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Abstract

We study a generalization of additive bases into a planar setting. A planar additive
basis is a set of non-negative integer pairs whose vector sumset covers a given rectangle.
Such bases find applications in active sensor arrays used in, for example, radar and
medical imaging.

We propose two algorithms for finding the minimal bases of small rectangles: one
in the unrestricted case where the basis elements can be anywhere in the rectangle,
and another in the restricted case, where the elements are confined to the lower left
quadrant. We present numerical results from such searches, including the minimal
cardinalities and number of unique solutions for all rectangles up to [0, 11]× [0, 11] in
the unrestricted case, and up to [0, 26] × [0, 26] in the restricted case. For squares we
list the minimal basis cardinalities up to [0, 13] × [0, 13] in the unrestricted case, and
up to [0, 46] × [0, 46] in the restricted case. Furthermore, we prove asymptotic upper
and lower bounds on the minimal basis cardinality for large rectangles.
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1 Introduction

An additive basis for an interval of integers [0, n] = {0, 1, 2, . . . , n} is a set of non-negative
integers A such that A + A ⊇ [0, n]. By extension we define that a planar additive basis
for a rectangle of integers R = [0, sx] × [0, sy] is a set of points with non-negative integer
coordinates

A = {(x1, y1), (x2, y2), . . . , (xk, yk)}, such that A+ A ⊇ R.

The sumset (or sum co-array) is defined in terms of vector addition, that is

A+ A′ = {(x+ x′, y + y′) : (x, y) ∈ A, (x′, y′) ∈ A′}.

Additive bases for integer intervals have been widely studied since Rohrbach [22]. Often
one seeks to maximize n when the basis cardinality |A| = k is given. For small k this
has been approached with computations [1, 12, 17, 21], and for large k with asymptotic
bounds [11, 25].

Less is known about planar additive bases. Kozick and Kassam discussed them in an
application context of signal processing, and proposed some simple designs [13]. In a rather
different line of work, sumsets in vector spaces and abelian groups have been studied with
the interest in how small the sumset can be [2, 3, 4]. Boundary effects in planar sumsets
have also been studied by e.g., Han [6].

We now aim to minimize the cardinality k of a planar additive basis, when the target
rectangle R = [0, sx] × [0, sy] is given. To the best of our knowledge, this combinatorial
optimization problem has not been addressed before.

Planar bases have an application in signal processing, when an array of sensor elements
is deployed on a plane to be used in active imaging or radar surveillance [19]. Here “active”
means that the sensors both transmit a signal towards objects such as radar targets or
human tissue, and receive the reflections. In this context, the pairwise vector sums of the
sensor locations make up a virtual sensor array, called the sum co-array, which may be
used to improve imaging resolution, or to reduce the number of sensors without significant
performance loss [8].

An important special case is that of restricted bases. A basisA for [0, n] is restricted ifA ⊆
[0, n/2]. Analogously we define that a basis A for [0, sx]× [0, sy] is restricted if A ⊆ [0, sx/2]×
[0, sy/2]. Apart from practical motivations related to the physical placing of sensors, there
are other reasons to study restricted bases. Computationally, we can study much larger
instances in the restricted case, at least with our current algorithms. Numerically, restricted
bases often attain the same minimum cardinality as unrestricted bases. Also, the minimal
restricted bases often exhibit interesting geometric structure.

We introduce here the following results. First, a search algorithm is proposed for finding
all bases of a given size for a given rectangle; and the minimum basis sizes are determined
for all rectangles with sx, sy ≤ 11 or sx = sy ≤ 13. Secondly, a meet-in-the-middle method
is developed that constructs a restricted planar basis by concatenating together four smaller
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bases, one in each corner; and the minimum restricted basis sizes are determined for all even
sx, sy ≤ 26 or even sx = sy ≤ 46. Thirdly, some asymptotic upper and lower bounds on the
minimum basis size for large rectangles are established.

2 Definitions and preliminary observations

The target rectangle is R = [0, sx] × [0, sy]. If R is square, we call it the s-square, with
s = sx = sy. A basis containing k elements is a k-basis. The size of the smallest basis for
[0, sx]× [0, sy] is denoted by k(sx, sy).

If sx and sy are even, we set hx = sx/2 and hy = sy/2. Then a basis A is restricted if
A ⊆ [0, hx]× [0, hy]. Note that it follows that A+A = R. The size of the smallest restricted
basis is k∗(sx, sy).

If A is a basis for R such that A ⊆ R, we say that A is admissible. If not, then it
cannot be minimal, since one can simply drop the elements that are outside the target. So
we confine our attention to admissible bases.

We relate the basis size k = |A| to the number of target elements N = |R| = (sx+1)(sy+
1), which may be understood as the target area measured in grid points. The efficiency of
a basis is defined as

c = N/k2. (1)

The shape of the target is characterized by its aspect ratio ρ = (sy + 1)/(sx + 1).
Two simple basis constructions were proposed by Kozick and Kassam in the context of

sensor arrays [13]. For any rectangle, the L-shaped basis is

([0, sx]× {0}) ∪ ({0} × [0, sy]), (2)

which has sx + sy + 1 elements. If sx, sy ≥ 2 are even, the boundary basis is

([0, hx]×{0, hy}) ∪ ({0, hx}×[0, hy]), (3)

which has sx+sy elements and is restricted. These two provide a minimal basis for most small
squares (boundary basis if s ≥ 2 is even, L-shaped otherwise). The smallest counterexample
is the 7-square, whose minimal bases have only 14 elements, one less than the L-shaped basis
(see Figure 1c). However, for non-square rectangles, (2) and (3) are generally not minimal.
Examples of this will be presented in Section 5, and an asymptotic result in Section 6.

The following observations about the corners and the horizontal edges of planar addi-
tive bases will be useful. Corresponding results in the vertical direction can be proven by
transposing x and y.

Lemma 1 (Origin corner). If A is a basis for a rectangle with sx ≥ 1, then (0, 0), (1, 0) ∈ A.

Proof. The only way to represent (1, 0) as a sum of two pairs of non-negative integers is
(0, 0) + (1, 0), so those elements must be in the basis.
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(a) (b) (c) (d)

Figure 1: (a) The L-shaped basis for the 5-square. (b) The boundary basis for the 6-square.
(c) A minimal basis for the 7-square. (d) A minimal basis for the 13-square.

Lemma 2 (Restricted edges). If A is a restricted basis for [0, sx] × [0, sy], then its bottom
edge {x : (x, 0) ∈ A} and top edge {x : (x, hy) ∈ A} are (one-dimensional) restricted bases
for [0, sx].

Proof. Consider first the bottom edge. Since the y coordinates in A are non-negative, for
any x ∈ [0, sx] the point (x, 0) must be the sum of some (x′, 0), (x′′, 0) ∈ A. Since A is
restricted, we have x′, x′′ ≤ hx.

Consider next the top edge. Since the y coordinates in A are at most hy, for any x ∈ [0, sx]
the point (x, sy) must be the sum of some (x′, hy), (x

′′, hy) ∈ A. Since A is restricted, we
have x′, x′′ ≤ hx.

Lemma 3 (Two rows). For any even sx ≥ 0, we have k∗(sx, 2) = 2k∗(sx, 0).

Proof. Let A be a restricted basis for [0, sx]× [0, 2]. By Lemma 2 its bottom and top edges
are restricted bases for [0, sx], so each has at least k∗(sx, 0) elements. Thus |A| ≥ 2k∗(sx, 0).

To see that k∗(sx, 2) ≤ 2k∗(sx, 0), let A
∗ be a restricted basis for [0, sx]. Then A∗ × [0, 1]

is a restricted basis for [0, sx]× [0, 2].

3 Search algorithm for admissible bases

In this section we develop a method to find all admissible k-bases for a given rectangle. Then
we can also establish the minimum value of k. For example, the L-shaped basis suffices to
show that k(9, 9) ≤ 19, but to prove that k(9, 9) = 19 we must ascertain that there is no
18-basis for the 9-square. Trying out the

(

100

18

)

≈ 3 · 1019 ways of placing 18 elements in
[0, 9]× [0, 9] is obviously impractical.

Our Algorithm 1 is a relatively straightforward generalization of Challis’s algorithm,
which finds one-dimensional bases [1]. Assume for simplicity that sx ≥ 2. By Lemma 1
the points (0, 0) and (1, 0) must be included in the basis. Next we branch on the decision
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Algorithm 1 Find all admissible k-bases for [0, sx]× [0, sy]

1: procedure FindBases(k, sx, sy)
2: Extend(k, sx, sy, {(0, 0), (1, 0)}, 1, 0)
3: procedure Extend(k, sx, sy, A, x, y)
4: ⊲ (x, y) is the latest location considered (either filled or left empty).
5: j ← |A| ⊲ Number of elements
6: G← |[0, sx]× [0, sy] \ (A+ A)| ⊲ Number of gaps
7: if (j = k) ∧ (G = 0) then Print(A) ⊲ Found a basis

8: if j = k then return ⊲ Reached full size

9: M ← (k + j + 1)(k − j)/2 ⊲ Max. sums to expect
10: if M < G then return ⊲ Too many gaps

11: if x < sx then
12: x← x+ 1 ⊲ Proceed right
13: else if y < sy then
14: x← 0 ⊲ Begin next row
15: y ← y + 1
16: else
17: return ⊲ Reached the top right

18: if (x, y) ∈ A+ A then ⊲ Already covered?
19: Extend(k, sx, sy, A, x, y) ⊲ Branch without (x, y)

20: Extend(k, sx, sy, A ∪ {(x, y)}, x, y) ⊲ Branch with (x, y)

whether (2, 0) is included. We proceed to the right and rowwise, branching at each location
on whether that point is included, until we have k elements or reach the top right corner.

During the search, two tests prune unfruitful branches. One of them (line 18) concerns
unfillable holes in the sumset. Suppose that we are currently at (x, y). Because of the
way how the search proceeds, any location (x′, y′) considered deeper in the search will have
x′ > x or y′ > y (or both). Thus any such elements will not generate the sum (x, y), by the
non-negativity of coordinates. If (x, y) has not already been covered, then (x, y) has to be
included in the basis.

The other test (line 10) is based on a counting argument. Suppose that after placing j
elements there are G gaps, or target points not covered by the current sumset. No matter
where the remaining k − j elements are placed, they will generate at most M = (j + 1) +
(j+2)+ · · ·+k = (k+ j+1)(k− j)/2 more sums. If M < G, then the current search branch
cannot lead to any solutions.

This algorithm is quite simple, and there may be several ways to speed it up it by
exploiting the geometry of the problem. For example, instead of proceeding rowwise, the
target rectangle can be explored in a different order: after completing the bottom edge
(y = 0), do next all of the left edge (x = 0), then second row, second column, and so on.

5



The idea is to introduce necessary conditions from both the left and bottom edges early on.
This change does not affect the validity of the algorithm. Empirically we observed that it
saves about 37% of the running time in the example case of 19-bases of the 9-square.

As is typical for a combinatorial branch-and-bound method, the time requirement of this
algorithm grows rapidly as k increases. We implemented the algorithm in C++ and ran it
on Intel Xeon E7-8890 processors (nominal clock frequency 2.2 GHz). For 19-bases of the
9-square the search took 0.44 hours of processor time; for 23-bases of the 11-square it took
1058 hours. Results are summarized in Table 1 (squares) and Table 2 (rectangles).

s k m mu

0 1 1 1
1 3 1 1
2 4 1 1
3 7 15 10
4 8 8 5
5 11 137 76
6 12 24 14
7 14 14 9
8 16 103 54
9 19 3531 1792
10 20 360 182
11 23 26857 13465
12 24 1585 797
13 26

Table 1: Minimal bases for squares.

4 Meet-in-the-middle method for restricted bases

In one dimension, i.e., for integer intervals, Kohonen proposed a meet-in-the-middle (MIM)
method to find optimal restricted bases [10]. In its simplest form the MIM method splits
a restricted basis at its midpoint into two components, a prefix and a suffix, which are
then sought separately among the admissible bases of a smaller interval. It is much faster to
consider all pairs of these components than to search directly for restricted bases by a method
similar to Algorithm 1. The largest known optimal restricted bases for integer intervals have
been computed by this method, with k∗(734, 0) = 48 [9].
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sx sy k ∆k mu

0 0 1 0 1
1 0 2 0 1

1 3 0 1
2 0 2 0 1

1 4 0 3
2 4 0 1

3 0 3 0 2
1 5 0 6
2 6 0 16
3 7 0 10

4 0 3 0 2
1 5 −1 3
2 6 0 6
3 8 0 75
4 8 0 5

5 0 4 0 5
1 6 −1 10
2 7 −1 1
3 9 0 86
4 10 0 283
5 11 0 76

6 0 4 0 5
1 6 −2 4
2 8 0 101
3 9 −1 1
4 10 0 16

sx sy k ∆k mu

6 5 12 0 660
6 12 0 14

7 0 4 −1 2
1 7 −2 28
2 8 −2 5
3 10 −1 25
4 11 −1 50
5 13 0 924
6 14 0 3576
7 14 −1 9

8 0 4 −1 1
1 7 −3 6
2 8 −2 1
3 11 −1 325
4 11 −1 4
5 13 −1 3
6 14 0 73
7 15 −1 16
8 16 0 54

9 0 5 −1 11
1 8 −3 70
2 10 −2 647
3 12 −1 1940
4 13 −1 920
5 15 0 11479
6 15 −1 2

sx sy k ∆k mu

9 7 17 0 5433
8 18 0 9171
9 19 0 1792

10 0 5 −1 8
1 8 −4 19
2 10 −2 174
3 12 −2 203
4 13 −1 64
5 15 −1 267
6 16 0 357
7 17 −1 81
8 18 0 212
9 20 0 17076
10 20 0 182

11 0 5 −2 1
1 9 −4 258
2 10 −4 3
3 13 −2 1368
4 14 −2 109
5 16 −1 534
6 17 −1 96
7 18 −1 92
8 19 −1 12
9 21 0 13860
10 22 0 42862
11 23 0 13465

Table 2: Minimal bases for rectangles.

The MIM method is extended to the planar setting as follows. We want to find all k-
bases for R = [0, sx] × [0, sy], subject to the restriction A ⊆ Rh = [0, hx] × [0, hy], where
hx = sx/2 > 0 and hy = sy/2 > 0. First we divide Rh into four disjoint rectangles by
choosing breaking points ax ∈ [0, hx − 1] and ay ∈ [0, hy − 1] arbitrarily, and defining

RI = [0, ax]× [0, ay],

RII = [ax + 1, hx]× [0, ay],

RIII = [ax + 1, hx]× [ay + 1, hy],

RIV = [0, ax]× [ay + 1, hy].

These are the colored rectangles in the left part of Figure 2. Now split a basis A into
components AI, AII, AIII, AIV so that AI = A ∩ RI, and similarly with the others. By the
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non-negativity of all coordinates, any sumset involving AII, AIII or AIV is completely outside
the lower left corner RI. So in order to have A+A ⊇ R we need AI +AI ⊇ RI. That is, AI

must be an admissible basis for RI. All candidates for AI can be listed by Algorithm 1.
A similar argument applies in the lower right corner of the target, with some necessary

coordinate transformations. Let CII = [hx+ax+1, sx]× [0, ay]. Then we need AII+AII ⊇ CII,
since all the other component sumsets are outside CII. Consider the “mirror image” of AII,
namely BII = {(hx−x, y) : (x, y) ∈ AII}. By construction, we have BII ⊆ [0, bx] × [0, ay],
where for convenience we have written bx = hx − ax − 1. Now the condition AII +AII ⊇ CII

implies that BII+BII ⊇ [0, bx]× [0, ay]. So BII must be an admissible basis for [0, bx]× [0, ay],
and again all candidates can be found by Algorithm 1.

Figure 2: MIM decomposition of a restricted basis A. The four components AI, . . . , AIV are
contained in the colored rectangles (left). Consequently, A + A (right) is the union of AS,
AN and AD (center), which are the self, neighboring and diagonal sums of the components.
The extreme corners of A + A (areas within dashed rectangles) are covered only by the
self sumsets, so AI, . . . , AIV must be admissible bases for those rectangles (up to suitable
coordinate transformations).

Similar conditions for AIII and AIV apply in the remaining two corners. Consequently,
A must be the union of four components, which are (mirror images of) admissible bases
of suitable rectangles. Since we have so far only dealt with necessary conditions, we have
not lost any possible solutions. The conditions guarantee only that the four extreme corner
regions are covered; for any candidate solution A = AI ∪ AII ∪ AIII ∪ AIV we must finally
check whether in fact A+ A ⊇ R.

Algorithm 2 gives a formal description of the MIM method. We choose ax = ⌊hx/2⌋ and
ay = ⌊hy/2⌋ so the components have roughly equal dimensions. The final ingredient of the
algorithm, on lines 8–14, concerns how the overall budget of k elements is allocated to the
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Algorithm 2 Find all restricted k-bases for [0, sx]× [0, sy]

1: procedure MIM(k, sx, sy)
2: hx ← sx/2 ⊲ dimensions of rectangle containing A
3: hy ← sy/2
4: ax ← ⌊hx/2⌋ ⊲ dimensions of rectangle containing AI

5: ay ← ⌊hy/2⌋
6: bx ← hx − ax − 1 ⊲ dimensions of other rectangles
7: by ← hy − ay − 1
8: kmin

I
← k(ax, ay) ⊲ look up minimum sizes of the components

9: kmin

II
← k(bx, ay)

10: kmin

III
← k(bx, by)

11: kmin

IV
← k(ax, by)

12: ⊲ Iterate feasible ways of allocating k among the four quadrants
13: for (kI, kII, kIII, kIV) such that kI + kII + kIII + kIV = k do
14: if kI ≥ kmin

I
∧ kII ≥ kmin

II
∧ kIII ≥ kmin

III
∧ kIV ≥ kmin

IV
then

15: ⊲ Compute or look up admissible component bases
16: BI ← output from FindBases(kI, ax, ay)
17: BII ← output from FindBases(kII, bx, ay)
18: BIII ← output from FindBases(kIII, bx, by)
19: BIV ← output from FindBases(kIV, ax, by)
20: for (BI, BII, BIII, BIV) ∈ BI × BII × BIII × BIV do
21: AI ← BI

22: AII ← {(hx−x, y) : (x, y) ∈ BII} ⊲ Mirror x coordinates
23: AIII ← {(hx−x, hy−y) : (x, y) ∈ BIII} ⊲ Mirror x, y coordinates
24: AIV ← {(x, hy−y) : (x, y) ∈ BIV} ⊲ Mirror y coordinates
25: A← AI ∪ AII ∪ AIII ∪ AIV ⊲ Concatenate components
26: if A+ A = R then Print(A) ⊲ Found a basis

four components. Note that AI need not be a minimal basis for RI. It may have more than
k(ax, ay) elements, and indeed this may be necessary to find any solutions for A + A ⊇ R.
The same goes for the other three components.

In order to determine the value of k∗(sx, sy), just run Algorithm 2 repeatedly, beginning
with k = kmin

I
+ kmin

II
+ kmin

III
+ kmin

IV
since certainly there are no solutions below that size, and

increase k in steps of 1 until some solutions are found.

Example 4. A restricted basis A for R = [0, 10] × [0, 10] satisfies A ⊆ Rh = [0, 5] × [0, 5].
The first quadrant of Rh is RI = [0, 2] × [0, 2], and the other quadrants have the same size.
Since k(2, 2) = 4, we have necessarily |A| ≥ 4 + 4 + 4 + 4 = 16. There is only one 4-basis
for [0, 2]× [0, 2], so for k = 16 there is only one combination to check in the innermost loop
of Algorithm 2. But this combination does not give a basis for [0, 10]× [0, 10], so more than
16 elements are needed.
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It turns out that k = 20 is enough. After some simple pruning conditions (not shown in
Algorithm 2) we find that the only possible allocations of 20 elements are (kI, kII, kIII, kIV) =
(4, 6, 4, 6) and (5, 5, 5, 5). There are nine 5-bases and eighteen 6-bases for [0, 2] × [0, 2], so
the first allocation leads to 1 · 18 · 1 · 18 = 324 combinations to be checked, and the second
gives 9 · 9 · 9 · 9 = 6561 combinations. Out of these, we find 17 restricted solutions. This is
less than one second of computation. In comparison, finding all 20-bases for the 10-square
with our implementation of Algorithm 1 takes more than an hour.

There are a few ways to significantly prune the number of candidate solutions that need
to be checked. Firstly, the complete sumset of a candidate restricted basis does not have
to be calculated immediately. A necessary condition for a restricted basis is that any two
neighboring quadrants form a restricted basis along one of the coordinate axes. It therefore
suffices to first check whether this condition is satisfied for all four neighboring quadrant
pairs. Only if the condition is met does the full sumset need to be checked.

Secondly, often some of the component pieces have the same dimensions (indeed all of
them if hx, hy are both odd). If the pieces also have the same cardinality, then the set of
candidate solutions is the same for all of them, up to suitable coordinate transformations.

Example 5. Consider a restricted basis A for the square [0, s] × [0, s], with s/2 = 2a + 1
odd and a ≥ 0. Each quadrant has the same dimensions ax = bx = ay = by = a. If all
component sets also have equal cardinality, then the candidates for AII, AIII and AIV are the
same as for AI, up to suitable mirroring. Furthermore, if the sumset (AI ∪AII) + (AI ∪AII)
does not cover [0, s]× [0, a], then all candidate solutions containing any rotation of this pair
can be pruned.

Thirdly, when components have different cardinalities, the order in which they are con-
catenated matters. One possible strategy is to first concatenate component pairs of low
cardinality, not only because they usually have fewer component solutions to try out, but
also because they are less likely to produce feasible concatenations than pairs of higher cardi-
nality. Occasionally, an infeasible concatenation rules out all potential solutions containing
high cardinality components. Then these components do not even have to be computed in
the first place.

Example 6. Consider the square restricted basis A in Example 5. Let the cardinality of
this basis be 4kmin+ k̃ = 4kmin+(k̃I+ k̃II+ k̃III+ k̃IV), where k̃I, . . . , k̃IV represent the number
of extra elements in each quadrant, which are now of equal dimensions. Let k̃ = 3. After
accounting for rotational and mirror symmetries of A, it turns out that there are four unique
ways to distribute the extra elements: (k̃I, k̃II, k̃III, k̃IV) = (0, 0, 0, 3), (0, 0, 1, 2), (0, 1, 0, 2),
or (0, 1, 1, 1). If the concatenation of pair (k̃I, k̃II) = (0, 0) gives no solutions, then the
candidate solutions containing pairs (k̃III, k̃IV) = (0, 3) and (k̃III, k̃IV) = (1, 2) are discarded.
Consequently, we avoid computing the potentially many solutions of the (kmin + 3)-basis
altogether.
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5 Numerical results

We now describe some results obtained for small rectangles with Algorithms 1 and 2. Exam-
ples of minimal bases are shown in Figures 3 and 4. We note that especially the restricted
solutions in Figure 4 exhibit regular structure that can perhaps be generalized to larger
bases.

In the result listings, m is the number of all minimal bases, and mu is the number of
“unique” bases after taking into account rotation and mirror symmetries. Each basis may
have up to 8 symmetric variants if the target is square, and up to 4 variants otherwise.

Figure 3: Some minimal bases for sx = 7 and varying sy.

5.1 Results for squares

Table 1 summarizes the minimal basis sizes for squares up to s = 13. For s ≤ 12 we have
generated and counted all minimal bases. Regarding s = 13, we deduce that k(13, 13) = 26,
because Algorithm 1 finds no solutions with 25 elements, but we can construct a basis with
26 elements (see Figure 1d).

We also observe that in small even-sided instances s = 2, 4, 6, 8, 10, 12 one of the minimal
solutions is the boundary basis. In small odd-sided instances s = 1, 3, 5, 9, 11 one of the
minimal solutions is the L-shaped basis. Cases s = 7, 13 stand out as exceptions where the
L-shaped basis is not minimal (recall Figures 1c and 1d).
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Figure 4: Some minimal restricted bases for sx = 14, varying sy.

Concerning the restricted case, Table 3 summarizes the results for squares up to s = 46.
For s ≤ 26 we generated and counted the minimal bases. For 28 ≤ s ≤ 46 we only determined
the value of k∗(s, s), but did not generate the bases. For example, since we found that there is
no restricted 91-basis for the 46-square, we can deduce that k∗(46, 46) = 92 as the boundary
basis has this size. In all even-sided squares with 2 ≤ s ≤ 46, we have k∗(s, s) = 2s, which
is attained by the boundary basis.

Although the simple L-shaped and boundary bases provide minimal or almost minimal
solutions for small squares, having the full collection of minimal solutions can be useful from
an application perspective. In some sensor array applications it is beneficial to avoid placing
sensor elements near each other, so as to avoid mutual coupling effects that cause degraded
performance [16]. This may lead to a secondary optimization goal or constraint, and one
may search the collection of minimal-size bases in order to satisfy this constraint.

5.2 Results for rectangles

The situation with rectangles is quite different from that with squares: if the aspect ratio
ρ = (sy + 1)/(sx + 1) is not equal to 1, then minimal bases may be much smaller than the
L-shaped and boundary bases.
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s k∗ m mu

0 1 1 1
2 4 1 1
4 8 1 1
6 12 1 1
8 16 9 5
10 20 17 4
12 24 58 16
14 28 163 28
16 32 451 72
18 36 2047 276
20 40 8451 1133
22 44 43807 5575
24 48 213859 27108
26 52 1273607 159744
28 56
30 60
32 64
34 68
36 72
38 76
40 80
42 84
44 88
46 92

Table 3: Minimal restricted bases for squares.

Minimal bases for rectangles are summarized in Table 2, and Tables 4 and 5 for the
restricted case. In order to compare the minimal solutions to the L-shaped and boundary
bases, the quantity ∆k = k − kt is computed. Here kt is the number of elements in the best
applicable trivial solution, which is the boundary basis when sx and sy are even, and the
L-shaped basis otherwise, except when sy = 0 where the trivial solution is a one-dimensional
basis with ⌈sx/2⌉+ 1 elements at 0, 1, . . . , ⌈sx/2⌉.
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sx sy k∗ ∆k mu

0 0 1 0 1
2 0 2 0 1

2 4 0 1
4 0 3 0 1

2 6 0 1
4 8 0 1

6 0 4 0 1
2 8 0 1
4 10 0 1
6 12 0 1

8 0 4 −1 1
2 8 −2 1
4 11 −1 1
6 14 0 3
8 16 0 5

10 0 5 −1 1
2 10 −2 2
4 13 −1 1
6 16 0 4
8 18 0 6
10 20 0 4

12 0 5 −2 1
2 10 −4 1
4 14 −2 2
6 18 0 14
8 19 −1 1
10 22 0 14
12 24 0 16

14 0 6 −2 3
2 12 −4 7
4 16 −2 15
6 20 0 91
8 22 0 47
10 24 0 30
12 26 0 37

sx sy k∗ ∆k mu

14 14 28 0 28
16 0 6 −3 1

2 12 −6 1
4 16 −4 1
6 20 −2 1
8 22 −2 1
10 26 0 74
12 28 0 86
14 30 0 156
16 32 0 72

18 0 7 −3 4
2 14 −6 20
4 18 −4 12
6 22 −2 17
8 25 −1 34
10 28 0 279
12 30 0 286
14 32 0 302
16 34 0 345
18 36 0 276

20 0 7 −4 2
2 14 −8 3
4 18 −6 1
6 22 −4 1
8 25 −3 1
10 29 −1 1
12 32 0 1155
14 34 0 1157
16 36 0 1202
18 38 0 1406
20 40 0 1133

22 0 8 −4 12
2 16 −8 113
4 20 −6 14
6 24 −4 17

sx sy k∗ ∆k mu

22 8 28 −2 381
10 32 0 8957
12 34 0 5585
14 36 0 5601
16 38 0 5644
18 40 0 5850
20 42 0 6705
22 44 0 5575

24 0 8 −5 4
2 16 −10 10
4 20 −8 1
6 24 −6 1
8 28 −4 16
10 32 −2 50
12 35 −1 4
14 38 0 27132
16 40 0 27177
18 42 0 27381
20 44 0 28238
22 46 0 32680
24 48 0 27108

26 0 8 −6 2
2 16 −12 2
4 22 −8 46
6 26 −6 18
8 30 −4 302
10 34 −2 1384
12 36 −2 4
14 40 0 159771
16 42 0 159828
18 44 0 160019
20 46 0 160874
22 48 0 165318
24 50 0 186849
26 52 0 159744

Table 4: Minimal restricted bases for rectangles.
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sx k∗ mu

2 4 1
4 6 1
6 8 1
8 8 1
10 10 2
12 10 1
14 12 7
16 12 1
18 14 20
20 14 3
22 16 113
24 16 10
26 16 2
28 18 162
30 18 22

sx k∗ mu

32 18 1
34 20 777
36 20 50
38 20 8
40 20 1
42 22 412
44 22 20
46 24 32931
48 24 3126
50 24 369
52 24 37
54 24 2
56 26 4337
58 26 239
60 26 36

sx k∗ mu

62 28 125247
64 26 1
66 28 654
68 28 62
70 28 3
72 28 1
74 30 2415
76 30 97
78 30 6
80 30 1
82 32 18937
84 32 1561
86 32 193
88 32 8
90 32 2

sx k∗ mu

92 32 1
94 34 1284
96 34 222
98 34 88
100 34 1
102 36 74170
104 34 1
106 36 945
108 36 242
110 36 104
112 38 283716
114 38 42971
116 36 1
118 38 454
120 38 202

Table 5: Minimal restricted bases for sy = 2.

Tables 2 and 4 show that minimal (unrestricted and restricted) bases use increasingly
fewer elements than the trivial solutions as the aspect ratio deviates further from 1. This
is also apparent from Figure 5, which shows the efficiency (1) of the minimal bases as a
function of aspect ratio, along with the asymptotical efficiencies of the L-shaped basis, and
two parametric bases that are introduced in section 6.2 (Definitons 11 and 13). Specifically,
the L-shaped basis has efficiency c→ ρ/(1 + ρ)2, as sx →∞, since it requires sx + sy + 1 =
(1 + ρ)sx + ρ elements for its sumset to cover the [0, sx]× [0, sy] = [0, sx]× [0, ρ(sx + 1)− 1]
rectangle. Similarly, the asymptotical efficiency of the dense-sparse and short-bars bases is
c = 1/4, as shown later in Corollary 15 of section 6.2. The efficiency of the minimal bases
in Figure 5 seem to approach 1/4 as sx and ρ increase.

A peculiarity is illustrated in Figure 6, which shows two minimal restricted bases for
which the number of elements actually decreases as the target width increases. Not only
is k∗(62, 2) = 28 > k∗(64, 2) = 26, but the number of solutions for the two cases is also
drastically different. The former has 125247 unique solutions, whereas the latter has only 1.
The solutions for sy = 2 listed in Table 5 reveal that a similar effect also occurs for sx = 104
and 116. The same also applies to sy = 0, since k∗(sx, 2) = 2k∗(sx, 0) by Lemma 3.

An overview of currently known minimal restricted bases is shown in Figure 7. The
colors of the pixels correspond to the minimal number of elements. At present, bases up
to about k = 50 are practical to list exhaustively. For clarity of presentation, restricted
one-dimensional bases are not plotted for sx > 120.
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Figure 5: Efficiency of minimal bases, and asymptotical efficiency of L-shaped basis (dotted
red line) and dense-sparse/short-bars bases (dashed blue line). The L-shaped basis is subop-
timal when ρ 6= 1 and sx →∞, whereas the dense-sparse and short-bars bases asymptotically
achieve c = 1/4 for any ρ. The asymptotic efficiency of minimal bases is unknown.

Figure 6: Two restricted bases for sy = 2, for which the minimal number of elements
decreases as the rectangle width increases.

Figure 7: Minimal number of elements in restricted bases.
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6 Bounds for large-scale behaviour

For very large rectangles it seems difficult to determine the minimum basis size exactly.
Towards understanding the large-scale behaviour, we establish some upper and lower bounds
on the efficiency c = N/k2 (recall (1)) of such bases.

6.1 Upper bounds

A crude upper bound on efficiency is obtained by observing that from k elements at most
(k + 1)k/2 different pairwise sums can be formed, considering that a + b = b + a and that
sums of the form a+ a are allowed. It follows that N ≤ (k + 1)k/2, so for any planar basis
we have

c ≤ 0.5 +O
(

1/
√
N
)

.

In one dimension, upper bounds tighter than 0.5 have been established by analytic and
combinatorial methods. For all sx large enough, by Yu’s Theorem 1.1 [25] we have

sx/k(sx, 0)
2 ≤ 0.45851 = α, (4)

and by Yu’s Theorem 1.2 [24] we have

sx/k
∗(sx, 0)

2 ≤ 0.41983 = β. (5)

Combining Yu’s theorems with simple counting, we obtain the following bounds with rect-
angles of small constant height. For brevity, if P is a set of points, we denote Py = {x :
(x, y) ∈ P} and call this the row y of P .

Theorem 7. For all sx large enough, any basis for [0, sx]× [0, 1] has efficiency c < 0.4311.

Proof. Assume that sx is large enough that (4) holds. Without loss of generality let A be
admissible, and let its rows A0, A1 contain k0, k1 elements, respectively. Now A0 + A0 must
cover R0 = [0, sx], and A0 + A1 must cover R1 = [0, sx]. By applying (4) on row 0, and by
counting sums on row 1, we obtain

sx ≤ αk2

0
,

sx ≤ k0k1.

For any k, the minimum of these two bounds is maximized at k1 = αk0, implying that
k = (1 + α)k0 and

sx/k
2 ≤ α

(1 + α)2
< 0.215542.

Since N = |R| = 2(sx + 1), we have N/k2 < 0.4311 for sx large enough.

Theorem 8. For all sx large enough, any basis for [0, sx]× [0, 2] has efficiency c < 0.4190.
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Proof. Assume that sx is large enough that (4) holds. Without loss of generality let A be
admissible, and let its rows A0, A1, A2 contain k0, k1, k2 elements, respectively. Now A0+A0

must cover R0 = [0, sx], and A0+A1 must cover R1 = [0, sx], and finally (A0+A2)∪(A1+A1)
must cover R2 = [0, sx]. By applying (4) on row 0, and by counting sums on rows 1 and 2,
we obtain

sx ≤ αk2

0
,

sx ≤ k0k1,

sx ≤ k0k2 + k2

1
/2 + k1/2.

For any k, the minimum of these three bounds is maximized at their intersection, and by
routine manipulations we obtain

sx/k
2 ≤ α

(1 + 2α− α2/2)2
+ osx(1) < 0.139663

for sx large enough. Since N = |R| = 3(sx + 1), we have c = N/k2 < 0.4190 for sx large
enough.

Any improvements to the one-dimensional bound (4) will imply corresponding improve-
ments to Theorems 7 and 8. One could also apply the same proof technique with larger
constant values of sy, but it then becomes more complicated to maximize the simultaneous
upper bounds of sx. Numerical maximization suggests decreasing upper bounds as sy in-
creases, for example, around 0.4126 with sy = 3, and around 0.4087 with sy = 4. This begs
the question: what happens when sy goes to infinity?

Turning our attention to the restricted case we obtain the following bounds.

Theorem 9. For all sx large enough, any restricted basis for [0, sx] × [0, 2] has efficiency
c < 0.3149.

Proof. Combine Lemma 3 with the bound (5) and the fact that |R| = 3(sx + 1).

Theorem 10. For all sx large enough, any restricted basis for [0, sx] × [0, 4] has efficiency
c < 0.3585.

Proof. Assume that sx is large enough that (5) holds. Let A be a restricted basis for R, and
let k0, k1, k2 be the cardinalities of its rows. By applying (5) on rows 0 and 4 of the target,
and by counting sums on rows 1 and 3, we obtain

sx ≤ βk2

0
,

sx ≤ k0k1,

sx ≤ k1k2,

sx ≤ βk2

2
.
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The minimum of these four bounds is maximized at their intersection, where k0 = k2 and
k1 = βk0, thus k = (2 + β)k0. Then we obtain

sx/k
2 ≤ β

(2 + β)2
< 0.071698.

Since N = |R| = 5(sx + 1), we have c = N/k2 < 0.3585 for sx large enough.

6.2 Lower bounds

As with one-dimensional bases, also in planar bases it is relatively easy to obtain an efficiency
of approximately 1/4 for large rectangles. For squares this is particularly easy: the L-shaped
basis for an s-square has k = 2s+ 1, so c = 0.25 +O(1/s). The boundary basis has k = 2s,
so its efficiency has the same asymptotic form.

However, for non-square rectangles, the efficiency of the L-shaped and boundary bases
falls below 1/4. Indeed, consider rectangles [0, sx]× [0, sy] with a constant aspect ratio ρ 6= 1.
The L-shaped basis has k = sx + sy + 1 = (1 + ρ)sx + ρ, so

c→ ρ/(1 + ρ)2 < 1/4 (6)

as sx →∞. The case with the boundary basis is similar. For example, if the aspect ratio is
ρ = 1/9, then both the L-shaped and boundary bases have only c→ 0.09 in the limit.

The following parametric constructions demonstrate that an asymptotic efficiency of 1/4
can be achieved with rectangles of essentially any constant aspect ratio, as both sx and sy go
to infinity. The first construction, a dense-sparse basis, is the union of a dense part (a filled
rectangle) and a sparse part (regularly spaced single elements). The second construction,
a short-bars basis, consists of short, regularly spaced horizontal and vertical bars. Both
constructions are illustrated in Figure 8. We use here the notation

[a, (t), b] = {a, a+ t, a+ 2t, . . . , b}

for a finite arithmetic progression from a to b with step length t, with the provision that
b− a is divisible by t.

Definition 11. The dense-sparse basis with parameters tx, ty ≥ 1 is the set A = B ∪ C,
where B = [0, tx − 1]× [0, ty − 1] and C = [0, (tx), t

2

x − tx]× [0, (ty), t
2

y − ty].

Theorem 12. The dense-sparse basis has |A| = 2txty−1 and A+A ⊇ [0, t2x−1]× [0, t2y−1].

Proof. Since |B| = |C| = txty and B ∩ C = {(0, 0)}, the claim on |A| follows. For any
point (x, y) ∈ R, let x = bx + cx with bx ∈ [0, tx − 1] and cx ∈ [0, (tx), t

2

x − tx]. Similarly let
y = by + cy with by ∈ [0, ty − 1] and cy ∈ [0, (ty), t

2

y − ty]. Now (x, y) = (bx, by) + (cx, cy) with
(bx, by) ∈ B and (cx, cy) ∈ C. Thus (x, y) ∈ B + C ⊆ A+ A.
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(a) (b)

Figure 8: Two bases for the rectangle [0, 24]× [0, 8]: (a) a dense-sparse basis (Definition 11),
(b) a short-bars basis (Definition 13), both with parameters tx = 5, ty = 3. Both bases have
only 29 elements, while an L-shaped basis for the same rectangle has 33 elements.

Definition 13. The short-bars basis with parameters tx, ty ≥ 1 is the set A = B ∪C, where
B = [0, tx − 1]× [0, (ty), t

2

y − ty] and C = [0, (tx), t
2

x − tx]× [0, ty − 1].

Theorem 14. The short-bars basis has |A| = 2txty − 1 and A+A ⊇ [0, t2x − 1]× [0, t2y − 1].

Proof. Since |B| = |C| = txty and B ∩ C = {(0, 0)}, the claim on |A| follows. For any
point (x, y) ∈ R, let x = bx + cx with bx ∈ [0, tx − 1] and cx ∈ [0, (tx), t

2

x − tx]. Similarly let
y = by + cy with by ∈ [0, (ty), t

2

y − ty] and cy ∈ [0, ty − 1]. Now (x, y) = (bx, by) + (cx, cy) with
(bx, by) ∈ B and (cx, cy) ∈ C. Thus (x, y) ∈ B + C ⊆ A+ A.

Corollary 15. Let ρ = p2/q2 be a fixed aspect ratio, where p and q are integers, and let h ≥ 1
be an integer. Then both the dense-sparse basis and the short-bars basis, with parameters
tx = qh and ty = ph, are bases for the rectangle [0, t2x − 1] × [0, t2y − 1], which has the said
aspect ratio. The efficiency of either basis is

c =
t2xt

2

y

(2txty − 1)2
= 0.25 +O(1/h2).

Corollary 16. For any fixed aspect ratio ρ = p2/q2 6= 1, with p and q integers, the L-shaped
basis and the boundary bases are asymptotically suboptimal as sx →∞.

For arbitrarily wide rectangles of any constant height we present a basis construction
whose asymptotic efficiency exceeds 1/4. The construction is somewhat analogous to Mrose’s
one-dimensional basis [18], hence the name. As a mnemonic for our symbols here, note that
in I1, I2, I3 the set of x coordinates is an interval; in T it is a t-step arithmetic progression;
and in S it is a “sparse” (t+ 1)-step arithmetic progression.
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Definition 17. The stacked Mrose basis with parameters sy ≥ 0 and t ≥ 1 is the set
I1 ∪ I2 ∪ I3 ∪ T ∪ S, where

I1 = [0, t]× Y,

T = [0, (t), at2 − t]× {0},
S = [at2, (t+ 1), (a+ 1)t2 − 1]× Y,

I2 = [2at2, 2at2 + t]× Y,

I3 = [(3a+ 1)t2, (3a+ 1)t2 + t]× Y,

and Y = [0, sy] and a = 4sy + 3.

Theorem 18. If A is a stacked Mrose basis, then |A| = (8sy + 7)t+ (3sy + 1) and A+A ⊇
[0, (16sy + 14)t2 − 1]× [0, sy].

Proof. Let us first determine the size of the basis. We observe that |I1| = |I2| = |I3| =
(t+1)(sy +1), |T | = at, and |S| = t(sy +1). Because the parts are otherwise disjoint except
that I1 ∩ T = {(0, 0), (t, 0)}, the claim on |A| follows.

Let us next verify that A + A covers the desired target rectangle. We check seven
consecutive subrectangles in turn.

1. [0, at2 − 1]× Y is covered by I1 + T .

2. [at2, (a+ 1)t2 − 1]× Y is covered by I1 + S.

3. [(a+ 1)t2, 2at2 − 1]× Y is covered by T + S.

4. [2at2, 3at2 − 1]× Y is covered by I2 + T .

5. [3at2, (3a+ 1)t2 − 1]× Y is covered by I2 + S.

6. [(3a+ 1)t2, (4a+ 1)t2 − 1]× Y is covered by I3 + T .

7. [(4a+ 1)t2, (4a+ 2)t2 − 1]× Y is covered by I3 + S.

Because I1, I2, I3, T, S ⊆ A, combining observations (1)–(7) and 4a+ 2 = 16sy + 14 we have

A+ A ⊇ [0, (16sy + 14)t2 − 1]× Y

as claimed.

Corollary 19. The stacked Mrose basis has efficiency

c =
N

k2
=

(16sy + 14)t2 · (sy + 1)

((8sy + 7)t)2 +O(t)
−−−→
t→∞

2sy + 2

8sy + 7
.

Example 20. With sy = 1, Definition 17 gives a basis of size k = 15t+ 4 for the rectangle
[0, 30t2 − 1]× [0, 1], with efficiency tending to 4/15 > 0.2666 as t→∞.

21



Example 21. With sy = 2, Definition 17 gives a basis of size k = 23t+ 7 for the rectangle
[0, 46t2 − 1]× [0, 2], with efficiency tending to 6/23 > 0.2609 as t→∞. Figure 9 illustrates
this basis in the case of t = 10.

Although a stacked Mrose basis can be constructed arbitrarily high, its efficiency tends
down to 1/4 as sy goes to infinity. We do not know whether 1/4 can be asymptotically
exceeded for rectangles with both dimensions going to infinity (e.g., with a constant aspect
ratio).

... ... ... ...
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0

1
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1 10 20 30 1080 1090 1100 1111 1199 2200 2210 3400 3410... ... ...

I1 T S I2 I3
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∖ I1

sx = 4599, sy = 2, k = 237

Figure 9: A schematic illustration of the stacked Mrose basis (Definition 17) with parameters
sy = 2 and t = 10. In this case a = 11 and sx = 4599.

7 Conclusion and open questions

Planar additive bases are a natural generalization of the classical one-dimensional additive
bases, and it may be slightly surprising that they have not been studied much. In this
paper, some initial results have been provided. For small squares and rectangles, we have
determined the minimum cardinalities exactly; and for larger instances, we have established
some lower and upper bounds, although the bounds are not very tight.

Apart from the obvious desires of extending the finite results and improving the bounds,
we would like to pose some open questions. For squares, the “trivial” L-shaped and boundary
bases achieve an asymptotic efficiency of 1/4. For non-square rectangles, the trivial bases fall
below 1/4, but our parametric constructions still attain 1/4. Can this be improved at all?
We pose this question in two forms, one for squares and one for general rectangles.

Question 22. Does any square [0, s]× [0, s] admit an additive basis of less than 2s elements?

Question 23. Is there a constant c > 1/4 such that there are arbitrarily high and wide
rectangles admitting an additive basis of efficiency at least c?

We would not be too surprised by a positive answer to our questions above. We recall that
in one-dimensional additive bases, contrary to Rohrbach’s conjecture [22, p. 9], parametric
constructions with efficiencies over 1/4 have been found [5, 18, 11]. Also, for constant-height
rectangles, our parametric construction (stacked Mrose basis) exceeds 1/4. But if both
dimensions tend to infinity, the question is open.
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For other directions of future research, we note that additive bases are conceptually
closely related to difference bases, where the object of interest is the difference set A − A.
One-dimensional difference bases have been studied by, e.g., Leech [14] and Wichmann [23].
Difference bases find applications in sensor arrays for passive sensing, particularly when
second-order statistics of the element outputs are processed [8]. Due to the use of data
covariance in many applications, such as direction-of-arrival estimation, both one- and two-
dimensional difference bases have received attention recently [15, 20, 16]. We also point out
that non-rectangular, for example hexagonal, grids have received some attention in array
processing using difference bases [7]. Additive bases for non-rectangular targets would be
another interesting direction of research.
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