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Abstract

The Möbius number of a finite poset is a very useful combinatorial invariant of the
poset that generalizes the classical number-theoretic Möbius function. The Möbius
number of the poset of partitions Πn of a set with n elements is well-known. A related
poset, the subposet consisting only of partitions that use odd part size or the maximum
element {{1, 2, . . . , n}}, written Πodd

n , arises in similar combinatorial settings. In this
paper, we compute the Möbius numbers of all Πodd

n as follows:

µ

(

Πodd
n

)

=

{

(−1)(n−1)/2 ((n− 2)!!)2 , if n is odd;

(−1)n/2(n− 1) ((n− 3)!!)2 , if n is even.

This result was first stated as known by Stanley and has since been proven by Sundaram
and Wachs. They constructed versions of the formula above by respectively using sym-
metric function/representation theory and topological/simplicial complex techniques.
In this paper, we provide a new proof using only elementary combinatorial techniques
and the WZ algorithm.
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1 Introduction and statement of main results

One of the most natural and well-studied posets is the poset Πn of partitions of an n-element
set ordered by refinement. A related object is the subposet of partitions of an n-element
set using only odd-size parts and the maximum element {{1, 2, . . . , n}}. We call this the
odd-partition poset and denote it Πodd

n . For example, Figure 1 illustrates Πodd
4 .

1234

1|234 2|134 3|124 4|123

1|2|3|4

Figure 1: The Hasse Diagram for Πodd
4

This poset arose in the author’s PhD work when applying Shareshian’s techniques [6] to
a problem of Stanley [8]. If P is a finite poset with minimum and maximum elements, the
Möbius number µ(P ) is a much sought-after combinatorial invariant of P (see Section 2 for
a formal definition). Computing the Möbius numbers for some small values of n reveals the
following pattern:

µ
(

Πodd
1

)

= 1
µ
(

Πodd
2

)

= −1
µ
(

Πodd
3

)

= −1 · 1
µ
(

Πodd
4

)

= −1 · 1 · −3
µ
(

Πodd
5

)

= −1 · 1 · −3 · 3
µ
(

Πodd
6

)

= −1 · 1 · −3 · 3 · −5
µ
(

Πodd
7

)

= −1 · 1 · −3 · 3 · −5 · 5
µ
(

Πodd
8

)

= −1 · 1 · −3 · 3 · −5 · 5 · −7
µ
(

Πodd
9

)

= −1 · 1 · −3 · 3 · −5 · 5 · −7 · 7
µ
(

Πodd
10

)

= −1 · 1 · −3 · 3 · −5 · 5 · −7 · 7 · −9
...

This pattern continues forever, which we state more formally below.

Theorem 1 (Stanley). Let Πodd

n be the odd-partition poset of an n-element set. Then the
Möbius number µ(Πodd

n ) is given by

µ(Πodd

n ) =

{

(−1)(n−1)/2 ((n− 2)!!)2 , if n is odd;

(−1)n/2(n− 1) ((n− 3)!!)2 , if n is even
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where k!! denotes the double-factorial, the product of all integers between 1 and k with the
same parity as k.

This formula was stated as known by Stanley on page 291 of a paper of Calderbank,
Hanlon, and Robinson [1] in 1986. However, no reference or proof is given. In 1994, Sundaram
[9] built a representation-theoretic generalization of the result using symmetric function
theory. In 2007, Wachs [10] demonstrated how shellability of simplicial complexes could be
used to construct the formula (at least for n odd, given a correction of the indexing error on
the formula for the arcsin power series coefficients). The result is on page 571 of the citation
given and on page 75 of her website version of the same document.

In this paper, we provide an original and elementary combinatorial proof using only
generating functions, induction, the Wilf-Zeilberger Algorithm, and techniques from under-
graduate calculus and differential equations.

The absolute value of this sequence appears in The On-Line Encyclopedia of Integer
Sequences as sequence A000246 [7] in a variety of combinatorial settings.

2 Definitions and background material

The following definitions generalize the classical number-theoretic Möbius function to any
poset.

Definition 2. Let P be a poset. Let the Möbius function of P be

µP : {(x, y) ∈ P × P : x ≤ y} → Z

defined recursively as follows:

∑

z∈[x,y]

µP (x, z) =

{

1, if x = y;

0, otherwise.

Definition 3. Let P be a poset with a minimum element 0P and a maximum element 1P .
Then the Möbius number of P is µ(P ) = µP (0P , 1P ).

For convenience, we assume from here on that every poset has a minimum element and
a maximum element. Also we frequently identify the Möbius number of an element p ∈ P
with the Möbius number of the subposet of P consisting of all elements less than or equal
to p.

The following well-known result will be used heavily in Section 3.1, so we state it explicitly.
See Stanley’s text [8] for a proof.

Lemma 4. [8, Proposition 3.8.2] Given posets P and Q with (x, y) ≤P×Q (x′, y′) , we have
that

µP×Q ((x, y) , (x′, y′)) = µP (x, x′)µQ (y, y′)

and in particular
µ(P ×Q) = µ(P ) · µ(Q).
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3 Proofs

Remark 5. For positive natural numbers n, the poset Πodd
n is not a lattice if and only if

n ≥ 6.

Proof. For n ≤ 5, there are no chains of length greater than 3, since

1 = 1

2 = 1 + 1

3 = 1 + 1 + 1

4 = 3 + 1 = 1 + 1 + 1 + 1

5 = 3 + 1 + 1 = 1 + 1 + 1 + 1 + 1

show all partition types for such n. In these cases, maximal chains consist of only the
minimum, the maximum, and if n = 4 or 5, one element inbetween. Thus, the join of every
pair of distinct nonminimal elements is the maximum element, and the meet of every pair
of distinct nonmaximal elements is the minimum element.

If n = 6, the partitions
{{1}, {2}, {3}, {4, 5, 6}}

and
{{1}, {2}, {4}, {3, 5, 6}}

have two least upper bounds, namely

{{1}, {2, 3, 4, 5, 6}}

and
{{2}, {1, 3, 4, 5, 6}},

so Πodd
6 is not a lattice. For any n > 6, we can construct a similar pair of elements in Πodd

n that
lacks a unique least upper bound by adding singletons to each of the above partitions.

Because of this, the frequently used and very powerful lattice-theoretic tools such as
Crapo’s Compliment Theorem [2] are only applicable for finitely many of our posets of
interest. We proceed instead with bare-knuckled enumerative combinatorics. The proof
follows in four steps:

1. In Section 3.1, we write down a true but unwieldy recurrence relation for the Möbius
numbers of the odd-partition posets based on Definition 2. This will be easy to verify
but essentially impossible to work with since it will involve sums indexed over integer
partitions with odd part size.

2. In Section 3.2, we emulate the product formula for the partition generating function
to build two generating functions. We will show these two generating functions are
equal if and only if Theorem 1 is true. The generating functions graciously handle the
messiness of the sums from Section 3.1 for us.
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3. In Section 3.3, we write down an initial value problem and show that it has a unique
solution.

4. In Section 3.4, we show the two generating functions are in fact equal by verifying that
they both solve the initial value problem. The crucial step in this verification is done
via induction using the brilliant and powerful Zeilberger-Wilf Algorithm [3].

For notational convenience, let

an =

{

(−1)(n−1)/2 ((n− 2)!!)2 , if n is odd;

(−1)n/2(n− 1) ((n− 3)!!)2 , if n is even.

That is, an is the name we are giving to the numbers themselves. We will proceed to show
that these numbers are in fact the Möbius numbers of the posets.

3.1 Recurrence for the Möbius numbers

Let λ ⊢ n. That is, λ is a partition of the integer n. If B a partition of the set {1, 2, · · · , n}
such that the multiset of sizes of parts of B is λ, we say B has type λ. For our purposes, we
require λ uses only parts that have odd size or size n. Define k = (n− 2)/2 if n is even and
k = (n−3)/2 if n is odd, so that 2k+1 is always the largest odd natural number strictly less
than n. Let mi = mi(λ) be the multiplicity of parts of size i in λ. This allows us to express
λ in frequency notation as λ = (1m13m35m5 · · · (2k + 1)m2k+1nmn). That is, λ is a partition
of n with m1 parts of size 1, m3 parts of size 3, and so on. Notice that in the odd partition
poset, the set partitions must be of this type. Additionally mn can only be 0 or 1, and if it
is 1 then all other mi are 0.

We now use the orbit-stabilizer theorem to count the number of set partitions of an
n-element set with a fixed type λ = (1m13m35m5 · · · (2k + 1)m2k+1nmn). We have the n!
elements of Sn acting pointwise on the elements of the set {1, 2, . . . , n}. Notice that any
two set partitions with type λ are in the same orbit under Sn, so counting these amounts to
just determining the size of the orbit. The stabilizer of a set partition with type λ will be
a direct product of imprimitive wreath products of symmetric groups: while preserving the
partition we can permute within any one of the parts or we can permute parts of the same
size. Thus, the stabilizer is

⊗

i∈{1,3,5,...,2k+1}

Si ≀ Smi

which has order
∏

i∈{1,3,5,...,2k+1}

mi! · i!
mi .

By the orbit-stabilizer theorem, we see that Πodd
n has

n!
∏

i∈{1,3,5,...,2k+1} mi! · i!mi
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set partitions of type λ.
For fear of something relatively simple becoming obfuscated by excessive notation, we

give an example. The set {1, 2, 3, 4, 5, 6, 7, 8} has many partitions of the type (1232) in Πodd
8 .

That is, we have set partitions with two parts of size 1 and two parts of size 3. We wish to
count how many such partitions it has. Letting S8 act on the points 1 through 8, we have
8! total group elements acting. We now count how many fix such a partition. We have one
copy of S3 acting on each part of size 3. We have an S2 that swaps the parts of size 3, and
another S2 that swaps the parts of size 1. All in all, this gives 8!

3!2·2·2
partitions with type

(1232).
Next observe that any two partitions of the same type will have the same Möbius number.

If we are given two partitions of the same type, the posets lying underneath them will be
isomorphic, as the Sn action described above is order preserving.

Suppose a set partition P has type λ = {n1, n2, · · · , nm} (written as a multiset). Then
the subposet consisting of all elements of Πodd

n less than or equal to P is isomorphic to the
product poset of Πodd

n1
, Πodd

n2
, . . . , Πodd

nm
. Therefore, by Lemma 4 we have

µ(P ) =
∏

i∈{1,2,...,m}

µ(Πodd
ni

).

At this point, writing down the recurrence relation for the Möbius numbers amounts to
just putting all the above pieces together. Definition 2 implies that the Möbius number of
Πodd

n is the negation of the sum of the Möbius numbers of all smaller partitions in Πodd
n .

We can group these smaller elements according to partition type. By the above arguments,
for each type, we know how many elements there are with that type and what the Möbius
number is as a product of smaller Möbius numbers. Summing over all valid partitions gives
us our recurrence, stated below.

Lemma 6. Let P be the set of all types of partitions that occur in Πodd

n except for the trivial
partition consisting of just 1 part of size n. Abbreviate µi = µ(Πodd

i ). Then

µn = −
∑

λ∈P

∏

i∈{1,3,5,...,2k+1}

n!µmi

i

mi! · i!mi

where λ = (1m13m35m5 · · · (2k + 1)m2k+1).

3.2 Building the generating functions

Recall our notational shortcut, µi = µ(Πodd
i ). Also, recall the following infinite product

formula for the generating function for partitions of sets:

∏

n∈N

1

1− tn
=

∏

n∈N

∞
∑

i=0

tn·i.
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We observe that by slightly modifying the right-hand side of that infinite product, we
can get expressions very similar to what we have in Lemma 6. First, we throw out any
even n, since these are not part sizes that will come up in the odd partition poset except
for maximal elements, which we will handle separately. Secondly, the term tn·i should be

multiplied by µi
n

i!n!i
to give the Möbius numbers and the orbit-stabilizer counts that occur in

Lemma 6. Thus, by applying that recurrence in each degree, we have that

∏

n odd

∞
∑

i=0

µi
n

i!n!i
tn·i = 1 + t−

µ2

2!
t2 −

µ4

4!
t4 −

µ6

6!
t6 −

µ8

8!
t8 − · · · .

On the other hand, we can use the power series expansion for the exponential function
to do a different manipulation to the same series. This produces the following equality:

∏

n odd

∞
∑

i=0

µi
n

i!n!i
tn·i =

∏

n odd

e
µn
n!

tn = eµ1t+
µ3
3!

t3+
µ5
5!

t5+
µ7
7!

t7+···.

These two expressions for the same power series provide us with our fundamental strategy
for proving that the Möbius numbers µi really are the numbers ai as we claim. We simply
write down the same two expressions with ai instead of µi. They are equal if and only if for
all i, we have ai = µi. In the next lemma, we state this approach more formally.

Lemma 7. Let
L(t) = ea1t+

a3
3!

t3+
a5
5!

t5+
a7
7!

t7+···

and let
R(t) = 1 + t−

a2
2!
t2 −

a4
4!
t4 −

a6
6!
t6 −

a8
8!
t8 − · · · .

Then L(t) = R(t) is equivalent to Theorem 1.

3.3 The initial value problem

We now define an initial value problem, intentionally writing down the initial value problem
solved by L(t) as defined in Lemma 7 simply using the chain rule and the derivative of the
exponential.

dy

dt
= y ·

(

a1 +
a3
2!
t2 +

a5
4!
t4 +

a7
6!
t6 + · · ·

)

(∗)

y(0) = 1

We would like to claim that the initial value problem (∗) has a unique solution. To do
this we show the following:

Lemma 8. The series a1 +
a3
2!
t2 + a5

4!
t4 + a7

6!
t6 + · · · converges absolutely for −1 < t < 1.
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Proof. Applying the standard ratio test for convergence of power series from an undergrad-
uate calculus course yields the desired result. See for example page 66 of Rudin [5].

Clearly all involved functions are differentiable and have continuous partial derivatives.
Thus, the standard theorem on uniqueness of solutions to an initial value problem from an
undergraduate differential equations course (for example see Polking [4]) applies.

Lemma 9. The initial value problem (∗) has a unique solution.

3.4 Verifying the generating functions both solve the initial value

problem

The fact that L(t) satisfies the initial value problem is clear. To show that R(t) also satisfies
the initial value problem, we trivially check that the initial condition holds. We then plug
R(t) into both sides of the differential equation. Basic algebra shows that all terms of odd
degree match. The terms of even degree are not so obvious. To show that the coefficients
match on the terms of even degree is equivalent to verifying the following identity for all
even n:

On =
∑

k∈{2,4,...,n}

On−kOk−1

(

n

k

)

where On is defined to be |an|. To solve this sum, we use the Wilf-Zeilberger Algorithm [3]
devised for verifying such hypergeometric identities. To do this, we reformulate our sum by
defining Pn = O2n and using the fact that O2k−1 =

O2k

2k−1
. Thus our sum becomes

1 =
∑

k

Pn−kPk

(

2n
2k

)

(2k − 1)Pn

so that we are summing over all k and proving the identity for all n rather than just for
even n. We then plug in the right-hand side into Gosper’s Algorithm [3] (as implemented in
Maple) to get the proof certificate. The proof certificate (R(n, k) in their notation) is the
function

(−2n− 1 + 2k)(k − 1)k

(2n+ 1)(k − n− 1)n
.

Following the proof on page 25 of A=B [3] verifies the identity. Thus, the proof of Theorem
1 is complete.
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Keywords: Möbius number, partition, poset.

(Concerned with sequence A000246.)

Received April 18 2018; revised version received October 16 2018. Published in Journal of
Integer Sequences, December 13 2018.

Return to Journal of Integer Sequences home page.

9

https://oeis.org
https://oeis.org/A000246
http://www.cs.uwaterloo.ca/journals/JIS/

	Introduction and statement of main results
	Definitions and background material
	Proofs
	Recurrence for the Möbius numbers
	Building the generating functions
	The initial value problem
	Verifying the generating functions both solve the initial value problem

	Acknowledgements

