
23 11

Article 04.1.7
Journal of Integer Sequences, Vol. 7 (2004),2

3

6

1

47

Zeroing the baseball indicator and the
chirality of triples

Christopher S. Simons and Marcus Wright
Department of Mathematics

Rowan University
Glassboro, New Jersey 08028

USA
simons@rowan.edu

wright@rowan.edu

Abstract

Starting with a common baseball umpire indicator, we consider the zeroing
number for two-wheel indicators with states (a, b) and three-wheel indicators
with states (a, b, c). Elementary number theory yields formulae for the zeroing
number. The solution in the three-wheel case involves a curiously nontrivial
minimization problem whose solution determines the chirality of the ordered
triple (a, b, c) of pairwise relatively prime numbers. We prove that chirality
is in fact an invariant of the unordered triple {a, b, c}. We also show that the
chirality of Fibonacci triples alternates between 1 and 2.

1. Introduction

A standard three-wheel baseball umpire indicator consists of a first wheel (for strikes) with
4 cyclic states (0, 1, 2, 3), a second wheel (for balls) with 5 cyclic states (0, 1, 2, 3, 4), and a
third wheel (for outs) with 4 cyclic states (0, 1, 2, 3). The daughter of the second author
asked what is the least number of clicks required, if one alternates between advancing the
strike wheel and the ball wheel one click cyclically, to return these two wheels to their original
states. We call this the (two-wheel) zeroing number. After her father gave her the wrong
answer of 2lcm(4, 5) = 40, she asked why the correct answer was in fact 31. With a total
of 40 clicks both wheels advance 20 times, and since 20 ≡ 0 (mod 4) and 20 ≡ 0 (mod 5)
both wheels are returned to their original state. However we can do better. A total of 31
clicks advances the strike wheel 16 times and advances the ball wheel only 15 times. Since
16 ≡ 0 (mod 4) and 15 ≡ 0 (mod 5) both wheels are therefore zeroed. The zeroing number
is 31, as 31 is the minimal such number. However if instead one starts with balls and then
moves onto strikes, one finds that a total of only 9 clicks are required to zero the indicator.
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We note that zeroing number does depend on the ordering of the wheels and that the the
sum of these two zeroing numbers gives the incorrect solution: 31 + 9 = 40.
Using elementary number theory we find a complete solution for the general two-wheel

indicator with cyclic states a, b ≥ 2. The problem of the general three-wheel indicator, with
cyclic states a, b, c ≥ 2, yields a much more interesting result. In both cases all wheels
should have at least 2 cyclic states, since otherwise we would have wheels that could not
be clicked. For the three-wheel indicator, when a, b, c are not pairwise relatively prime a
satisfactory solution is easily obtained. However when they are pairwise relatively prime
the solution involves a nontrivial minimization problem. Of interest is whether the zeroing
number modulo 3 is 1 (so that the final click is on the first wheel) or 2 (so that the final
click is on the second wheel). We call this number the chirality of the triple (a, b, c). While
the zeroing number is highly dependent on the ordering of the wheels, we prove that the
chirality does not depend on the ordering and is an invariant of the unordered triple {a, b, c}.
The chirality is a mysterious quantity demonstrating many interesting patterns. We prove
one of these for the Fibonacci sequence, but we still seek more general explanations.

2. Two wheels

If we let n be the number of times the first wheel is advanced, then in order to obtain
the zeroing number for two wheels with a and b states we must find the minimum positive
solution of

n ≡ 0 (mod a)

n ≡ 0 (mod b)

or of

n ≡ 0 (mod a)

n− 1 ≡ 0 (mod b)

depending on whether we stop after moving the second or first wheel. The first set of
equations implies that n = lcm(a, b). The second implies

n = ak

ak = 1 (mod b)

for the smallest positive number k < b. So n = aa−1
b where a−1

b is the multiplicative inverse
of a in Z∗

b .
Only when a and b are relatively prime does the second system have solutions and then

it provides the zeroing number. In general, the zeroing number is

f(a, b) =

{

2lcm(a, b), if gcd(a, b) 6= 1;
2aa−1

b − 1, if gcd(a, b) = 1.
(1)

When a and b are relatively prime the zeroing of the wheels first occurs when the final move
is on the first wheel, as the second quantity above is obviously smaller than the first. In fact,
there is the following statement about how much smaller it is.

Theorem 2.1. If a and b are relatively prime then

f(a, b) + f(b, a) = 2ab
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or equivalently

aa−1
b + bb−1

a − 1 = ab.

Proof. After f(a, b) advances the (a, b)-indicator has been zeroed for the first time. If one
continues advancing the wheels, starting with the b-wheel, zeroing will first occur after
another f(b, a) advances. Thus the sum represents the smallest number of advances zeroing
both wheels in which they are both advanced an equal number of times. We note that
lcm(a, b) = ab since a, b are relatively prime. ¤

As an aside we remark that if a and b are relatively prime we have f(a, b) 6= f(b, a)!
Otherwise by Theorem 2.1 f(a, b) = ab and by Equation (1) f(a, b) = 2aa−1

b − 1. The first
is a multiple of a, while the second is not.
We can make explicit machine computations using Mathematica [3], by using the Euler

phi function [1, 2] when gcd(a, b) = 1: a−1
b ≡ aφ(b)−1 (mod b).

3. Three wheels

The case of 3 or more wheels can be treated similarly, but now the minimization problem
becomes nontrivial. Again let n be the number of times the first wheel is advanced. If all
three wheels are advanced the same number of times, we must solve

n ≡ 0 (mod a),

n ≡ 0 (mod b),

n ≡ 0 (mod c).

Therefore a total of

f0(a, b, c) = 3lcm(a, b, c)

advances are necessary. The other possible solutions involve unequal numbers of advances
with one or two of the wheels advanced one less than the first. If the final move is on the
first wheel then we must solve

n ≡ 0 (mod a),

n− 1 ≡ 0 (mod b),

n− 1 ≡ 0 (mod c).

Therefore a total of

f1(a, b, c) = 3aa
−1
lcm(b,c) − 2 (2)

advances are necessary. If the final move is on the second wheel then we must solve

n ≡ 0 (mod a),

n ≡ 0 (mod b),

n− 1 ≡ 0 (mod c).

Therefore a total of

f2(a, b, c) = 3lcm(a, b)lcm(a, b)
−1
c − 1 (3)

advances are necessary.
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(a, b, c) f1(a, b, c) f2(a, b, c) f(a, b, c) χ(a, b, c)
(2, 3, 5) 46 17 17 2
(3, 5, 2) 61 44 44 2
(5, 2, 3) 73 29 29 2
(2, 5, 3) 46 29 29 2
(3, 2, 5) 61 17 17 2
(5, 3, 2) 73 44 44 2

Table 1. Some numerical data

We conclude that the zeroing number is

f(a, b, c) = min







3lcm(a, b, c), Case 0;
3aa−1

lcm(b,c) − 2, Case 1;

3lcm(a, b)lcm(a, b)−1
c − 1, Case 2

(4)

where the minimization takes place over all existing cases.
Clearly f0(a, b, c) is always defined, but is larger than either of the two remaining cases

(if they exist). So this minimization problem is nontrivial only when both f1(a, b, c) and
f2(a, b, c) are defined. For Case 1 to exist means that a and lcm(b, c) are relatively prime.
For Case 2 to exist means that lcm(a, b) and c are relatively prime. Taken together, this
means that only when a, b, c are pairwise relatively prime is the minimization nontrivial.
As a source of examples we provide some numerical data in Table 1.

4. Chirality

In chemistry a molecule is said to be chiral if it is not superimposable on its mirror image.
Therefore such a molecule has two distinct chiralities, left and right handedness. However
in the following definition it is more natural to denote these chiralities by 1 and 2.

Definition 4.1. The chirality of an ordered triple of pairwise relatively prime natural num-
bers ≥ 2 is the triple’s zeroing number modulo 3. We write χ(a, b, c) = f(a, b, c) mod 3. We
note that the chirality of such a triple will always be 1 or 2.

The chirality therefore corresponds to the case number from Section 3 that provides the
zeroing number.

Theorem 4.1. The chirality of the ordered triple (a, b, c) (of pairwise relatively prime natural
numbers ≥ 2) is invariant under any permutation of the triple. It is thus an invariant of the
set {a, b, c}.

Recalling the origins of the problem, it can be said that the chirality depends on the team,
not on the lineup!
In order to prove the theorem we make use of some umpire indicator identities which are

valid whenever f1 and f2 are defined on the given arguments.

Lemma 4.1.

f1(a, b, c) + f1(b, c, a) + f1(c, a, b) = 3lcm(a, b, c)k1 (5)

f2(a, b, c) + f2(c, a, b) + f2(b, c, a) = 3lcm(a, b, c)k2 (6)

f2(a, b, c) + f1(c, a, b) = 3lcm(a, b, c) (7)
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where k1, k2 ∈ {1, 2}

Proof. By following the advances on a three-wheel baseball umpire indicator, the left hand
sides of all three identities are easily seen to be multiples of 3lcm(a, b, c). And since f1 and
f2 are always strictly less than 3lcm(a, b, c) the multiples must be as indicated. ¤

We now proceed to prove the theorem, so we assume that a, b, c are pairwise relatively
prime numbers ≥ 2. We note then that lcm(a, b, c) = abc. Adding equations (5) and (6) we
get

f2(a, b, c) + f2(c, a, b) + f2(b, c, a)+

f1(a, b, c) + f1(b, c, a) + f1(c, b, a) = 3abc(k1 + k2).

Applying the following three identities of the form of Equation (7)

f2(a, b, c) + f1(c, a, b) = 3abc

f2(c, a, b) + f1(b, c, a) = 3abc (8)

f2(b, c, a) + f1(a, b, c) = 3abc

we find that 3abc(k1 + k2) = 9abc, so k1 + k2 = 3 and {k1, k2} = {1, 2}.
If k1 = 1 then when we subtract Equation (7) from Equation (5) we get f1(a, b, c) +

f1(b, c, a)− f2(a, b, c) = 0. Therefore f2(a, b, c) > f1(a, b, c). So we get chirality 1.
Similarly if k2 = 1 we get chirality 2. It follows that chirality 1 is equivalent to k1 = 1

(and k2 = 2), while chirality 2 is equivalent to k1 = 2 (and k2 = 1). We also note that

χ(a, b, c) =
f1(a, b, c) + f1(b, c, a) + f1(c, b, a)

3lcm(a, b, c)
. (9)

Looking at Equation (9) we see that cyclic permutations of the triple do not change the
chirality!
As an aside we note that we now have a three-wheel analog to Theorem 2.1:

f(a, b, c) + f(b, c, a) + f(c, a, b) = 3abc

We must now prove that chirality is invariant under transposition of two wheels of the
triple. Due to the invariance under cyclic permutations, all such transpositions are equiva-
lent, so it suffices to check just one such transposition. We start with the three identities in
Equation (8). Switching the second and third arguments of f1 preserves the identities. So
we have:

f2(a, b, c) + f1(c, b, a) = 3abc

f2(c, a, b) + f1(b, a, c) = 3abc

f2(b, c, a) + f1(a, c, b) = 3abc

Summing these three identities we get

f2(a, b, c) + f2(c, a, b) + f2(b, c, a)+

f1(a, c, b) + f1(c, b, a) + f1(b, a, c) = 9abc.

Using Equation (6) we find

3abck2 + f1(a, c, b) + f1(c, b, a) + f1(b, a, c) = 9abc
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which along with k1 + k2 = 3 implies that

f1(a, c, b) + f1(c, b, a) + f1(b, a, c) = 3abck1.

Applying Equation (9) we see that χ(a, c, b) = k1 = χ(a, b, c) and we have proven Theorem
4.1.

5. Fibonacci triples

Looking at the data for the three-wheel umpire indicator one notices many intriguing
patterns for the chirality of a triple of pairwise relatively prime numbers ≥ 2. It is difficult
to analyze the data in general since one is dealing with a 3-dimentional array, where even
the existence of chirality depends on the distribution of primes.
As an example we investigate one such pattern in detail. Let Fn be the n-th Fibonacci num-

ber, where F0 = 0, F1 = 1, and Fn+1 = Fn + Fn−1. Chirality is defined for {Fn, Fn+1, Fn+2}
whenever n ≥ 3. Using Equation (4) we found, using Mathematica [3] that χ(2, 3, 5) = 2,
χ(3, 5, 8) = 1, χ(5, 8, 13) = 2, χ(8, 13, 21) = 1, . . . . We conjectured that this sequence
continues to alternate, and then we proved:

Theorem 5.1. For n ≥ 3

χ(Fn, Fn+1, Fn+2) =

{

1, if n is even;
2, if n is odd.

In order to prove this theorem we use the following Fibonacci identities:

Lemma 5.1 (Fibonacci identities).

F 2
n+1 − FnFn+2 = (−1)n

Fn+1Fn+2 − FnFn+3 = (−1)n

Proof. The first identity is easily proven by induction. It is a standard exercise in elementary
number theory courses.
The second identity can proven using a similar induction. However we note that it is just

a reformulation of the first identity:

Fn+1Fn+2 − FnFn+3 = Fn+1Fn+2 − FnFn+2 − FnFn+1

= Fn+1(Fn+2 − Fn)− FnFn+2

= F 2
n+1 − FnFn+2

= (−1)n.

¤

We now prove the theorem itself. First we assume that n is odd. We then must show that
χ(Fn, Fn+1, Fn+2) = 2, but by the invariance of chirality this is equivalent to showing that
χ(Fn, Fn+2, Fn+1) = 2.
From Equation (2)

f1(Fn, Fn+2, Fn+1) = 3FnFn
−1
Fn+2Fn+1

− 2

But by the second Fibonacci identity FnFn+3 ≡ 1 (mod Fn+2Fn+1), therefore

f1(Fn, Fn+2, Fn+1) = 3FnFn+3 − 2 (10)
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From Equation (3)

f2(Fn, Fn+2, Fn+1) = 3FnFn+2(FnFn+2)
−1
Fn+1

− 1

But by the first Fibonacci identity FnFn+2 ≡ 1 (mod Fn+1), therefore

f2(Fn, Fn+2, Fn+1) = 3FnFn+2 − 1. (11)

Comparing Equation (10) and Equation (11) we find that f2 is smaller and therefore, when
n is odd, χ(Fn, Fn+1, Fn+2) = 2 as desired.
We now assume that n is even. We must show that χ(Fn, Fn+1, Fn+2) = 1, but by the

invariance of chirality this is equivalent to showing that χ(Fn+1, Fn+2, Fn) = 1.
From Equation (2)

f1(Fn+1, Fn+2, Fn) = 3Fn+1Fn+1
−1
Fn+2Fn

− 2

But by the first Fibonacci identity Fn+1Fn+1 ≡ 1 (mod Fn+2Fn), therefore

f1(Fn+1, Fn+2, Fn) = 3Fn+1Fn+1 − 2 (12)

From Equation (3)

f2(Fn+1, Fn+2, Fn) = 3Fn+1Fn+2(Fn+1Fn+2)
−1
Fn
− 1

But by the second Fibonacci identity Fn+1Fn+2 ≡ 1 (mod Fn), therefore

f2(Fn+1, Fn+2, Fn) = 3Fn+1Fn+2 − 1. (13)

Comparing Equation (12) and Equation (13) we find that f1 is smaller and therefore, when
n is even, χ(Fn, Fn+1, Fn+2) = 1 as desired.
This completes the proof of Theorem 5.1.
Note that we have also proven:

Theorem 5.2. If n is odd

f(Fn, Fn+2, Fn+1) = 3FnFn+2 − 1.

If n is even
f(Fn+1, Fn+2, Fn) = 3F

2
n+1 − 2.

The order of the arguments of f is crucial, since while chirality is an invariant of unordered
triples, the zeroing number is not.
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