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Abstract

The Words-to-Numbers function takes a nonnegative integer and maps it to the
number of characters required to spell the number in English. For each k = 0, 1, . . . , 8,
we determine the minimal nonnegative integer n such that the iterates of n converge
to the fixed point (through the Words-to-Numbers function) in exactly k iterations.
Our travels take us from some simple answers, to an etymology of the names of large
numbers, to Conway/Guy’s established system representing the name of any integer,
and finally use generating functions to arrive at a very large number.

1 Introduction and initial definitions

The idea for the problem originates in a 1965 book [3, p. 243] by recreational linguistics
icon Dmitri Borgmann (1927–85) and in a 1966 article [16] by another icon, recreational
mathematician Martin Gardner (1914–2010). Gardner’s article appears again in a book [17,
pp. 71–72, 265–267] containing reprinted Gardner articles from Scientific American along
with his comments on his reader’s responses. Both Borgmann and Gardner identify the only
English number that requires exactly the same number of characters to spell the number as
the number represents. Borgmann goes further by identifying numbers in 16 other languages
with this property. Borgmann calling such numbers truthful and Gardner calling them honest.

The concept was expanded in 1972 by IBM computer scientists Gosper and Schroeppel
in the unpublished HAKMEM (short for “hacker’s memo”) report [2, item 134] by defining a
function that counts the number of characters in the English name of any representation of a
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number and iterating through the function until a cycle is reached. The fixed points of such
a function would be truthful/honest numbers. In 1974, Kravitz [26] generalized the function
and applied it to 17 other languages, identifying the fixed points and cycles generated by
the iterates of elements of the domain. For purposes of this paper, we will only focus on the
English version. The name of this function, Words-to-Numbers, was coined by Ecker in 1986
or 1987. As cited by Zerger [43], the name is given in newsletters published by Ecker ([12]
or [13]), but are no longer available. Some of the material in the newsletters, which includes
the Words-to-Numbers function, is summarized by Ecker in an article for a tribute book to
Gardner [14].

The Words-to-Numbers function, W : N → Z
+, is the very simple process of taking

a nonnegative integer n and mapping it to the positive integer representing the number of
characters required to spell n in English with the conventions (a) use only a space to separate
each word (no commas, hyphens, nor “and”s) and (b) include each space in the character
count. In contrast, Sloane [39] lists sequences A005589 and A227290 that have similar
definitions but do not count the space. Since it was Ecker’s article [14] that motivated
this paper, we use Ecker’s initial intent to include the space in the count. For example,
W(126) = 22 since “one hundred twenty six” requires a string of 22 characters to spell.
The iteration sequence of n is the sequence of the iterates of W generated by n (the seed).
To illustrate, the iteration sequence of 126 is

126 → 22 → 10 → 3 → 5 → 4 → 4 → · · · , (1)

indicating that 4 is the answer to Borgmann/Gardner’s initial question. Moreover, the height
of the iteration sequence generated by n, denoted W#(n), is the number of iterations of W
that must be applied to n until the iteration sequence reaches either a fixed point or a cycle.
We can see from (1) that W#(126) = 5 since 126 requires five iterations of W until arriving
at the fixed point.

One template for analyzing the iteration dynamics of discrete functions is given by Guy
[20, problem E34]. The function used takes any positive integer and maps it to the sum
of the squares of its decimal digits. Guy considers only the subset of the domain whose
elements iterate to 1 (defined as the set of happy numbers). Among the deluge of questions
proposed, he asks, for a nonnegative integer k, to determine the least nonnegative integer
that converges to 1 in exactly k iterations. Solutions to problem E34 are partially answered
by Grundman and Teeple [19] and Cai and Zhaou [7] and are summarized as A001273 by
Sloane [39].

The main purpose of this paper is to do the same for W , but we need to know that the
fixed point of W identified in (1) is the only one and that there are not any cycles of length
greater than one. We summarize this as

Theorem 1. All iteration sequences through W converge to 4.

A partial proof of the theorem is given in §2 and completed in §7 after choosing a
numeration scheme valid for all integers.
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Using W , we can naturally partition the domain by defining, for each nonnegative integer
k, the k-th iterated set of W , denoted Ik, to be the subset of the domain consisting of those
elements that map the fixed point in exactly k iterations. Using our previous example again,
126 ∈ I5. We let

τk := min(Ik)

denote the minimum value that maps to the fixed point in exactly k iterations. Hence the
definition implies that τ5 ≤ 126.

Taking inspiration from Guy, we establish the values of τk through W for as many values
of k that are possible. (This iteration sequence is given as A301408 by Sloane [39].) We will
see that τ0 through τ6 are fairly simple, τ7 is a little more difficult, and the material needed
to ascertain τ8 encompasses over half of this article.

In addition to the sets N for the nonnegative integers and Z
+ for the positive integers,

we use Nb := {0, 1, 2, . . . , b− 1}, where b ∈ Z
+, to represent the first b nonnegative integers.

Most uses of Nb will be to construct the base-b expansion of an integer.

2 Zero through six iterations

There are 29 words that are needed to name any nonnegative integer less than 1000 and are
listed in Table 1. We use them to derive the first seven integers of minimal height.

Strings Length
“one”, “two”, “six”, “ten” 3

“zero”, “four”, “five”, “nine” 4
“three”, “seven”, “eight”, “forty”, “fifty”, “sixty” 5

“eleven”, “twelve”, “twenty”, “thirty”, “eighty”, “ninety” 6
“fifteen”, “sixteen”, “seventy”, “hundred” 7

“thirteen”, “fourteen”, “eighteen”, “nineteen” 8
“seventeen” 9

Table 1: The words needed for naming all nonnegative integers less than 1000 grouped by
length.

For small values in the domain, the iteration structure of W is chaotic and finding the
number that is of minimal height does not become predictable until height 6. So our analysis
begins by drawing Figure 1, a digraph representation of W for a particular sampling of
elements in the first six iterated sets.

Since all nonnegative integers less than 29 are included in Figure 1 or listed in Table 1,
then we can easily see that

Lemma 2. The least nonnegative integers of heights 0 through 5 through W are, respectively,

τ0 = 4, τ1 = 0, τ2 = 3, τ3 = 1, τ4 = 11, and τ5 = 23.
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Figure 1: A partial digraph representation of the first six iterated sets of W .

The determination of τ6 will require a number of preliminary calculations. Given an
integer n in the k-th iterated set Ik, the set of preimages of n, denoted W−1(n), must be a
subset of Ik+1. So we need to find the smallest integer in each of the preimage sets of elements
in I5 = {23, 24, 25, 27, . . . }, but only an exhaustive search using Table 1 will produce these
numbers. We will see that similar computations must be performed for each iteration above
six, so all minimal preimages less than 1000 are provided here. Formally, for n ∈ N, define
Tn := min(W−1(n)) to be the minimum of all nonnegative integers that map to n through
W . The results have been compiled in Table 2.

n Tn n Tn n Tn n Tn

1 undefined 8 13 15 101 22 121
2 undefined 9 17 16 104 23 124
3 1 10 21 17 103 24 123
4 0 11 24 18 111 25 173
5 3 12 23 19 115 26 323
6 11 13 73 20 113 27 373
7 15 14 ≥ 1000 21 117 28+ ≥ 1000

Table 2: The smallest nonnegative integer Tn that requires exactly n characters to spell.

The table indicates that the preimage of any n ≥ 28 must consist of more than three
decimal digits. Thus evaluating τ6 reduces to knowing the preimages of the first four elements
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in I5. That is,
τ6 = min(I6) = min{T23, T24, T25, T27} = 123.

We summarize this result as

Lemma 3. The least nonnegative integer of height 6 through W is τ6 = 123.

Table 2 also serves an additional purpose in that it can partially answer the theorem
given earlier that all iteration sequences converge to 4.

Partial proof of Theorem 1. Initially, we observe by Figure 1 that all seeds less than 11
converge to 4. We also note from Table 2 that n < Tn for all n from 6 to 28. Consider a
seed m such that 11 ≤ m < 1000. Since both m and TW(m) map to W(m) and TW(m) is the
smallest integer that maps to W(m), then m ≥ TW(m) > W(m), indicating that iterations
of W are decreasing for those values of m. Thus all iteration sequences with seed m ∈ N1000

must invariably converge to 4.

The proof is completed in §7.

3 An etymology of the names of large numbers – and

a choice

To determine τ7, we need the name designation of three more numbers: 103, 106, and 109.
The first two (thousand and million) are widely accepted designations, but the third is not.
To explain, we step back to the last quarter of the 15th century in France to when these
names were first defined and follow their usage and the evolution of their meaning.

One of the first references of the names of numbers larger than 106 was in 1484 by French
mathematician and physician Nicolas Chuquet (c.1445–c.1488) in his manuscript Triparty

en la science des nombres (The Science of Numbers in Three Parts). The beginning of
the first part includes definitions of the words billion, trillion, quadrillion, quillion, sixlion,
septillion, ottillion, and nonillion as the name designations of, respectively, 1012, 1018, 1024,
and so on, up to 1054, thus grouping the decimal digits in periods of six. (These spellings
are from the English translation of Chuquet’s manuscript by Flegg, Hay, and Moss [15, p.
29].) Million, which is of Italian origin, had been in usage in the previous centuries prior
to Chuquet. The idea of adding Latin cardinal numbers as prefixes to -illion was not new
but the origin is, nonetheless, now attributed to Chuquet. In 1475, French mathematician
Jehan Adam includes the words million, bymillion, and trimillion in his manuscript Traicte
en arismeticque. It is speculated by Flegg, Hay, and Moss [15, p. 339] that Chuquet and
Adam may have seen the definitions from the same source. Both mention Bertheleny de
Romanis as an inspiration, but none of his work has survived.

Chuquet’s manuscript was discovered by French scholar Aristide Marre (1823–1918) and
not published until 1880 and 1881 [30, 31, 32], making Chuquet’s contribution effectively
unknown to the mathematical community for nearly four centuries. Notwithstanding, the
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mathematics contained in the Triparty was known even while unpublished because, after
Chuquet’s death, possession passed to fellow Frenchman Estinenne de la Roche (1470–1530).
A substantial portion of the contents of Chuquet’s manuscript was more widely disseminated
with the publication of the arithmetic text Larismethique nouellement compose in 1520 by
de la Roche who copied nearly verbatim large swaths of Chuquet’s work, including the name
designation of numbers given above.

The history of Chuquet’s Triparty and its impact on the mathematical community are
stories unto themselves. Only one copy has survived and it is the same one owned by de
la Roche – his notes are in the margins. Flegg, Hay, and Moss [15] trace the manuscript
from de la Roche to Marre and provide a comprehensive analysis of Chuquet’s mathematics
and its influence including an explanation of the conditions for which it was permissable to
plagiarize in 15th/16th century France. Additional history about de la Roche’s role in the
legacy of Chuquet is provided by Moss [33].

In 1690, over 200 years after the Triparty was written, the name designations, with
the same definitions as given by Chuquet/de la Roche, reappeared in the classical work
An Essay Concerning Human Understanding [28, II-16] by the English philosopher John
Locke (1632–1704). The spellings used by Locke are identical to the ones used today with
one exception: Locke used quatrillion instead of today/Chuquet’s quadrillion. The vast
majority of subsequent authors recognized Locke’s mistake and used the latter representation.
As the Essay was Locke’s most celebrated work and he presented the name designations
without attribution, the Essay was cemented as the standard for numeration. Locke’s naming
convention became known as the English method of numeration, despite being of French
origin. How the terms came to Locke has never been definitely established, but one possible
link between de la Roche and Locke is provided by Moss [33]: Locke’s geometry professor
at Oxford, John Wallis (1616–1703), was aware of de la Roche through French monk and
mathematician Jean Buéton (1492–c.1564) who wrote Logistica, quae et arithmetica vulgo

dicitur in 1559 and cited de la Roche.
It is at this point where the definitions, and henceW , become ill-defined. Mathematicians

and educators in France in the late 18th century grouped the decimal digits in periods of
three but used the same name designations as given by Locke. They defined billion through
nonillion as the name designations for 109, 1012, . . . , 1030. As noted by historian Florian
Cajori (1859–1930) [8, p. 49], France went through a revitalization of mathematics and
mathematical education that originated with Swiss education reformer Johann Pestalozzi
(1746–1827). Many mathematicians and educators in the United States were influenced
by this reform and among the changes adopted was this new method (and referred to as
the French method of numeration) replacing the English method. The earliest use of the
French method in the United States was Patterson’s 1805 edition of Dilworth’s School-

master’s Assistant (as observed by Cajori [8, p. 108]) with many arithmetic textbooks rapidly
transitioning to this new method between 1825 and 1830. We note that this 1805 publication
date is in contrast with mathematician David E. Smith (1860–1944) who writes in one of
his more popular history books [40, p. 86] that the earliest use of the French method in
the American colonies is an arithmetic textbook [18] by Harvard professor Isaac Greenwood
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(1702–45) in 1729. In fact, Greenwood used the English method and cited it as “Mr. Lock’s
[sic] Method of Numeration”. Greenwood’s textbook was published anonymously and was
the first arithmetic textbook written in colonial America. Greenwood himself was the first
Hollis Chair of Mathematics and Natural Philosophy at Harvard (and the position is still
occupied today after nearly 300 years). He is also noteworthy to be the first person to teach
calculus in the colonies [27]. Sadly, his academic career ended when he was censured in 1737
for drunkenness and dismissed in the next year.

Acceptance of the French method in the United States may have been popular, but it was
not so universally. A noteworthy dissent was by Elijah Slack (1784–1866), a mathematician,
chemist, and Presbeterian minister (and served early in his academic career as vice president
of Princeton College from 1812 to 1817, a very tumultuous time in its history when the
students openly revolted against the administration). After relocating to Ohio and much
later in his career, Slack wrote a remarkable 1853 paper [38] where he presented a passionate
defense of the English method. The paper, however, failed to resonate with the Pestalozzian
reformers, perhaps because the message was lost since the first portion of the paper consisted
of Slack’s proclamation of the divine origin of the decimal digits. It is more likely, however,
that Slack failed to dissuade the movement of the numeration community toward the French
method because it was already over – the last use of the English method to appear in the
United States in an arithmetic textbook was three years earlier in Gibson’s revised edition
of Fowler’s Youth’s Assistant (as noted by Cajori [8, p. 108]).

To complicate matters further, a movement began in parts of Europe to use the suffix
-illiard (first proposed by French mathematician and poet Jacques Pelletier du Mans (1517–
83)) for the intermediate name designations of 109, 1015, 1021, etc. (while still using the
English method for the name designations for 1012, 1018, etc.). It was slowly adopted in
many European countries and is referred to as the Traditional European naming designation.
The French, finally realizing their earlier error in the 18th century, moved to the Traditional
European naming designation in the 1960s. The English method is now called the Traditional
British naming convention. But England, citing influence by the United States, officially
switched to the French method which is now called the U.S. and Modern British naming
convention.

Overall, there are three naming conventions for large numbers; they are given in Table 3
and make W ill-defined for all n ≥ 109. As it is not feasible to present the remaining two
iterations for all three naming conventions, we simplify by choosing only one. Since W has
been defined as the length of a number spelled in English, we use the system prevalent with
most English-speaking countries: the U.S. and Modern British naming convention.

4 Representing integers

We begin this section with a well-known result of the unique representation of an integer in
a chosen base b.
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Naming Convention Name of 109

U.S. and Modern British (French method) Billion

Traditional British (English method) Thousand Million

Traditional European Milliard

Table 3: The three different naming conventions and the corresponding names of 109.

Theorem 4. Given n, b ∈ N with b > 1, there exist unique integers ξ1, ξ2, . . . , ξδ ∈ Nb =
{0, 1, . . . , b− 1} such that n =

∑δ

k=1 ξkb
k−1 (with ξδ 6= 0 if n > 0 and δ = 1 if n = 0).

We shall refer to each ξk as a base-b digit of n (or, more specifically, the k-th base-b digit

of n) with ξδ the leading base-b digit and, for n > 0,

δ ≡ δb(n) = 1 + ⌊logb n⌋

(where ⌊·⌋ is the floor function) is the number of base-b digits of n.
The proof of Theorem 4 uses the division algorithm and the well-ordering principle and

is omitted since it can be found in many introductory textbooks in discrete mathematics
(such as Kolman, Busby, and Ross [25, p. 27]).

We call the summation representation of n in Theorem 4 the base-b expansion of n and
use the notation

n =
(
ξδ, ξδ−1, . . . , ξ2, ξ1

)

b
.

This format gives us the flexibility to use decimal digits but represent integers in any base.
To avoid the difficulty of naming numbers when the digits are grouped as one long string

and, in the tradition of most countries using the U.S. and Modern British naming convention,
integers consisting of five or more base-10 digits will be grouped by threes (starting on the
right) with the final group on the left consisting of one to three base-10 digits. To avoid
confusion with the notation of multivariable functions and the base-b expansion notation,
we will not follow the tradition using a comma as a separatrix between groups, but rather
a half space. Two examples are 12 379 = (1, 2, 3, 7, 9)10 = (12, 379)1000 = (12 379)106 and
(1, 0, 0)1000 = 106.

5 Seven iterations

We return to the problem of ascertaining τ7, the least positive integer requiring exactly seven
iterations until reaching the fixed point 4 through W . Because τ6 = 123, τ7 will require over
one hundred characters to spell so our answer must maximize the number of characters used
while minimizing the number itself. From Table 2, the maximum number of characters that
are necessary to spell a three decimal digit number is 27, and the smallest number with
exactly that number of characters to spell is 373. Thus our initial attempt to find τ7 will
involve constructing a number consisting of “373” concatenated to itself multiple times.
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Necessary before continuing, we have a definition and a modification to clarify notation.
The length of a string s, denoted |s|, which is the number of characters in s. Because it may
not be immediately obvious when a blank space is placed at the beginning and/or the end
of a string, we will, hereafter, use the visible space symbol “ ” for a blank space.

For n ∈ N, define

Mn :=
n+1∑

j=0

373 · 1000j =
(
373, 373, . . . , 373
︸ ︷︷ ︸

repeated n+ 2 times

)

1000
(2)

to be the number constructed by writing “373” n+2 times. The lengths of M0, M1, and M2

are, respectively,

W(M0) = W(373) + |“ thousand ”|+W(373) = 64,

W(M1) = W(373) + |“ million ” |+W(M0) = 100, and

W(M2) = W(373) + |“ billion ” |+W(M1) = 136.

Since W(M1) < τ6 < W(M2), then τ7 must consist of exactly four base-1000 digits.
Somewhat anticlimactically, we forgo the thrill of discovery and present

Theorem 5. The least nonnegative integer of height 7 through W is τ7 = 101 323 373 373.

Proof. To start, we verify that N := 101 323 373 373 is of height 7. We use the value of
W(M2) and Table 2 to get

W(N) = W(M2)− 2W(373) +W(101) +W(323) = 123 = τ6.

Thus W#(N) = 7 implying τ7 ≤ N .
Next we show that all integers smaller than N must have a smaller height. Suppose

n < N with W#(n) = 7. By the discussion preceding this theorem, n must consist of four
base-1000 digits. Then n = (α4, α3, α2, α1)1000 where αj > 0 for each 0 ≤ j ≤ 4. If α4 < 101,
then

W(n) = W(α4) +
∑3

i=1
W(αi) + 28 ≤ 13 + 3 · 27 + 28 = 122 < τ6.

This contradicts the assumption that W#(n) = 7 and so α4 = 101. Presuming α3 < 323
leads to a similar conclusion, forcing α3 = 323. Finally, presuming either α2 < 373 or
α1 < 373 each lead to similar conclusions. Thus n = N and the result follows.

6 Extending the names of large numbers

The next iteration will take us to a number requiring over one hundred billion characters
to spell. Not surprisingly, it is monstrous and poses a significant problem because W is
ill-defined for most integers between τ7 and τ8 as there is not a consensus for the names of
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large numbers. Consequently, we need a numeration scheme that goes completely beyond
the current accepted designations.

To define the name designations for every prefix cardinal, we start with those already
established in the English language and appear in comprehensive modern dictionaries (such
as Webster’s dictionary [42, p. 1549]). They are summarized in Table 4. Our goal is to
choose a naming convention most consistent with those names but is defined for all prefix
cardinals.

Prefix Latin name Prefix Latin name
cardinal designation cardinal designation

0 thousand 11 undecillion

1 million 12 duodecillion

2 billion 13 tredecillion

3 trillion 14 quattuordecillion

4 quadrillion 15 quindecillion

5 quintillion 16 sexdecillion

6 sextillion 17 septendecillion

7 septillion 18 octodecillion

8 octillion 19 novemdecillion

9 nonillion 20 vigintillion

10 decillion 100 centillion

Table 4: The Latin name designations as they appear in modern dictionaries.

But when were the dictionary names beyond nonillion first established? We continue
with where Locke left off by citing the earliest known published instances to extend the Latin
name designation beyond those given by Chuquet. Decillion, undecillion, and duodecillion

first appear in a 1788 arithmetic textbook [36, p. 19] by Nicholas Pike (1743–1819). This
text is noteable as the first major arithmetic textbook in the newly created United States
and is historically significant for being endorsed by George Washington (1732–99) [1, vol. 6,
p. 7–8] when he reviewed it before becoming president. Tredecillion through vigintillion first
appear in a revised edition [37, p. 19] of Pike’s text published posthumously in 1822. The
word centillion first appears in an 1834 collection of short stories [41, p. 118], but it is not
until 1853 in the same article by Slack [38] referenced earlier where centillion is given with
its proper definition.

There are only a handful of published sources that provide names filling the gap in Table
4 (that is, the name designation corresponding to the prefix cardinals m = 21 through
m = 99). The first is the article by Slack [38] again. He provides the name designations
corresponding to prefix cardinals up to m = 27 and for each of the multiples of 10 from
m = 30 to m = 100. Similar presentations follow by Heath [21, p. 17] in 1856, Holbrook [23,
p. 306] and Loomis [29, p. 18]) in 1859, and much later by Borgmann [3, p. 223] (the same
book defining truthful numbers) in 1965.
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Beyond centillion, the references are remote. This first is by Slack [38] again whose
last entry in the article is his name designation corresponding to m = 1000 which he calls
millillion. Holbrook [23, p. 306] provides names corresponding to the prefix cardinals m =
101, 200, and 1000 (using the same name for m = 1000 as did Slack). Far surpassing all
others, Henkle [22] in 1860 (and reprinted with subsequent corrections by Brooks [6, p. 100,
571] in 1876) presents a system with over 100 additional name designations but constructed
utilizing a mixture of Latin cardinals and ordinals (although he does use the same name
designation for m = 1000 as given by Slack and Holbrook). The last designation by Henkle
is for m = 1 000 000 which he calls milli-millillion. The other designations, however, are
completely unsystematic and not presentable in any compact way. An attempt was made in a
series of articles over a 10 year span in Word Ways: The Journal of Recreational Linguistics

[4, 5, 9, 10, 35] to modify the extended names in Henkle/Brooks and construct a more
consistent system. Their overall result, however, is only marginally better.

Conway and Guy’s The Book of Numbers [11, p. 14–15] provides the most notable and
complete naming extension that is consistent with Chuquet’s initial intent and we will use
it to calculate τ8. For easier reference, we christen it the CGW system for the Latin name
designation of large numbers. (The “W” in the designation is because the authors credit
Allan Wechsler as a contributor to their system.)

We review some needed terminology for strings and formalize a few definitions before
presenting the CGW system (given in Definition 6 below). The string consisting of no
characters, denoted λ, is the empty string (with length |λ| = 0). Given two strings s and
t, we denote the concatenation as st (with the usual convention that λs = sλ = s). Given
a collection of k strings s1, s2, . . . , sk, we use the product notation

∏k

i=1 si to define the

concatenation recursively as s1 if k = 1 and sk
∏k−1

i=1 si otherwise (so that the resultant string
sksk−1 . . . s2s1 is ordered from right to left). Given a string s and a nonnegative integer k,
we define the k-th power of s, denoted sk as λ if k = 0 and sk :=

∏k

i=1 s otherwise (that is,
sk consists of s written k times with s0 = λ). For a nonnegative integer m, define L∗(m) to
be the Latin name designation of a one to three digit positive number followed by 3(m+ 1)
zeros (so L∗(1) = “million”). Accordingly, m is called the prefix cardinal associated to a
given Latin name designation. In a similar manner, we define W∗ to be the name designation
of a nonnegative integer (so W∗(126) = “one hundred twenty six”). The lengths of these
strings are denoted by the functions L ≡ |L∗| and W ≡ |W∗|.

The following definition is a formal representation to the very colloquial (but equivalent)
version given by Conway/Guy.

Definition 6 (The CGW system). The Latin name designation associated to the prefix
cardinal m is

L∗(m) :=

{

“thousand”, if m = 0;
(
∏ρ

j=1 Γωj
“illi”

)

“on”, if m > 0
(3)

where, for m > 0, the base-1000 expansion is m = (ωρ, . . . , ω2, ω1)1000 with ρ = 1 +
⌊log1000 m⌋. We refer to each Γη as a base string. For each η ∈ N1000, there are associ-
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ated unique integers η1, η2, η3 ∈ N10 such that η = 100η3 + 10η2 + η1. The base string
is

Γη :=







“n”, if η = 0;

qη, if 0 < η < 10;

Aη1µηBη2νηCη3 , if η ≥ 10

(4)

where the strings qi, Ai, Bi, and Ci, are given by Table 5. The connective components µη

and νη each consist of no more than a single character and are given by

µη :=

{

Φη1,η3 , if η2 = 0;

Ψη1,η2 , if η2 > 0
and νη :=







λ, if η2 = 0 or η3 = 0;

“i”, if η2 = 1, 2 and η3 > 0;

“a”, if η2 > 2 and η3 > 0

(5)

where the characters for Φ and Ψ are given in, respectively, Tables 6 and 7.

i qi (Chuquet) Ai (Units) Bi (Tens) Ci (Hundreds)
0 λ λ λ λ

1 “m” “un” “dec” “cent”
2 “b” “duo” “vigint” “ducent”
3 “tr” “tre” “trigint” “trecent”
4 “quadr” “quattuor” “quadragint” “quadringent”
5 “quint” “quinqua” “quinquagint” “quingent”
6 “sext” “se” “sexagint” “sescent”
7 “sept” “septe” “septuagint” “septingent”
8 “oct” “octo” “octogint” “octingent”
9 “non” “nove” “nonagint” “nongent”

Table 5: The components of the base strings of the Chuquet names and the CGW system.

We illustrate the definition by looking at a few simple examples. If m = 1 = (1)1000, then
ρ = 1 and

L∗(1) =
(∏ρ

j=1
Γωj

“illi”
)

“on” = (Γ1“illi”) “on” = q1“illion” = “million”

as expected. We note that L∗(1000) = Γ1“illi”Γ0“illion” = “millinillion” demon-
strates that the use of “n” as a placeholder for some larger prefix cardinals (making this
slightly inconsistent with the designations by Slack and Henkle). A longer Latin name des-
ignation sampling of the rules in the CGW system is

L∗(27 002 103 300) = Γ27“illi”Γ2“illi”Γ103“illi”Γ300“illion”

= A7“m”B2λλ“illi”q2“illi”A3“s”λλC1“illi”λλλλC3“illion”

= “septemvigintillibillitrescentillitrecentillion”.

12



η3
η1 0 1 2 3 4 5 6 7 8 9
0 λ λ λ λ λ λ λ λ λ λ

1 λ λ λ λ λ λ λ λ λ λ

2 λ λ λ λ λ λ λ λ λ λ

3 λ “s” λ “s” “s” “s” λ λ “s” λ

4 λ λ λ λ λ λ λ λ λ λ

5 λ λ λ λ λ λ λ λ λ λ

6 λ “x” λ “s” “s” “s” λ λ “x” λ

7 λ “n” “n” “n” “n” “n” “n” “n” “m” λ

8 λ λ λ λ λ λ λ λ λ λ

9 λ “n” “n” “n” “n” “n” “n” “n” “m” λ

Table 6: Components of Φη1,η3 for the CGW system (where η2 = 0).

A more explicit example to consider is the googol sequence of numbers. It is defined
recursively as g0 := 100 and gn := 10gn−1 for n ∈ Z

+. The second term of the sequence,
g1 = 10100, is the googol (first defined by Kasner and Newman [24, p. 20]). Since g1 =
10100 = 10 · 10001+32, then

W∗(g1) = W∗(10)“ ”L∗(32) = “ten ”A2λB3λλ“illion” = “ten duotrigintillion”.

The third term of the sequence, g2, is the googolplex. Since

g2 = 10g1 = 101+
∑

100
i=1

9·10i−1

= 10 · 103
∑

100
i=1

3·10i−1

= 10 · 10001+(3·100033+
∑

33
j=2

333·1000j−1+332)

= 10 · 10001+mg2 ,

where mg2 = (3, 333, 333, . . . , 333, 332)1000 is the associated prefix cardinal (and consists of
34 base-1000 digits), then the Latin name designation is

W∗(g2)

= W∗(10)“ ”L∗(mg2)

= “ten ”Γ3“illi”(Γ333“illi”)
32Γ332“illion”

= “ten ”q3“illi”(A3“s”B3“a”C3“illi”)
32A2λB3“a”C3“illion”

= “ten trilli”“trestrigintatrecentilli”32“duotrigintatrecentillion”

and requires W(g2) = 10 + 23 · 32 + 24 = 770 characters to spell.
One criticism of the CGW system is its inconsistency with three of the dictionary defi-

nitions in Table 4. They are L∗(15) = “quinquadecillion”, L∗(16) = “sedecillion”, and
L∗(19) = “novendecillion”. Although it was highly desirous to have chosen a system that

13



η2
η1 1 2 3 4 5 6 7 8 9
0 λ λ λ λ λ λ λ λ λ

1 λ λ λ λ λ λ λ λ λ

2 λ λ λ λ λ λ λ λ λ

3 λ “s” “s” “s” “s” λ λ “s” λ

4 λ λ λ λ λ λ λ λ λ

5 λ λ λ λ λ λ λ λ λ

6 λ “s” “s” “s” “s” λ λ “x” λ

7 “n” “m” “n” “n” “n” “n” “n” “m” λ

8 λ λ λ λ λ λ λ λ λ

9 “n” “m” “n” “n” “n” “n” “n” “m” λ

Table 7: Components of Ψη1,η2 for the CGW system (where η2 > 0 and η3 ∈ N10).

corresponds with the dictionary definitions, the designer’s choice was deliberate knowing
that it did conflict and instead choosing a spelling they determined more consistent with the
Latin spellings of numbers. We therefore utilize the CWG system exactly as it was intended
by Conway/Guy.

7 The Completion of the Proof of Theorem 1

With the name designations of all nonnegative integers defined, we can now provide the
(obvious!) proof that all iteration sequences converge to the fixed point (proposed in §1 and
partially proven in §2). The proof utilizes a bound on the longest possible base string Γη

(with η ∈ N1000) that can be constructed in Definition 6. A little experimenting with the
definition and Table 5 can easily produce the upper bound of |Γ454| = |A4λB5“a”C4| = 31.
As in the partial proof, this remaining part is also based on the counting of the length of
Mn given by (2). For n ∈ N, we have

W(Mn) =
∑n

i=0

(

W(373) + |“ ”|+ L(i) + |“ ”|
)

+W(373)

= 29n+ 56 +
∑n

i=0
L(i) = 29n+ 64 +

∑n

i=1
L(i) (6)

where we take the convention that the summand is zero if the upper bound of summation is
less than the lower bound.

Theorem 1. All iteration sequences through W converge to 4.

Completion of the proof. As in the partial proof in §2, we show that W(n) < n for all
n ≥ 103.

14



If 103 ≤ n < 106, then W(n) ≤ W(M0) = 64 < n.
For a given n ≥ 106, let δ be the number of base-1000 digits of n. Then

δ = 1 + ⌊log1000 n⌋ ≤ 1 + log1000 n

and hence δ ≥ 3. Let κ be the number of base-1000 digits of δ − 2. Then

κ = 1 + ⌊log1000(δ − 2)⌋ ≤ 1 + log1000(δ − 2).

We can easily verify that, for any n ≥ 106, 29δ + 6 < 1
2
n, δ − 2 < 1

2

√
n, and 35κ+ 2 <

√
n.

Then, using (6),

W(n) ≤ W(Mδ−2) = 29(δ − 2) + 64 +
∑δ−2

i=1
L(i)

≤ 29δ + 6 + (δ − 2)
(∑κ

j=1
|Γ454“illi”|+ |“on”|

)

= 29δ + 6 + (δ − 2)(35κ+ 2) ≤ 1
2
n+ 1

2

√
n
√
n = n

and hence W(n) < n for all n ≥ 106.
Therefore, using this and the partial proof given in §2, all iteration sequences with seed

n ∈ N must converge to 4.

The proof outlines that the growth rate ofW using the CGW system isO
(
log n·log log n

)
.

It is not always true that any naming convention will have this growth rate. For example,
the one provided by Noll [34] is a slightly worse O

(
log n · (log log n)2

)
despite it having a

very similar appearance to Conway/Guy.

8 Counting the contributions of µη in the CGW system

The process of establishing τ8 will require us to count all of the string components in Def-
inition 6. Of these, the hardest part will be the contribution of the characters from µn

(specifically, Φ and Ψ from Tables 6 and 7). We expedite the computations by grouping
together in the tables neighboring characters by rows. For p, q ∈ Z

+ and d ∈ N, let

Sd(p, q) := {d+ 10i+ 100j : i ∈ Np, j ∈ Nq} (7)

be the set of pq numbers constructed by starting at d and increasing, in base-10, the tens
digits by 0 through p−1 and increasing the hundreds digit by 0 through q−1. (We presume
that p and q are small enough so that neither the tens digit nor the hundreds digit go above
9.) To illustrate, an example is S270(2, 3) = {270, 280, 370, 380, 470, 480}. We partition the
contributions of Φ and Ψ into six sets.

• In Φ (Table 6), the location of the three contiguous “s”s in the third and sixth rows
are represented by, respectively, S303(1, 3) and S306(1, 3). Let D1 be the union of these
two sets.
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• In Φ, the location of the eight contiguous characters (one “m” and seven “n”s) in the
seventh and ninth rows are represented by, respectively, S107(1, 8) and S109(1, 8). Let
D2 be the union of these two sets.

• The location of the four remaining characters in Φ (two “s”s in the third row and two
“x”s in the sixth row) are represented by S103(1, 1), S106(1, 1), S803(1, 1), and S806(1, 1).
Let D3 be the union of these four sets.

• In Ψ (Table 7), the location of the four contiguous “s”s in the third and sixth rows
are represented by, respectively, S23(4, 10) and S26(4, 10). Let D4 be the union of these
two sets.

• In Ψ, the location of the eight contiguous characters (one “m” and seven “n”s) in the
seventh and ninth rows are represented by, respectively, S17(8, 10) and S19(8, 10). Let
D5 be the union of these two sets.

• The location of the two remaining characters in Ψ (the “s” and the “x” in the eighth
column) are represented by S83(1, 10) and S86(1, 10). Let D6 be the union of these two
sets.

Thus, for ω ∈ N1000, the length of µω is 1 if ω ∈ ⋃6
i=1 Di and 0 otherwise.

9 Generating functions

To get an exact value of τ8, we follow the same format used in §5 to find τ7. This will require
us to find a systematic way to count the number of characters in W(Mn), where Mn is given
by (2).

Since there are a large number of components where the length needs to be determined,
we use generating functions because they are compact and can be easily combined into a
single answer.

Lemma 7 (Generating functions for base-b digit counting). Let b ∈ N with b > 1 be a given

base and k ∈ N.

• Let Pb,k(x) be the generating function whose coefficient of xn is the number of integers

in the set {1, 2, . . . , n} consisting of k + 1 or more base-b digits. Then

Pb,k(x) =
xbk

(1− x)2
. (8)

• For d ∈ Nb − {0} a nonzero base-b digit, let Qb,d,k(x) be the generating function whose

coefficient of xn is the number of integers in the set {1, 2, . . . , n} such that the (k+1)-th
base-b digit is d. Then

Qb,d,k(x) =
xbkd(1− xbk)

(1− x)2
(
1− xbk+1

) . (9)
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Proof. Only four identities are needed. The first two are the finite and infinite geometric
series. They are

1− xr+1

1− x
= 1 + x+ x2 + · · ·+ xr and

1

1− x
= 1 + x+ x2 + · · ·

(presuming r ∈ N). Differentiating each gives

1− (r + 1)xr + rxr+1

(1− x)2
= 1 + 2x+ 3x2 + · · ·+ rxr−1

(presuming r ∈ Z
+) and

1

(1− x)2
= 1 + 2x+ 3x2 + · · · .

Since bk is the smallest integer consisting of k + 1 base-b digits, then

Pb,k(x) = xbk + 2xbk+1 + 3xbk+2 + · · · = xbk
(
1 + 2x+ 3x2 + · · ·

)
=

xbk

(1− x)2
.

To demonstrate Qb,d,k(x), we note that the first occurrence of d in the (k+1)-th position
is the integer bkd. The occurrence of d in that position continues until bk(d + 1) − 1 (and
each of these numbers consist of exactly k + 1 base-b digits). The next occurrence in the
(k + 1)-th position is at bk+1 + bkd (consisting of k + 2 base-b digits) and continues until
bk+1+bk(d+1)−1. In general, for j ∈ N, all integers from j ·bk+1+bkd to j ·bk+1+bk(d+1)−1
have the digit d in the (k + 1)-th position. Thus

Qb,d,k(x)

= xbkd
(

1 + 2x+ 3x2 + · · ·+ bkxbk−1
)

+ bkxbk(d+1)
(
1 + x+ x2 + · · ·

)

+ xbk+1+bkd
(

1 + 2x+ 3x2 + · · ·+ bkxbk−1
)

+ bkxbk+1+bk(d+1)
(
1 + x+ x2 + · · ·

)

+ x2bk+1+bkd
(

1 + 2x+ 3x2 + · · ·+ bkxbk−1
)

+ bkx2bk+1+bk(d+1)
(
1 + x+ x2 + · · ·

)

+ · · ·
= xbkd

(

1 + xbk+1

+ x2bk+1

+ · · ·
)(

1 + 2x+ 3x2 + · · ·+ bkxbk−1
)

+ bkxbk(d+1)
(

1 + xbk+1

+ x2bk+1

+ · · ·
) (

1 + x+ x2 + · · ·
)

= xbkd
(

1 + xbk+1

+ (xbk+1

)2 + · · ·
)
(

1− (bk + 1)xbk + bkxbk+1

(1− x)2
+ bkxbk 1

1− x

)

=
xbkd(1− xbk)

(1− x)2
(
1− xbk+1

) .
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Since (9) includes integers whose leading digit is d (with d nonzero), the lemma does not
apply to cases where d = 0. So we present the following to specifically count those cases
(but the corollary applies to the nonzero digits as well).

Corollary 8. For b ∈ N with b > 1 a given base, k ∈ N, and d ∈ Nb, let Q⋆
b,d,k(x) be

the generating function whose coefficient of xn is the number of occurrences of d in the set

{1, 2, . . . , n} as the (k + 1)-th base-b digit in a number consisting of k + 2 or more base-b

digits. Then

Q⋆
b,d,k(x) = xbk+1

Qb,d,k(x).

Proof. Following the same format used for Qb,d,k(x) in Lemma 7 except start at bk+1 + bkd

instead of bkd.

For counting contiguous blocks of characters (needed for counting the contribution of
characters from µn in Definition 6 and §8), we have the following lemma.

Lemma 9. Given the set Sd(p, q) (with d 6= 0) defined in (7), let RSd(p,q),k(x) be the generat-

ing function whose coefficient of xn is the number of occurrences of any element of Sd(p, q)
in the set {1, 2, . . . , n} as the (k + 1)-th base-1000 digit. Then

RSd(p,q),k(x) =
ydk(1− yk)(1− y

10p
k )(1− y

100q
k )

(1− x)2(1− y10k )(1− y100k )(1− y1000k )

where yk ≡ yk(x) = x1000k .

Proof. Using Lemma 7 and the formula for the sum of a finite geometric series, we have

RSd(p,q),k(x) =
∑

ω∈Sd(p,q)

Q1000,ω,k(x) =
1− yk

(1− x)2(1− y1000k )

∑

ω∈Sd(p,q)

yωk

=
1− yk

(1− x)2(1− y1000k )

p−1
∑

i=0

q−1
∑

j=0

y
d+10i+100j
k

=
ydk(1− yk)

(1− x)2(1− y1000k )

p−1
∑

i=0

(
y10k
)i

q−1
∑

j=0

(
y100k

)j

=
ydk(1− yk)

(1− x)2(1− y1000k )
· 1− y

10p
k

1− y10k
· 1− y

100q
k

1− y100k

.

10 Eight iterations

The two theorems in this section are the culmination of the previous four sections.
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The final element needed to present the theorems is to convert the lengths of the strings
in Table 5 to generating functions. We represent the lengths as four vectors:

v0 = 〈0, 1, 1, 2, 5, 5, 4, 4, 3, 3〉,
v1 = 〈0, 2, 3, 3, 8, 7, 2, 5, 4, 4〉,
v2 = 〈0, 3, 6, 7, 10, 11, 8, 10, 8, 8〉, and

v3 = 〈0, 4, 6, 7, 11, 8, 7, 10, 9, 7〉.

The i-th component of each vector is, respectively, the lengths of the strings qi, Ai, Bi, and
Ci. For each j ∈ N4, define the polynomial Vj(z) := vj · 〈1, z, . . . , z9〉.

Theorem 10. Let F (x) be the generating function whose coefficient of xn is W(Mn) where
Mn is given by (2). Then

F (x) =
64

1− x
+

1

(1− x)2

(

31x+
∞∑

k=0

(
4yk + y100k +H(yk)

)

)

where yk ≡ yk(x) = x1000k ,

H(z) =
(1− z)V1(z)

1− z10
+

G1(z)

1− z100
+

G2(z)

1− z1000
+

1− z

1− z100

(
G3(z)

1− z10
+

G4(z)

1− z1000

)

,

G1(z) =
(
1− z10

) (
V2(z

10)− z100
)
+ (1− z)

(
z83 + z86

)
,

G2(z) = (1− z100)V3(z
100) + z1000

(
z100 − z10

)

+ (1− z)
(
z103 + z106 + z803 + z806 + z1000 + V0(z)− V1(z)

)
,

G3(z) =
(
z23 + z26

)
(1− z40) +

(
z17 + z19

) (
1− z80

)
,

and

G4(z) =
(
z303 + z306

)
(1− z300) +

(
z107 + z109

) (
1− z800

)
.

Proof. Using (6) and the geometric series formulas given in the proof of Lemma 7, we have

F (x) =
∞∑

n=0

W(Mn)x
n =

∞∑

n=0

(

29n+ 64 +
n∑

i=1

L(i)
)

xn

= 64
∞∑

n=0

xn + 29
∞∑

n=0

nxn +
∞∑

n=0

(
n∑

i=1

L(i)
)

xn

=
64

1− x
+

29x

(1− x)2
+

∞∑

n=1

n∑

i=1

L(i)xn. (10)

We will count the double sum
∑

∞

n=1

∑n

i=1 L(i)xn in terms of each string component appearing
in Definition 6 with n representing the Latin prefix cardinal. The counting is done with
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regard to the base-10 or base-1000 digits, wherever appropriate. Each generating function
is evaluated using Lemma 7, Corollary 8, or Lemma 9, as needed.

In (3), the “on” string appears once for every positive prefix cardinal, so the generating
function to count the number of characters is

|“on”|Pb,0(x) =
2x

(1− x)2
(11)

(any choice of b > 1 will work). The “illi” string occurs once for every base-1000 digit. So
the generating function for the (k + 1)-th base-1000 digit is

|“illi”|P1000,k(x) =
4yk

(1− x)2
. (12)

In (4), “n” occurs every time the (k+1)-th base-1000 digit is 0, so the generating function
is

|“n”|Q⋆
1000,0,k(x) =

y1000k (1− yk)

(1− x)2(1− y1000k )
. (13)

We next count the strings appearing in Table 5. For the Chuquet strings qi, the generating
function for the (k + 1)-th base-1000 digit is

9∑

d=0

|qd|Q1000,d,k(x) =
(1− yk)V0(yk)

(1− x)2(1− y1000k )
. (14)

For Ai, the unit component of the base strings (used only when the tens or the hundreds
component is nonzero), a generating function for all strings for the (k+1)-th base-1000 digit
is

9∑

d=0

|Ad|
(
Q10,d,3k(x)−Q1000,d,k(x)

)
=

(1− yk)V1(yk)

(1− x)2

(
1

1− y10k
− 1

1− y1000k

)

. (15)

For Bi, the tens component of the base strings, a generating function for all strings for the
(k + 1)-th base-1000 digit is

9∑

d=0

|Bd|Q10,d,3k+1(x) =
(1− y10k )V2(y

10
k )

(1− x)2(1− y100k )
. (16)

For Ci, the hundreds component of the base strings, a generating function for all strings for
the (k + 1)-th base-1000 digit is

9∑

d=0

|Cd|Q10,d,3k+2(x) =
(1− y100k )V3(y

100
k )

(1− x)2(1− y1000k )
. (17)
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In (5), the length of νη is 1 if both the tens digit and hundreds digit of η are nonzero
and 0 otherwise. We count all the base-1000 digits, throw out the cases where the hundreds
digits is 0 and the tens digits is 0 and then cases that were thrown out twice have to be put
back in. The generating function is

P10,3k+2(x)−Q⋆
10,0,3k+1(x)−Q⋆

10,0,3k+2(x) +
9∑

d=0

Q⋆
1000,d,k(x)

=
1

(1− x)2

(

y100k − y100k (1− y10k )

1− y100k

+
y1000k (y100k − y10k )

1− y1000k

)

. (18)

For µη, we use Lemma 9 and the decomposition by sets D1 through D6 as presented in §8.
The generating functions are

∑

d∈D1

RSd(1,3)(x) =
(1− yk)(y

303
k + y306k )(1− y300k )

(1− x)2(1− y100k )(1− y1000k )
, (19)

∑

d∈D2

RSd(1,8)(x) =
(1− yk)(y

107
k + y109k )(1− y800k )

(1− x)2(1− y100k )(1− y1000k )
, (20)

∑

d∈D3

RSd(1,1)(x) =
(1− yk)(y

103
k + y106k + y803k + y806k )

(1− x)2(1− y1000k )
, (21)

∑

d∈D4

RSd(4,10)(x) =
(1− yk)(y

23
k + y26k )(1− y40k )

(1− x)2(1− y10k )(1− y100k )
, (22)

∑

d∈D5

RSd(8,10)(x) =
(1− yk)(y

17
k + y19k )(1− y80k )

(1− x)2(1− y10k )(1− y100k )
, and (23)

∑

d∈D6

RSd(1,10)(x) =
(1− yk)(y

83
k + y86k )

(1− x)2(1− y100k )
. (24)

The double sum in (10) is given by (11) and the sum (12) through (24) over all k ∈ N.
Substituting these into (10) gives the desired result.

It is left as an exercise to the reader to use Theorem 10 to verify that

F (x) = 64 + 100x+ 136x2 + 173x3 + 213x4 + 253x5 + 292x6 + 331x7 + · · · .

With the assistance of a computer, more of these coefficients have been compiled in Table 8.
The table and Theorem 5 indicate that M109 < τ8 < M1010 since W(M109) < τ7 < W(M1010).

We can now present the value of τ8. Again, rather anticlimactically, we have

Theorem 11. The least nonnegative integer of height 8 through W is

τ8 = 101 373 373 . . . . . . . . . . . . . . . 373
︸ ︷︷ ︸

repeated 1 018 436 987 times

.
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n W(Mn) n W(Mn)
10 445 106 76 769 074
102 4674 107 831 735 076
103 53 956 108 9 179 395 077
104 602 941 109 99 655 995 079
105 6 890 772 1010 1 060 604 995 081

Table 8: A selection of coefficients of F (x) given in Theorem 10.

Proof. We verify that N = 101 · 1000ε0+2 + Mε0 , where ε0 = 1 018 436 985, is of height 8.
The generating function in Theorem 10 is used to verify that

W(Mε0) < τ7 < W(Mε0+1) = 101 323 373 385 = τ7 + 12. (25)

Since W(373) = W(101) + 12 (via Table 2), then W(N) = τ7 and so τ8 ≤ N .
Suppose n < N with W#(n) = 8. From (25), we know that n must consist of ε0 + 3

base-1000 digits. Suppose n = (αε0+3, . . . , α1)1000 with each αj > 0 for 1 ≤ j ≤ ε0 + 3. If
αε0+3 < 101, then

W(n) = W(αε0+3)−W(373) +W(Mε0+1) ≤ 13− 27 + τ7 + 12 = τ7 − 2.

This contradicts the assumption that W#(n) = 8. Thus αε0+3 = 101. Taking αj < 373 for
any 1 ≤ j < ε0 + 3 also leads to a contradiction. And so n = N and the result follows.

11 Concluding remarks

A summary of the answers is given in Table 9.
There are a number of additional problems that can be explored. The first would be to

find additional terms in the sequence (that is, τ9, τ10, . . . ). Another is to modify the base
function to not count spaces in the word, or to include the word “and” where appropriate,
or both (as was done in A227290 in Sloane [39]). And finally, another continuation problem
would be to ask the same questions in other languages using the counting system prevalent
in the associated country based on language and choice of appropriate scale (per Table 3).
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k τk

0 4
1 0
2 3
3 1
4 11
5 23
6 123
7 101 323 373 373
8 101 373 373 . . . . . . . . . . . . . . . 373

︸ ︷︷ ︸

repeated 1 018 436 987 times

9 ?

Table 9: Minimal nonnegative integer requiring exactly k iterations of W to reach the fixed
point.
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