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Abstract

Given any polynomial p in C[X], we show that the set of irreducible matrices
satisfying p(A) = 0 is finite. In the specific case of the polynomial p(X) = X2 − nX,
we count the number of irreducible matrices in this set and analyze the resulting
sequences and their asymptotics. Such matrices turn out to be related to generalized
compositions and generalized partitions.

1 Introduction

In this paper we study the finiteness of the set of irreducible matrices that are annihilated by
a given polynomial. This seems to be a classical problem in the spectral theory of integral
matrices; however, we have not been able to find an answer to this question in the literature.
We answer this question by the following theorem.

Theorem 1. For any polynomial p ∈ C[X], the set of irreducible integer matrices A such
that p(A) = 0 is finite.

A related question was studied by Eskin, Mozes and Shah [5], who showed that the set
of integral matrices with a given characteristic polynomial is, in general, not finite. All
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matrices in such a set are necessarily of the same dimension, something that is not true
in our setting. Obviously their result implies that the set of integral matrices A satisfying
p(A) = 0 is infinite for some polynomials p (namely, the characteristic polynomials), so we
cannot expect Theorem 1 to be true for arbitrary matrices. As an example, note that the
polynomial X − 1 annihilates the identity matrix of any dimension, so the above theorem is
false for any class containing all identity matrices.

The motivation to study these questions comes from higher representation theory. The
more general finiteness problem is motivated by a technique that is used when trying to
understand certain 2-representations of finitary 2-categories; see [14]. The main idea is that
there exists an element whose action is given by a non-negative, irreducible integral matrix
that has to be annihilated by a certain polynomial. With this information one then tries to
find all possible such matrices. In small cases, this can be done by hand, but a question that
occurs quite naturally is whether or not this, in principle, always is possible, i.e., if there
are always only finitely many such matrices, which is why we study this question here. For
more details we refer the interested reader to [11, 13, 15, 16, 17].

Given that there is a finite number of irreducible integral matrices annihilated by a
polynomial p, a natural next question is whether the cardinality of this set can be determined.
For arbitrary polynomials, this seems difficult. However, for the polynomials fn = X2−nX,
this can be done. In fact, we count these matrices in two different ways. First, we simply
count all of them, which turns out to be equivalent to counting the number of generalized
compositions. Secondly, we count these matrices up to permutation of their basis vectors.
That is, we identify two k × k-matrices A,B if there exists a k × k-permutation matrix P
such that conjugation of A by P yields B. This second case is more relevant to the problems
that motivated this paper. There we know that there exists a basis such that the action is
given by irreducible, non-negative matrices. However, the order of the basis vectors does
not affect the problem; in other words we do not care about it and identify matrices that
can be obtained from each other by permutation of basis vectors. A closed formula for the
number of such matrices (in either of the two cases) is not attainable, but we determine the
asymptotics of these sequences and show that they are in bijection to classes of generalized
compositions and generalized partitions.

Our interest in the polynomial fn = X2 −X stems from the following observation. Let
A be a finite-dimensional C-algebra of dimension n. Then F := A⊗CA is an A-A-bimodule.
It acts on the category of A-A-bimodules from the left by taking tensor products over A,
i.e., for a A-A-bimodule M , the action of F is given by F (M) = A ⊗C A ⊗A M . Now, we
can observe that

F 2 = F ◦ F = A⊗C A⊗A A⊗C A ∼= (A⊗C A)⊕n = F⊕n.

Thus the action of F is quasi-idempotent. Therefore, on the level of the Grothendieck group,
F induces a linear transformation that corresponds to a matrix [F ] satisfying fn([F ]) = 0,
i.e., the matrices mentioned in the paragraph above. These kinds of problems appear, for
instance, in [15, 16].
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The rest of the paper is outlined as follows. In the next section we introduce most of
the necessary notation and preliminary results that we will need throughout the paper. In
Section 3 we give a proof of Theorem 1. In Section 4 we study the integer sequences given
by the number of irreducible integral matrices satisfying X2 = nX, both when counting
all matrices and when identifying matrices that are the same after permuting their basis
vectors. We show how these sequences are related to other known sequences, and discuss
their asymptotics.

2 Preliminaries

2.1 Basic definitions and notation

All matrices in this paper are assumed to be square matrices containing only integer elements.
We denote by Matk,k(K) the set of k × k-matrices with elements in the set K, and denote
by 0 the matrix (of appropriate size) of all zeros. For any matrix A, we denote by (A)i,j the
element in the i:th row and j:th column of A. For two matrices A,B of the same size, we
say that A ≤ B provided that (A)i,j ≤ (B)i,j for all i, j. If A ≤ B and A 6= B, then we write
A < B. This defines a partial order on Matk,k(Z≥0).

If (A)i,j > 0 for all i, j, then A is called positive. If (A)i,j ≥ 0 for all i, j, then A is called
non-negative. We say that A is primitive if it is non-negative and there exists k > 0 such
that Ak is positive. If A is non-negative and there for each pair i, j exists some k such that
(Ak)i,j is positive, then A is said to be irreducible.

For f ∈ C[X], we define the sets

K>0
f =

⋃

k>0

{A ∈ Matk,k(Z>0) : f(A) = 0}

K≥0
f =

⋃

k>0

{A ∈ Matk,k(Z≥0) : A is irreducible, f(A) = 0}

of all irreducible square positive (resp. non-negative) integral matrices that are annihilated
by f . In particular, these sets contain 1×1-matrices. As mentioned above, we will study the
case of f = X2 − nX in more detail, and define therefore fn(X) := X2 − nX, K≥0

n := K≥0
fn

and K>0
n := K>0

fn
.

In Section 4 we count the elements in K≥0
n in two different ways. First, we simply count

all of them. Secondly, we count all matrices up to permutation of basis vectors, by which
we mean the following. Let A,B ∈ Matk,k(Z≥0) and denote by Sk the symmetric group
on k elements. Then, to each σ ∈ Sk, we assign the (permutation) matrix Pσ, which is
defined by Pσei = eσ(i), on the elements of the standard basis {ei} ⊆ Rk. Note that Pσ is an
orthogonal matrix, i.e., P−1

σ = P t
σ. We say that A and B are the same up to permutation of

basis vectors, denoted A ≈ B, if there exists σ ∈ Sk such that P−1
σ APσ = B. The set of all

matrices in K≥0
n up to permutation of basis vectors is denoted by K

≥0

n := K≥0
n / ≈.
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2.2 Auxiliary results

For the proofs of our results we will need the following statement.

Theorem 2. The semigroup Zk
≥0 is noetherian, for every k > 0, i.e., all of its ideals are

finitely generated.

Proof. We may consider α ∈ Zk
≥0 as the exponent of a monomial Xα1

1 Xα2

2 · · ·Xαk

k in the
polynomial ring C[X1, . . . , Xn]. With this identification, the result follows immediately from
[8, Lemma III.12.3].

Now, we can identify the additive semigroup Matk,k(Z≥0) of non-negative integral k× k-
matrices with the additive semigroup Zk2

≥0 and thus we get that every ideal in this semigroup
is finitely generated. This will be needed in Section 3.

The second important theorem that we are going to use at different points throughout
this work is the Perron-Frobenius theorem, more precisely the following version of it.

Theorem 3. Let A = (ai,j) ∈ Matk,k(R) be a non-negative irreducible matrix. Then the
following holds.

(i) A has an eigenvalue rA = r > 0, the so-called Perron-Frobenius eigenvalue, of algebraic
multiplicity one and such that r > |λ|, for any other eigenvalue λ of A.

(ii) The Perron-Frobenius eigenvalue r satisfies

min
i

∑

j

aij ≤ r ≤ max
i

∑

j

aij.

(iii) If 0 ≤ A < B, then rA ≤ rB. Moreover, if B is irreducible, then rA < rB.

Proof. A proof of the first two statements can be found in Gantmacher’s book [7, Chapter
XIII, §2]. More precisely, (i) is Theorem 2 and (ii) is Remark 2. Lastly, (iii) follows from [1,
2.1.5 & 2.1.10].

3 Finiteness proof for irreducible matrices

In this section we prove that the set K≥0
f is finite, for any f ∈ C[X]. Before we can do this,

we need some notation and a lemma.
Let x, y ∈ Zr

≥0. We say that x < y provided that xi ≤ yi, for all i, and there exists j such
that xj < yj. The reason for this partial order is the fact that we are going to study ideals
I in Matk,k(Z≥0) ≅ Zk2

≥0. By Theorem 2, we know that I is finitely generated, say by some
B1, . . . Br. Then, for every X ∈ I, we have X =

∑r
i=1 ciBi. So, to every X we can assign its

coefficient vector cX = (ci) ∈ Zr
≥0. Now, we want to compare matrices in X, Y ∈ I and then

we get that cX < cY implies X < Y , so we can study these coefficient vectors instead.
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Lemma 4. Let M ⊆ Zr be an infinite set. Then there exists an infinite ascending chain in
M with respect to < as defined above.

Proof. Note that M is countably infinite, so there is an enumeration of M = {m(n)}, where

m(n) = (m
(n)
1 , . . . ,m

(n)
r ). Now, sinceM is infinite, there exists one component in whichm(n) is

unbounded. Without loss of generality assume it is the first component. Pick a subsequence
nk such that the sequence in the first component of m(nk) is strictly increasing, i.e., m

(nk)
1 <

m
(nk+1)
1 , for all k. Then there exists a subsequence (nkl) that is non-decreasing in the second

component, i.e., such that m
(nkl

)

2 ≤ m
(nkl+1

)

2 for l. Similarly, by taking subsequences of

subsequences we get a subsequence (np) of nk such that m
(np)
1 < m

(np+1)
1 and m

(np)
i ≤ m

(np+1)
i ,

for all p and all 2 ≤ i ≤ r. This yields that m(np) is an infinite ascending chain in M .

Now we are ready to prove the main result of this section, which is Theorem 1 from the
introduction.

Theorem 5. For any polynomial f ∈ C[x], the set K≥0
f is finite.

Proof. Let f =
∑d

i=0 αix
i, for αi ∈ C and A ∈ Matk,k(Z≥0) such that f(A) = 0. Then the

set of eigenvalues of A is a subset of the zeros of f . Denote by x0 the zero of f with the
highest absolute value, which by Theorem 3 is an upper bound for the absolute value of all
eigenvalues of A.

As a first step we prove that the size of the matrix, i.e., k, is bounded. Since A is
irreducible, there exists N > 1 such that B :=

∑N
i=0 A

i is positive. On the other hand we

know that f(A) =
∑d

i=0 αiA
i = 0, which implies that Ad is a C-linear combination of smaller

powers of A. Together, we get that there exist γi ∈ C such that

B =
d
∑

i=0

γiA
i,

and as all Ai are non-negative, we get that B′ :=
∑d

i=0 A
i is positive. Note that the eigen-

values of B′ are of the form
∑d

i=0 λ
i, where λ is an eigenvalue of A. In particular, the largest

eigenvalue λB′ of B′ is less than or equal to
∑d

i=0 |x0|
i. Now, we can apply Theorem 3.(ii)

to obtain

k ≤ min
i

∑

j

bij ≤ λB′ ≤
d
∑

i=0

|x0|
i,

since all bij ≥ 1. Thus k is bounded.
Now fix k and assume that the set Y = {A ∈ Matk,k(Z≥0) : f(A)} = 0 is infinite.

Consider the ideal I ⊆ Matk,k(Z≥0) ≃ Zk2

≥0 generated by Y . We want to use the fact that

Zk2

≥0 is noetherian to obtain a contradiction and thus prove that Y has to be finite.

5



From Theorem 2 we get that I is finitely generated. Let B1, . . . , Br be a set of generators
of I. Note that f does not necessarily annihilate any of the Bi. Then we can express every
A ∈ Y as a linear combination of the Bi, i.e.,

A =
r
∑

i=1

cA,iBi.

The set M = {cA} of coefficient vectors is an infinite subset of Zr
≥0 and thus Lemma 4 yields

that there is an infinite ascending chain cAk
in M . On the other hand, we have already seen

that this means that this is equivalent to having an infinite ascending chain Ak of matrices
in Y , with respect to <.

However, by Theorem 3 (3), this yields that there is an infinite sequence of different
Perron-Frobenius eigenvalues, a contradiction, as all eigenvalues, in particular, have to be
zeros of f .

4 Counting quasi-idempotent matrices

In this section we consider quasi-idempotent matrices, which are matrices A satisfying A2 =
nA for some n ≥ 1. Recall that

K≥0
n =

⋃

k>0

{A ∈ Matk,k(Z>0) : A
2 = nA}

K>0
n =

⋃

k>0

{A ∈ Matk,k(Z≥0) : A is irreducible, A2 = nA}

Our first result shows that such matrices factorize in a natural way.

Proposition 6. Let A ∈ Matk,k(Z≥0) be irreducible. Then the following are equivalent:

(i) A2 − nA = 0, i.e., A ∈ K≥0
n ;

(ii) A has rank 1, trace n and there exist v, w ∈ Zk
>0 such that A = vwt;

(iii) A2 − nA = 0 and A is positive, i.e., A ∈ K>0
n .

Proof. Clearly (iii) implies (i).
To show that (i) implies (ii), let A be an irreducible matrix satisfying A2 = nA. The

only possible eigenvalues of A are 0 and n. By Theorem 3, we have that n has to be the
Perron-Frobenius eigenvalue. In particular, all other eigenvalues have to be zero. Thus it
follows that A has rank 1 and trace n, and that it can be written as vwt for some v, w ∈ Zk.
However, since A is irreducible, it cannot have a row or column consisting of 0’s, which
means that all vi, wi are non-zero. Since A is non-negative, we have v, w ∈ Zk

>0.
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Finally, to show that (ii) implies (iii), let A be an irreducible matrix with rank 1 and
trace n such that M = vwt for some v, w ∈ Zk

>0. Then

A2 = (vwt)(vwt) = v(wtv)wt = v

(

k
∑

i=1

wivi

)

wt = n · vwt = nA,

where we use that
∑k

i=1 wivi is the trace of A. Since v and w are positive, A is also positive.

This result shows that, if we want to count matrices in K≥0
n , we may restrict our attention

to pairs (v, w) ∈ Zk
>0 × Zk

>0 such that
∑k

i=1 viwi = n. Such pairs may be seen as general-
ized compositions as introduced by Corteel and Hitczenko [3]. More formally, a generalized
composition of n is a generalized word vw1

1 vw2

2 · · · vwk

k such that vi, wi > 0 and
∑

i viwi = n.
To simplify notation, if v = (v1, . . . , vk) and w = (w1, . . . , wk), then we write vw to represent
the above word. We let

Cn = {vw : v, w ∈ Z
k
>0,

k
∑

i=1

viwi = n}

be the set of all generalized compositions and let cn denote the cardinality of this set.
By Proposition 6, each generalized composition then corresponds to a positive matrix

satisfying A2 − nA = 0. However, this identification is not injective. For instance, since
(2, 2) · (1, 1)t = (1, 1) · (2, 2)t, the generalized compositions 2121 and 1212 correspond to the
same matrix. Therefore the question becomes, which generalized compositions should be
identified? It turns out that we only need to look at those generalized compositions that
have greatest common divisor 1, where the greatest common divisor of vw is defined as
follows:

gcd (vw) =

{

gcd (v1, v2, . . . , vk), if k > 1;

v1, if k = 1.

For each n ≥ 1, let
Dn = {vw ∈ Cn : gcd (vw) = 1},

and denote by dn the cardinality of Dn.

Lemma 7. The map

ϕ : Dn → K≥0
n ,

vw 7→ vwt,

is a bijection.
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Proof. By Proposition 6 it follows that ϕ is well-defined. To show surjectivity, let A ∈ K≥0
n

be a k×k-matrix. By Proposition 6 we know that there exist v, w ∈ Zk
>0 such that A = vwt.

Moreover, if gcd (vw) = c 6= 1, then we can write A = (1
c
v)(cw)t. Setting v′ = 1

c
v and

w′ = cw, we get v′w
′

∈ Dn, as the trace of A = v′w′t is n and thus ϕ is surjective.
To show injectivity, let vw, v′w

′

∈ Dn and assume that ϕ(vw) = ϕ(v′w
′

). Then vwt = v′w′t,
which is only possible if v = cv′ or cv = v′ for some c ∈ Z. This in turn implies that
gcd (vw) 6= 1 or gcd (v′w

′

) 6= 1, a contradiction.

When we count elements of K
≥0

n , we identify matrices that are equal after permuta-
tion of basis vectors. Permuting the basis vectors of a matrix vwt corresponds to applying
the same permutation to the elements of the generalized composition vw = vw1

1 . . . vwk

k .
Counting up to permutation of basis vector therefore means that we should consider gen-
eralized partitions rather than generalized compositions. A generalized partition of n is
defined to be a generalized composition vw1

1 vw2

2 · · · vwk

k where we additionally assume that
v1w1 ≥ v2w2 ≥ · · · ≥ vkwk. For all n > 0, we let

Pn = {vw : v, w ∈ Z
k
>0,

k
∑

i=1

viwi = n, v1w1 ≥ v2w2 ≥ · · · ≥ vkwk}

be the set of all generalized partitions of n, and we let pn denote the cardinality of Pn.
Analogously to the previous case, it turns out that the set of all generalized partitions is

slightly larger than K
≥0

n and that the correct set to consider is

Qn = {vw ∈ Pn : gcd (vw) = 1},

i.e., , all generalized partitions that have greatest common divisor 1. We denote the cardi-
nality of Qn by qn.

Lemma 8. The map

ϕ : Qn → K
≥0

n ,

vw 7→ vwt,

is a bijection.

Proof. Analogous to the proof of Lemma 7.

Due to the results above, instead of considering the numbers |K≥0
n | and |K

≥0

n |, we may
consider the sequences (dn)

∞
n=1 (A280782) and (qn)

∞
n=1 (A280783), respectively. The following

lemma shows that these are related via Möbius inversion to the sequences (cn)
∞
n=1 (A129921)
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and (pn)
∞
n=1 (A006171), respectively. Recall that the Möbius function µ : Z>0 → {−1, 0, 1}

is defined on prime powers pk by

µ(pk) =











0, if k > 2;

−1, if k = 1;

+1, if k = 0.

and extended to non-prime powers pk11 pk22 . . . pkmm multiplicatively, i.e., µ(pk11 pk22 . . . pkmm ) :=
∏m

i=1 µ(p
ki
i ).

Lemma 9. The sequences (cn)
∞
n=1, (dn)

∞
n=1 ,(pn)

∞
n=1 and (qn)

∞
n=1 satisfy

{

cn =
∑

r|n dr;

dn =
∑

r|n µ(r)cn/r,
and

{

pn =
∑

r|n qr;

qn =
∑

r|n µ(r)pn/r.

Proof. We prove the first two equalities only. For any n ≥ 1, let Cn,r denote the set of
generalized compositions vw of n such that gcd(vw) = r. Note that {Cn,r : r|n} is a
partition of Cn. Moreover, for any n ≥ 1 and any r that divides n, the map

Cn,r → Dn/r,

vw1

1 · · · vwk

k 7→ (v1/r)
w1 · · · (vk/r)

wk ,

is easily seen to be a bijection. This proves the first equality. The second equality follows
from the Möbius inversion formula (cf. [9]). The proof for the sequences (pn)

∞
n=1 and (qn)

∞
n=1

is done in the same spirit.

4.1 Analysis of the asymptotics

As mentioned, the sequence (cn)
∞
n=1 was studied by Corteel and Hitczenko [3]. Using standard

methods from analytic combinatorics, they determined the asymptotic growth rate of (cn)
∞
n=1.

As we show next, the sequence (dn)
∞
n=1 grows asymptotically at the same rate as (cn)

∞
n=1. As

a shorthand we write an ∼ bn, if

lim
n→∞

an
bn

= 1.

Proposition 10. As n → ∞,

dn ∼
1

ρσ′(ρ)
ρ−n, (1)

where σ(z) =
∑

n≥1
zn

1−zn
and ρ is the unique real root of σ(z) = 1 in [0, 1].
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Proof. As shown by Corteel and Hitczenko [3], the asymptotics in (1) hold also for (cn)
∞
n=1.

It suffices therefore to show that cn ∼ dn. Note that

cn − log2(n)cn/2 ≤
∑

r|n

µ(r)cn/r = dn ≤ cn,

i.e.,

1−
log2(n)cn/2

cn
≤

dn
cn

≤ 1.

Since (cn)
∞
n=1 grows exponentially, the left hand side tends to 1 as n → ∞. This completes

the proof.

Approximately we have ρ = 0.406148005001 . . . , and so dn ∼ (0.481225 . . . )(2.462156 . . . )n.
To arrive at an asymptotic formula for (qn)

∞
n=1, we choose to analyze the more tractable

(pn)
∞
n=1. However, the asymptotics of (pn)

∞
n=1 do not, to our knowledge, exist in the literature,

though they have been discussed on mathoverflow.net [4], with user ‘lucia’ outlining the
correct analysis. For completeness, we outline a version of lucia’s argument in Section 4.1.1
(and correct some incorrect terms in that answer). There it is shown that (pn)

∞
n=1 grows

superlinearly, which implies that its Möbius inversion (qn)
∞
n=1 must grow asymptotically at

the same rate, i.e., qn ∼ pn. The proof of this is identical to that of Lemma 10.

Proposition 11. Let Sm be as in (2) below. As n → ∞,

qn ∼
1

√

2πS1(ω)
exp

(

S−1(ω) +
n

ω

)

,

where ω = ω(n) ∈ (0, 1) is the unique solution to S0(ω) = n.

4.1.1 Asymptotics of generalized partitions

We turn to the asymptotics of the sequence (pn)
∞
n=1. The generating function for generalized

partitions is

P (z) =
∑

n≥1

pnz
n =

∞
∏

n=1

(1− zn)−d(n),

where d(n) is the number of divisors of n. Such a generating function is precisely of
the form covered in Meinardus’s theorem [6]; however, the corresponding Dirichlet series
∑∞

n=1 d(n)n
−sζ2(s) has a double pole at s = 1, implying that Meinardus’s theorem cannot

be applied in this case. Results by Brigham [2] imply that log pn ∼ π
√

n logn
3

. However,

this does not imply precise asymptotics for (pn)
∞
n=1. Our argument is via the saddle-point

method; in particular we make use of more general results, which only require us to verify
that P satisfies certain conditions.
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For our analysis, the series

Sm(ω) :=
∑

k≥1

∑

ℓ|k

ℓd(ℓ)kme−k/ω,

form ≥ −1 are important. Note that each Sm(ω) is absolutely convergent for any ω ∈ (0,∞).
Series of this form are amenable to analysis using Mellin transforms. By using convolution
properties and the Mellin inversion theorem, one finds that

Sm(ω) =
1

2πi

∫ m+3+i∞

m+3−i∞

ωsΓ(s)ζ(s−m)ζ(s−m− 1)2ds.

The function Γ(s) has simple poles at 0,−1,−2, . . . and ζ(s) has a simple pole at 1 and
trivial zeros at −2,−4,−6, . . . (which will cancel most or all poles of Γ(s)). Consider the
contour integral of the same integrand over the rectangular contour with corners −A− Ri,
−A + Ri, m + 3 + Ri, m + 3 − Ri, where A > 1 can be chosen arbitrarily. This contour
encloses all poles and can be evaluated using the Cauchy residue theorem. Now let R → ∞
to obtain that Sm(ω) can be approximated well by the sum of the residues. We obtain, for
any A > 1,

Sm(ω)

(m+ 1)!
=



















ζ(2)ω
(

logω + γ + ζ′(2)
ζ(2)

)

+ logω
4

+ log 2π
4

− 1
288ω

+O(ω−A), if m = −1;

ζ(2)ω2
(

logω + 1 + γ + ζ′(2)
ζ(2)

)

+ ω
4
+ 1

288
+O(ω−A), if m = 0;

ζ(2)ωm+2
(

logω +H(m+ 1) + γ + ζ′(2)
ζ(2)

)

+ ωm+1

4(m+1)
+O(ω−A), if m ≥ 1,

(2)

where H(m) :=
∑m

k=1 k
−1, and f(ω) = O(g(ω)) means that lim supω→∞ f(ω)/g(ω) < ∞.

For |θ| < π we have the expansion

logP (eiθ−1/ω)− logP (e−1/ω) =
∑

k≥1

∑

ℓ|k

ℓd(ℓ)e−k/ω

(

eikθ − 1

k

)

=
∑

k≥1

∑

ℓ|k

ℓd(ℓ)e−k/ω
∑

m≥1

(iθ)mkm−1

m!

=
∑

m≥1

(iθ)m

m!

∑

k≥1

∑

ℓ|k

ℓd(ℓ)km−1e−k/ω

=
∑

m≥1

(iθ)m

m!
Sm−1(ω).

Note also that logP (e−1/ω) = S−1(ω).
The asymptotic growth rate of the sequence (pn)

∞
n=1 can be expressed in terms of n and

the functions S−1, S0 and S1 as follows.

11



Theorem 12. As n → ∞,

pn ∼
1

√

2πS1(ω)
exp

(

S−1(ω) +
n

ω

)

,

where ω = ω(n) is the unique solution in (0,∞) to S0(ω) = n.

Proof. The result can be deduced from the more general result [6, Theorem VIII.4], provided
that the function P is H -admissible, which in this case is equivalent to verifying that the
following conditions are satisfied.

(i) S0(ω) → ∞ and S1(ω) → ∞ as ω → ∞.

(ii) There exists a function θ0 : (0,∞) → (0, π) such that

∑

m≥3

(iθ)m

m!
Sm−1(ω) → 0,

as ω → ∞, uniformly in 0 < |θ| < θ0(ω).

(iii) For the same function θ0,

ℜ

(

1

2
log S1(ω) +

∑

m≥1

(iθ)m

m!
Sm−1(ω)

)

→ −∞,

as ω → ∞, uniformly in θ0(ω) < |θ| < π.

Using (2), the first condition is obviously true, and the last two can be readily checked to
hold true for θ0(ω) = ω−a, for any 4/3 < a < 3/2. Further details are omitted.

Corollary 13. As n → ∞,

pn ∼
1

ω1/4(2n)1/2
exp

(

2n

ω
− ω

(

ζ(2)−
1

4

)

−
1

288

)

,

where ω = ω(n) is the unique solution in (0,∞) to S0(ω) = n. Furthermore,

ω ∼
2

π

√

3n

log n
,

as n → ∞, which implies

log pn ∼ π

√

n log n

3
.

12



5 Acknowledgments

The second author wants to thank his supervisor Volodymyr Mazorchuk for proposing the
problem, many very helpful discussions and for double-checking the counting. Moreover, he
would like to thank Konstantinos Tsougkas for discussions concerning the proof of Lemma 4,
Andrea Pasquali for discussions regarding Section 3 and Daniel Tubbenhauer for discussions
about Theorem 5.

References

[1] A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences,
Academic Press, 1979.

[2] N. A. Brigham, A general asymptotic formula for partition functions, Proc. Amer. Math.
Soc. 1 (1950), 182–191.

[3] S. Corteel and P. Hitczenko, Generalizations of Carlitz compositions, J. Integer Se-
quences, 10 (2007), Paper 07.8.8.

[4] David Ellis, Mathoverflow question, Number of representations of an integer as an (arbi-
trary) sum of products, March 10 2014. Available at https://tinyurl.com/ydyrvnkg.

[5] A. Eskin, S. Mozes, and N. Shah, Unipotent flows and counting lattice points on homo-
geneous varieties, Ann. of Math. 143 (1996), 253–299.

[6] P. Flajolet and R. Sedgewick, Analytic Combinatorics, Cambridge University Press,
2009.

[7] F. Gantmacher, The Theory of Matrices, Volume 2, Chelsea Publishing Company, 1959.

[8] P. A. Grillet, Abstract Algebra, Springer Science + Business Media, LLC, 2007.

[9] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Fourth
Edition, Oxford University Press, 1960.

[10] T. Kildetoft and V. Mazorchuk, Special modules over positively based algebras, Docu-
menta Math., 21 (2016), 1171–1192.

[11] T. Kildetoft, M. Mackaay, V. Mazorchuk, and J. Zimmermann, Simple transitive 2-
representations of small quotients of Soergel bimodules, to appear in Trans. Amer.
Math. Soc., DOI: https://doi.org/10.1090/tran/7456.

[12] K. H. Kim, N. S. Ormes, and F. W. Roush, The spectra of nonnegative integer matrices
via formal power series, J. Amer. Math. Soc. 13 (2000), 773–806.

13

https://cs.uwaterloo.ca/journals/JIS/VOL10/Hitczenko/hitczenko4.html
https://tinyurl.com/ydyrvnkg
https://doi.org/10.1090/tran/7456


[13] M. Mackaay and V. Mazorchuk, Simple transitive 2-representations for some 2-
subcategories of Soergel bimodules, J. Pure Appl. Algebra 221 (2017), 565–587.

[14] V. Mazorchuk and V. Miemietz, Cell 2-representations of finitary 2-categories, Compos.
Math. 147 (2011), 1519–1545.

[15] V. Mazorchuk and V. Miemietz, Transitive 2-representations of finitary 2-categories,
Trans. Amer. Math. Soc. 368 (2016), 7623–7644.

[16] V. Mazorchuk and X. Zhang, Simple transitive 2-representations for two non-
fiat 2-categories of projective functors, preprint, January 1 2016. Available at
https://arxiv.org/abs/1601.00097.

[17] J. Zimmermann, Simple transitive 2-tepresentations of Soergel bimodules in type B2,
J. Pure Appl. Algebra 221 (2017), 666–690.

2010 Mathematics Subject Classification: Primary 15B36; Secondary 05A15, 05A16.
Keywords: generalized composition, generalized partition, quasi-idempotent matrix, posi-
tive integral matrix.

(Concerned with sequences A006171 A129921, A280782, and A280783.)

Received February 24 2017; revised versions received November 3 2017; April 6 2018. Pub-
lished in Journal of Integer Sequences, May 9 2018.

Return to Journal of Integer Sequences home page.

14

https://arxiv.org/abs/1601.00097
http://oeis.org/A006171
http://oeis.org/A129921
http://oeis.org/A280782
http://oeis.org/A280783
http://www.cs.uwaterloo.ca/journals/JIS/

	Introduction
	Preliminaries
	Basic definitions and notation
	Auxiliary results

	Finiteness proof for irreducible matrices
	Counting quasi-idempotent matrices
	Analysis of the asymptotics
	Asymptotics of generalized partitions


	Acknowledgments

