dq, x·](f) = Dq(xf)− xDq(f)

= fDq(x) +Mq(x)Dq(f)− xDq(f)

= f + qxDq(f)− xDq(f)

= f + dq(x)Dq(f)

= (x+ dq(x)Dq)(f)

= (x+ dq(x)
dq

dq(x)
)(f)

= (x+ dq)(f)

=Mq(f)

If we define the q-commutator [f, g]q ≡ fg −Mq(g)f , then we find that

[Dq, x·]q(f) = Dq(xf)−Mq(x)Dq(f)

= fDq(x) +Mq(x)Dq(f)−Mq(x)Dq(f)

= f.
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We can define a Hamiltonian operator via the anticommutator H = {Dq, x·} to get

Hf = Dq(xf) + xDq(f)

= fDq(x) + qxDq(f) + xDq(f)

= f + [2]xDq(f),

so the “energy” of a finite field element xn(θ) is

Hxn = xn + [2]xDq(x
n)

= (1 + [2][n])xn

= (1 + (1 + q)[n])xn

= (1 + [n] + q[n])xn

= ([n+ 1] + [n])xn

7 q-Antiderivative

The q-derivative of a finite field element is an element itself. If we add the constant 1,
the derivative does not change, so at most half of the elements have antiderivatives. If an
element has an antiderivative, then it is unique up to an additive constant: suppose f has
two antiderivatives F1 and F2. Then let φ = F1 − F2. Now Dq(φ) = 0; but any function for
which that holds true is a constant by definition.

The integral operator
∫

q
(dq·) is the Moore–Penrose inverse of Dq. Thus the equation

Dq(F ) = f has a solution iff f = Dq(
∫

q
(fdq))).

8 Higher derivatives

Because [n] is a function of x, there are correction terms on the higher derivatives. For
instance,

D2
q(x

n) = Dq(Dq(x
n))

= Dq([n]x
n−1)

= [n]Dq(x
n−1) +Mq(x

n−1)Dq([n])

= [n][n− 1]xn−2 + (qx)n−1Dq([n])

It is these extra terms that give rise to trigonometric-like functions. We’ve already seen
exp; there are others like sinh and cosh with larger periods.

There will be a subspace, however, for which iterated derivatives eventually yield zero.
This subspace always includes the vectors {x, 1}, and may include more.

We can define an inner product in this subspace. Let Jq =
∫

q
(dq·) and without loss of

generality, let n ≥ m. Then

〈Jn
q , J

m
q 〉 = 〈1, D

n
q J

m
q 〉 = δn,m.
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The function exp is an eigenvector of Dq, so it is orthogonal to the subspace:

〈Jn
q , exp〉 = 〈1, D

n
q exp〉 = 〈1, exp〉 = 0.

Other trigonometric functions are defined by the period with which they repeat. sinh, for
example, is an eigenvector of D2

q , and a similar identity holds.

9 Logarithmic q-derivative

The logarithmic derivative is defined as

ld ≡
Dq

x
.

The logarithmic derivative of a product of terms is the q-deformed sum of the logarithmic
derivatives of the terms:

ld(xn · xm) =
Dq(x

n · xm)

xn · xm

=
Mq(x

n)Dq(x
m) + xmDq(x

n)

xn · xm

=
Mq(x

n)

xn
ld(xm) + ld(xn)

= qn ld(xm) + ld(xn)

= ld(xm) + qm ld(xn)

The logarithmic derivative of powers of exp has a nice form:

ld(expn) =
Dq(exp

n)

expn
=
([n]xn)(exp)

expn
= [n](exp)

which suggests a “natural discrete q-logarithm” for finite field elements. However, while this
logarithm is easy to compute, the q-deformed multiplication necessary to solve the Diffie-
Hellman problem is hard.

10 Examples

We consider the field GF(24) with the field polynomial x4 − x− 1. There are three possible
values q may take: x1, x3, and x7. Each gives rise to different structures.
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n θn Dx(θ
n) Dx3(θn) Dx7(θn)

−∞ 0000 0000 0000 0000
0 0001 0000 0000 0000
1 0010 0001 0001 0001
4 0011 0001 0001 0001
2 0100 0110 0001 0111
8 0101 0110 0001 0111
5 0110 0111 0000 0110
10 0111 0111 0000 0110
3 1000 1111 0111 0101
14 1001 1111 0111 0101
9 1010 1110 0110 0100
7 1011 1110 0110 0100
6 1100 1001 0110 0010
12 1101 1001 0110 0010
11 1110 1000 0111 0011
13 1111 1000 0111 0011

10.1 q = x

We have constants 0, 1. “Trig” functions include θ10 = 0111 = exp, θ13 = 1111 = sinh, and
θ3 = 1000 = cosh. The names we’ve chosen are fairly arbitrary; they are only meant to reflect
the period with which the derivative returns to itself. The element θ has no antiderivative,
so we have an inner product acting on the subspace {1, x} of the space {1, x, exp, sinh}.

10.2 q = x3

Nonzero constants are θ0 = 1, θ5 = 0110, and θ10 = 0111, the cube roots of 1. There are no
trig functions. A basis for the space is {1, x}.

10.3 q = x7

We have the constants 0, 1 and the trig function exp. In this case, Jqθ = θ6, so we have
the inner product on a three-dimensional subspace {1, x, x6}, while the complete basis is
{1, x, x6, exp}.
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