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Abstract

A Dyck path is a lattice path in the plane integer lattice Z×Z consisting
of steps (1, 1) and (1,−1), which never passes below the x-axis. A peak at
height k on a Dyck path is a point on the path with coordinate y = k that is
immediately preceded by a (1, 1) step and immediately followed by a (1,−1)
step. In this paper we find an explicit expression for the generating function
for the number of Dyck paths starting at (0, 0) and ending at (2n, 0) with
exactly r peaks at height k. This allows us to express this function via
Chebyshev polynomials of the second kind and the generating function for
the Catalan numbers.
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1. Introduction and main results

The Catalan sequence is the sequence

{Cn}n≥0 = {1, 1, 2, 5, 14, 132, 429, 1430, . . . },

where Cn = 1
n+1

(

2n
n

)

is called the nth Catalan number. The generating

function for the Catalan numbers is denoted by C(x) = 1−
√

1−4x
2x

. The
Catalan numbers provide a complete answer to the problem of counting
certain properties of more than 66 different combinatorial structures (see
Stanley [S, Page 219 and Exercise 6.19]). The structure of use to us in the
present paper is Dyck paths.
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Figure 1. Two Dyck paths.

Chebyshev polynomials of the second kind are defined by

Ur(cos θ) =
sin(r + 1)θ

sin θ

for r ≥ 0. Evidently, Ur(x) is a polynomial of degree r in x with integer
coefficients. Chebyshev polynomials were invented for the needs of approx-
imation theory, but are also widely used in various other branches of math-
ematics, including algebra, combinatorics, number theory, and lattice paths
(see [K, Ri]). For k ≥ 0 we define Rk(x) by

Rk(x) =
Uk−1

(

1
2
√

x

)

√
xUk

(

1
2
√

x

) .

For example, R0(x) = 0, R1(x) = 1, and R2(x) = 1/(1 − x). It is easy to
see that for any k, Rk(x) is a rational function in x.

A Dyck path is a lattice path in the plane integer lattice Z×Z consisting
of up-steps (1, 1) and down-steps (1,−1), which never passes below the x-
axis (see Figure 1). Let P be a Dyck path; we define the weight of P to be
the product of the weights of all its steps, where the weight of every step
(up-step or down-step) is

√
x. For example, Figure 1 presents two Dyck

paths, each of length 12 and weight x6.
A point on the Dyck path is called a peak at height k if it is a point with

coordinate y = k that is immediately preceded by a up-step and immediately
followed by a down-step. For example, Figure 1 presents two Dyck paths;
the path on the left has two peaks at height 2 and two peaks at height 3; and
the path on the right has one peak at height 1, one peak at height 2, and one
peak at height 3. A point on the Dyck path is called a valley at height k if it
is a point with coordinate y = k that is immediately preceded by down-step
and immediately followed by up-step. For example, in Figure 1, the path on
the left has two valleys at height 1 and one valley at height 2, and the path
on the right has only two valleys at height 0. The number of all Dyck paths
starting at (0, 0) and ending at (2n, 0) with exactly r peaks (resp. valleys)
at height k we denote by peakr

k(n) (resp. valleyr
k(n)). The corresponding

generating function is denoted by Peakr
k(x) (resp. Valley

r
k(x)).
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Deutsch [D] found the number of Dyck paths of length 2n starting and
ending on the x-axis with no peaks at height 1 is given by the nth Fine
number: 1, 0, 1, 2, 6, 18, 57, . . . (see [D, DS, F] and [SP, Sequence M1624]).
Recently, Peart and Woan [PW] gave a complete answer for the number of
Dyck paths of length 2n starting and ending on the x-axis with no peaks at
height k. This result can be formulated as follows.

Theorem 1.1. (see [PW, Section 2]) The generating function for the num-

ber of Dyck paths of length 2n starting and ending on the x-axis with no

peaks at height k is given by

1

1− x

1− x

1−
. . .

1− x

1− x2C2(x)

,

where the continued fraction contains exactly k levels.

Theorem 1.1 is in fact a simple consequence of Theorem 1.2 (as we are
going to show in Section 3).

Theorem 1.2. (see [RV, Proposition 1]) For given a Dyck path P we give

every up-step the weight 1, every down-step from height k to height k − 1
not following a peak the weight λk, and every down-step following a peak of

height k the weight µk. The weight of w(P ) of the path P is the product of

the weights of its steps. Then the generating function
∑

P w(P ), where the
sum over all the Dyck paths, is given by

1

1− (µ1 − λ1)−
λ1

1− (µ2 − λ2)−
λ2

1− (µ3 − λ3)−
. . .

In this paper we find an explicit formulas for the generating functions
Peakr

k(x) and Valleyr
k(x) for any k, r ≥ 0. This allows us to express these

functions via Chebyshev polynomials of the second kind Uk(x) and generat-
ing function for the Catalan numbers C(x). The main result of this paper
can be formulated as follows:

Main Theorem 1.1.

(i) For all k ≥ 2,

Peakr
k(x) = Valleyr

k−2(x);

(ii) For all k, r ≥ 0,

Valleyr
k(x) = δr,0Rk+1(x) +

xrCr+1(x)

U2
k+1

(

1
2
√

x

)(

1− x(Rk+1(x)− 1)C(x)
)r+1

;
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(iii) For all r ≥ 0,

Peakr
1(x) = δr,0 +

x3r+2C2r+2(x)

(1− x2C2(x))r+1
.

We give two proofs of this result. The first proof, given in Section 2, uses
a decomposition of the paths under consideration, while the second proof,
given in Section 3, uses the continued fraction theorem due to Roblet and
Viennot (see Theorem 1.2) as the starting point.

Remark 1.3. By the first part and the second part of the Main Theorem,

we obtain an explicit expression for the generating function for the number

of Dyck paths starting at (0, 0) and ending on the x-axis with no peaks at

height k ≥ 2, namely

Peak0
k(x) = Rk−1(x) +

xrCr+1(x)

U2
k−1

(

1
2
√

x

)(

1− x(Rk−1(x)− 1)C(x)
)r+1

.

We also provide a combinatorial explanation for certain facts in Main
Theorem. For example, we provide a combinatorial proof for the fact (ii) in
the Main Theorem for r = k = 0.
Acknowledgments. The author expresses his appreciation to the referees
for their careful reading of the manuscript and helpful suggestions.

2. Proofs: directly from definitions

In this section we present a proof for the Main Theorem which is based
on the definitions of the Dyck paths.
Proof of the Main Theorem(i). We start by proving the first part of the
Main Theorem by introducing a bijection Ψ between the set of Dyck paths
of length 2n with r peaks at height k and the set of Dyck paths of length
2n with r valleys at height k − 2.

Theorem 2.1. Peakr
k(x) = Valleyr

k−2(x) for all k ≥ 2.

Proof. Let P = P1, P2, . . . , P2n be a Dyck path of length 2n with exactly r
peaks at height k ≥ 2 where Pj are the points of the path P . For any point
Pj we define another point Ψ(Pj) = Qj as follows. If Pj appears as a point
of a valley at height k− 2 then we define Qj = Pj +(0, 2). If Pj appear as a
point of a peak at height k then we define Qj = Pj − (0, 2) (this is possible
since k ≥ 2). Otherwise, we define Qj = Pj . Therefore, we obtain a new
path Q = Q1, Q2, . . . , Q2n, and by definition of Q it is easy to see that Q is a
Dyck path of length 2n with exactly r valleys at height k− 2 (see Figure 2).
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Figure 2. Bijection Ψ.

In fact, it is easily verified that the map which maps P to Q is a bijection.
This establishes the theorem. ¤

Formula for Valley0
0(x). Let P be a Dyck path with no valleys at height 0.

It is easy to see that P has no valleys at height 0 if and only if there exists
a Dyck path P ′ of length 2n− 2 such that

P = up-step, P ′, down-step.

Let P ′′ be the path that results by shifting P ′ by (−1,−1). Then the map Θ
which sends P → P ′′ is a bijection between the set of all Dyck paths starting
at (0, 0) and ending at (2n, 0) with no valleys, and the set of all Dyck paths
starting at point (0, 0) and ending at (2n− 2, 0). Hence

Valley0
0(x) = 1 + xC(x),

where we count 1 for the empty path, x for the up-step and the down-step,
and C(x) for all Dyck paths P ′′.
Proof of the Main Theorem(ii). First of all, let us present two facts.
The first fact concerns the generating function for the number of Dyck paths
from the southwest corner of a rectangle to the northeast corner.

Fact 2.2. (see [K, Theorem A2 with Fact A3]) Let k ≥ 0. The generating
function for the number of Dyck paths which lie between the lines y = k and

y = 0, starting at (0, 0) and ending at (n, k) is given by

Fk(x) :=
1

√
xUk+1

(

1
2
√

x

) .

The second fact concerns the generating function for the number of Dyck
paths starting at (a, k + 1) and ending at (a + n, k + 1) with no valleys at
height k.

Fact 2.3. The generating function for the number of Dyck paths starting at

(a, k+1) and ending at (a+n, k+1) with no valleys at height k is given by

C(x)

1− x(Rk+1(x)− 1)C(x)
.
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Proof. Let P be a Dyck path starting at (k+1, 0) and ending at (k+1, n) with
no valleys at height k. It is easy to see that P has a unique decomposition
of the form

P = W1, down-step, V1, up-step,W2, down-step, V2, . . . , up-step,Wm,

where the following conditions holds for all j:

(i) Wj is a path consisting of up-steps and down-steps starting and
ending at height k + 1 and never passes below the height k + 1;

(ii) Vj is a path consisting of up-step and down-steps starting and ending
at height k and never passes over the height k (see Figure 3).

Height 0

Height k

Height k+1start end

Dyck path
Dyck pathDyck path

Dyck pathDyck path

X-axis

Figure 3. A decomposition of a Dyck path starting at
(a, k + 1) and ending at (a + n, k + 1) with no valleys at
height k.

Using [K, Theorem 2] we get that the generating function for the number
of paths of type Vj (shift for a Dyck path) is given by Rk+1(x) − 1. Using
the fact thatWj is a shift for a Dyck paths starting and ending on the x-axis
we obtain the generating function for the number of Dyck paths of type Wj

is given by C(x). If we sum over all the possibilities of m then we have

C(x)
∑

m≥0

(

xC(x)(Rk+1(x)− 1)
)m

=
C(x)

1− x(Rk+1(x)− 1)C(x)
.

¤

Now we are ready to prove the second part of the Main Theorem.
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Theorem 2.4. The generating function Valleyr
k(x) is given by

δr,0Rk+1(x) +
xrCr+1(x)

U2
k+1

(

1
2
√

x

)(

1− x(Rk+1(x)− 1)C(x)
)r+1

.

Proof. Let P be a Dyck path starting (0, 0) and ending at (2n, 0) with exactly
r valleys at height k. It is easy to see that P has a unique decomposition of
the form

P = E1, up-step, D0, down-step, up-step, D1, down-step, up-step, . . . , Dr, down-step, E2,

where the following conditions holds:

(i) E1 is a Dyck path that lies between the lines y = k and y = 0,
starting at (0, 0), and ending at point on height k;

(ii) Dj is a Dyck path starting and ending at points on height k + 1
without valleys at height k, for all j;

(iii) E2 is a Dyck path that lies between the lines y = k and y = 0,
starting at point on height k, and ending at (2n, 0).

Using Fact 2.2 and Fact 2.3 we get the the desired result for all r ≥ 1. Now,
if we assume that r = 0, then we must consider another possibility which is
that all the Dyck paths lie between the lines y = k and y = 0, starting at
(0, 0), and ending on the x-axis. Hence, using [K, Theorem 2] we get that the
generating function for the number of these paths is given by Rk+1(x). ¤

As a corollary of the Main Theorem(ii) for k = 0 (using [M, Exam-
ple 1.18]) we get

Theorem 2.5. For all r ≥ 0,

Valleyr
0(x) = δr,0 + xr+1Cr+1(x).

In other words, the number of Dyck paths starting at (0, 0) and ending at

(2n, 0) with exactly r valleys at height 0 is given by

r + 1

n

(

2n− r − 1

n+ 1

)

.

Proof of the Main Theorem(iii). If we merge the first two parts of Main
Theorem, then we get an explicit formula for Peakr

k(x) for all r ≥ 0 and
k ≥ 2. Besides, by definition there are no peaks at height 0. Thus, it is left
to find Peakr

1(x) for all r ≥ 0.

Theorem 2.6. For all r ≥ 0,

Peakr
1(x) = δr,0 +

x3r+2C2r+2(x)

(1− x2C2(x))r+1
.

Proof. Let P be a Dyck path starting at (0, 0) and ending at (2n, 0) with ex-
actly r peaks at height 1. It is easy to see that P has a unique decomposition
of the form

P = D0, up-step, down-step, D1, up-step, down-step, . . . , up-step, down-step, Dr,
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where Dj is a nonempty Dyck path starting and ending at point on the
x-axis with no peaks at height 1. Hence, the rest is easy to obtain by using
[D]. ¤

For example, for r = 0 the above theorem yields the main result of [D].

3. Proofs: Directly from Theorem 1.2

In this section we present another proof for the Main Theorem which is
based on Roblet and Viennot [RV, Proposition 1] (see Theorem 1.2).

Let λj = x for all j, µj = x for all j 6= k, and µk = z. Theorem 1.2 yields

∑

r≥0

Peakr
k(x)z

r =
1

1− x

1− x

1−
. . .

1− x

1− x

1− (z − x)− x

1− x

1− x

1− . . .

,

(1)
where z appears in the kth level. On the other hand, xC2(x) = C(x) − 1,
we have that

C(x) =
1

1− x

1− x

1− . . .

. (2)

Using the identities (1) and (2) with xC2(x) = C(x)− 1 we get

Theorem 3.1. The generating function
∑

r≥0 Peak
r
k(x)z

r is given by

1

1− x

1− x

1−
. . .

1− x

1− x

1− z − x2C2(x)

,

where the continued fraction contains exactly k levels.

For example, Theorem 3.1 yields for z = 0 the generating function Peak0
k(x)

as in the statement of Theorem 1.1. More generally, Theorem 3.1 yields an
explicit expression for Peakr

k(x) for any r ≥ 1 by using the following lemma.
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Lemma 3.2. For all k ≥ 1,

1

1− x

1− x

1−
. . .

1− x

1− z − xA

= Rk(x) ·
1− zRk−1(x)− xARk−1(x)

1− zRk(x)− xARk(x)
.

where the continued fraction contains exactly k levels.

Proof. Immediately, by using the identity Rm+1(x) = 1/(1 − xRm(x)) and
induction on k. ¤

Therefore, using Theorem 3.1, the above lemma, and the identityRm+1(x) =
1/(1 − xRm(x)), together with definitions of Rk(x), we get the explicit ex-
pression for the generating function Peakr

k(x) for any r ≥ 1 (see the Main
Theorem).
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