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Abstract

Let (Gm)m≥0 be an integer linear recurrence sequence (satisfying some weak tech-
nical conditions) and let x ≥ 1 be an integer. In this paper, among other things, we are
interested in non-consecutive combinations xGn+a + Gn that belong to the sequence
(Gm)m≥0 for infinitely many positive integers n. In this case, we make explicit an up-
per bound for x that depends only on a and the zeros of the characteristic polynomial
of this recurrence (this generalizes previous papers of Trojovský). As an application,
we study the Fibonacci case.

1 Introduction

A sequence (Gn)n≥0 is a linear recurrence sequence with coefficients c0, c1, . . . , ck−1, with
c0 6= 0, if

Gn+k = ck−1Gn+k−1 + · · ·+ c1Gn+1 + c0Gn, (1)

for all positive integers n. A recurrence sequence is therefore completely determined by the
initial values G0, G1, . . . , Gk−1, and by the coefficients c0, c1, . . . , ck−1. The integer k is called
the order of the linear recurrence. The characteristic polynomial of the sequence (Gn)n≥0 is
given by

ψ(x) = xk − ck−1x
k−1 − · · · − c1x− c0.

1

mailto:eva.trojovska@uhk.cz


It is well-known that for all n we have

Gn = g1(n)α
n
1 + · · ·+ gℓ(n)α

n
ℓ , (2)

where αj is a zero of ψ(x) and gj(x) is a polynomial over a certain number field, for
j = 1, . . . , ℓ. In this paper, we consider only integer recurrence sequences, i.e., recurrence
sequences whose coefficients and initial values are integers. Hence, gj(n) is an algebraic
number, for all j = 1, . . . , ℓ, and n ∈ Z.

In this paper we explore a problem that is related to papers [1, 2, 4, 6, 7]. Possibly the
most famous recurrence sequence is the Fibonacci sequence (Fn)n≥0 defined by the recurrence
Fn+1 = Fn + Fn−1 (n ≥ 1) with initial values F0 = 0 and F1 = 1. Its companion sequence
is the sequence of Lucas numbers (Ln)n≥0 that are defined by the same recurrence but with
initial values L0 = 2 and L1 = 1.

The Fibonacci numbers are known for their amazing properties (see [3] for the history,
properties, and rich applications of the Fibonacci sequence and some of its variants). Among
several attractive algebraic identities involving these numbers, we point out the identities of
the form

xFn+a + Fn = Fn+b.

For instance, when a = 1, Trojovský [6] proved that x = 1 and x = 2 are the only values
providing identities. A question arose: what happens if a > 1? Are there other identities?
The answer is Yes, as for example we have

11Fn+5 + Fn = Fn+10.

Thus, the aim of this work is to combine some Diophantine tools (asymptotic estimates and
Galois theory) in order to study the possibilities of existence of such identities in the case
of a general linear recurrence. In particular, we show that it is possible to obtain an upper
bound for x in the case when xGn+a + Gn belongs to the sequence (Gm)m≥0 for infinitely
many integers m. This upper bound is effective and can be made explicit by means of a and
the recurrence sequence. More precisely, our main result is the following

Theorem 1. Let (Gn)n≥0 be an integer linear recurrence (of order at least 2) such that its
characteristic polynomial ψ(x) has a simple positive zero that is the only zero lying outside
the unit circle. If x ≥ 1 is an integer such that xGn+a+Gn belongs to (Gm)m≥0 for infinitely
many integers n, then

x <
2

|β|a , (3)

where ψ(β) = 0 and |β| := max
ψ(z)=0,|z|≤1

|z|.

Let us give a brief overview of our strategy for proving Theorem 1. First, by supposing
that xGn+a + Gn = Gt(n), we prove that t(n) = n + b, for some integer b (this is done
by using asymptotic results for Gn). Next, we use the asymptotic formula for Gn+t/Gn
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(when t ∈ {a, b}) to obtain the equation xαa + 1 = αb, where α is the dominant root of the
sequence (Gm)m≥0. Since α > 1, the right-hand side of the previous identity can be very
large. However, by conjugating by some convenient automorphism of the Galois group of
the characteristic polynomial of the recurrence, we get |xβa + 1| = |β|b < 1 (since we are
supposing that the algebraic conjugates of α are inside the unit circle). In conclusion, we
obtain an upper bound for x depending on β and a.

As an application of our Theorem 1, we completely solve the case when (Gn)n≥0 =
(Fn)n≥0. More precisely, we prove that

Theorem 2. If
xFn+a + Fn = Fm (4)

for infinitely many pairs (n,m) of positive integers, then there exists a nonnegative integer
k such that

a = 2k + 1, m = n+ 4k + 2 and x = L2k+1.

In particular, we have the identity

L2k+1Fn+2k+1 + Fn = Fn+4k+2,

for all n, k ≥ 0.

2 General recurrence sequences

2.1 Auxiliary facts

In this section, we recall some results that will be very useful for the proof of the above
theorems. Let ψ(x) be the characteristic polynomial of a linear recurrence (Gn)n≥0. One
can factor ψ(x) over the set of complex numbers as

ψ(x) = (x− α1)
m1(x− α2)

m2 · · · (x− αt)
mt , (5)

where α1, . . . , αt are distinct non-zero complex numbers (called the roots of the recurrence)
and m1, . . . ,mt are positive integers. The fundamental result in the theory of recurrence
sequences asserts that there exist uniquely determined non-zero polynomials g1, . . . , gℓ ∈
Q({αj}tj=1)[x], with deg gj ≤ mj − 1, for j = 1, . . . , t, such that

Gn = g1(n)α
n
1 + · · ·+ gt(n)α

n
t , for all n. (6)

For more details, see [5, Theorem C.1]. A root αj of the recurrence is called the dominant
root if |αj| > |αi|, for all j 6= i ∈ {1, . . . , t}. The corresponding polynomial gj(n) is called
the dominant polynomial of the recurrence.
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In the case of the Fibonacci and Lucas sequences, the above formula is known as Binet’s
formula:

Fn =
αn − βn

α− β
and Ln = αn + βn, (7)

where α = (1+
√
5)/2 (the golden number) and β = (1−

√
5)/2 = −1/α. Now we prove some

lemmas that are essential ingredients in what follows. Throughout the paper, α1 denotes the
dominant root of (Gn)n≥0.

Lemma 3. Let ℓ be any integer and let (Gn)n≥0 be any linear integer sequence satisfying the
hypotheses of the Theorem 1. Then

lim
n→∞

Gn+ℓ

Gn

= αℓ1. (8)

Proof. The proof can be found in [6, Lemma 1].
Now we are ready to deal with the proofs of our results.

2.2 The proof of Theorem 1

Suppose that xGn+a +Gn = Gt(n) for infinitely many n (say, n ∈ S), where t(n) ∈ Z, for all

n. By dividing the relation xGn+a + Gn = Gt(n) by Gn, we obtain xGn+a

Gn

+ 1 =
Gt(n)

Gn

. Now,
by letting n→ ∞ (n ∈ S) in the previous relation, by using Lemma 3 and the fact that the

algebraic conjugates of α1 lie on the unit circle, we get xαa1 +1 = limn→∞,n∈S α
t(n)−n
1 . Then,

since |α1| > 1, the limit limn→∞,n∈S (t(n)− n) exists and is finite. However, t(n) − n is a
sequence of integers, and so it must be constant for all sufficiently large n (in S). We let b
denote that constant. Therefore, we can rewrite this identity as

αa1x+ 1 = αb1. (9)

Set K = Q({αi}ti=1). If β ∈ {α2, . . . , αt} and |β| = max{|α2|, . . . , |αt|}, then consider the
automorphism σ in Gal(K/Q) given by α1 7→ β. By applying σ in the equality in (9), we
obtain

βax+ 1 = βb. (10)

Now taking absolute values, together with the reverse triangular inequality and by using
the fact that |β| < 1, we arrive at

|β|ax− 1 ≤ |βax+ 1| = |β|b < 1.

This implies that x < 2/|β|a, which completes our proof.
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3 The Fibonacci case

In the case of Fibonacci numbers, we use the previous theorem to obtain that if

xFn+a + Fn

is a Fibonacci number for infinitely many integers n, then x < 2/|β|a = 2αa, since αβ = −1.
Now we can use the same machinery of the previous section to arrive at the Diophantine

equation
xαa + 1 = αb. (11)

Clearly, this implies that a < b (since x ≥ 1). Also, by using that x < 2αa, we get

αb = xαa + 1 < 2α2a + 1 < 3α2a < α2a+3,

where we used the fact that α3 > 3. Thus, b < 2a + 3. The case a = 1 was already treated
in [6, Theorem 2]. If a = 2, then we have that 1 ≤ x < 2α2 < 6 and 2 < b < 7. By using a
simple Mathematica routine, we obtain that there is no solution to

xα2 + 1 = αb

in the range 1 ≤ x ≤ 5 and 3 ≤ b ≤ 6. Thus, we may suppose that a > 2.
Now let us conjugate the relation in (11) by the Galois automorphism α 7→ β. Hence, we

have
xβa + 1 = βb. (12)

By subtracting (11) and (12), we obtain

x(αa − βa) = αb − βb,

which yields xFa = Fb, by Binet’s formula. This implies that Fa | Fb and so a | b. However,
a < b < 2a + 3 ≤ 3a (this last inequality holds because a ≥ 3) and therefore b = 2a. Thus,
x = Fb/Fa = F2a/Fa = La. Now it remains to prove that a is an odd number. In fact, by
(11), we have

Laα
a + 1 = α2a

and by Binet’s formula

α2a = Laα
a + 1 = (αa + βa)αa + 1 = α2a + (αβ)a + 1.

Thus,
0 = (αβ)a + 1 = (−1)a + 1

implying that a is odd. The result is proved.
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4 Conclusion

In this paper, we proved that if we have a linear recurrence sequence (Gn)n≥0 satisfying
some weak technical conditions (related to its roots) and if we have an identity of the form
xGn+a+Gn = Gm valid for infinitely many integers pairs (n,m), then the value of x must be
bounded by 2/|β|a, where β is the second largest root (in absolute value) of the recurrence.
This result provides a very efficient way of finding possible identities, since this “second
largest root” can be bounded (or even found) in an effective way. As an application, we
worked on the case of Fibonacci numbers and we determined all identities in this case. In
particular, we proved that x is a Lucas number with odd index.
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