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Abstract

We describe an algorithm to constructively enumerate non-isomorphic union-closed

sets and Moore sets. We confirm the number of isomorphism classes of union-closed sets

and Moore sets on n ≤ 6 elements presented by other authors and give the number

of isomorphism classes of union-closed sets and Moore sets on 7 elements. Due to

the enormous growth of the number of isomorphism classes, it seems unlikely that

constructive enumeration for 8 or more elements will be possible in the foreseeable

future.

1 Introduction

All sets in this article are finite. A union-closed set is a set U of sets with the property that
for all A,B ∈ U we have A ∪ B ∈ U . We call ΩU =

⋃
A∈U

A the universe of U . Two union-
closed sets with universe ΩU , resp., ΩU ′ are defined to be isomorphic if there is a bijective
mapping ΩU → ΩU ′ inducing a bijection between the union-closed sets.

As we are mainly interested in isomorphism classes, we may assume ΩU = Ωn = {1, . . . , n}
for some n. While the whole universe ΩU is by definition an element of a union-closed set U ,
this is not the case for the empty set. As the empty set has no impact on the structure of a
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union-closed set, one often either requires the empty set to be an element of each union-closed
set or forbids it to be an element. We choose for the first convention, so our union-closed
sets contain Ωn as well as the empty set. We denote a set containing one representative of
each isomorphism class of union-closed sets with universe Ωn as Rn.

The famous union-closed sets conjecture (or Frankl’s conjecture) states that for each
union-closed set there is an element that is present in at least half of the sets. Unfortu-
nately, the number of union-closed sets grows so quickly that complete enumeration is not a
suitable approach for testing this conjecture. A lot is known about the structure of possible
counterexamples to the union-closed sets conjecture (see [2] for a survey), so any approach
to extend the knowledge on the smallest size of a possible counterexample by constructive
enumeration must focus on the subset of union-closed sets with those additional structural
properties (e.g., with small average size of the sets, without some subconfigurations like
singletons, etc.).

Union-closed sets are closely related to Moore families. A Moore family for a universe Ωn

is a set of subsets of Ωn that is closed under intersection and contains Ωn. It is easy to see
that for a union-closed set U the set U c = {Ωn \ A|A ∈ U} is a Moore family. For a Moore
family M the set Mc = {Ωn \A|A ∈ M} is closed under union, but as the empty set is not
necessarily contained in M, it is a union-closed set for Ωn \

⋂
A∈M

A, which is isomorphic to
a union-closed set for some Ωn′ with n′ ≤ n.

A set Mn of representatives of Moore families (with the canonical definition of isomor-
phism) for the universe Ωn can be obtained from sets R0, . . . ,Rn of representatives of union-
closed sets containing the empty set as follows: Mn =

⋃n

i=0
{U c|U ∈ Ri} if the complement

is in each case taken in the universe Ωn.
So union-closed sets correspond to Moore sets, which again characterize closure operators,

and have many applications in topology, algebra and logic.
For n < 7, several authors developed enumeration algorithms for Moore families [4, 7, 8].

In the most advanced article, Colomb, Irlande, and Raynaud [4] not only counted Moore
families for n ≤ 6, but they also generated representatives of isomorphism classes. For n = 7,
the approach is not suitable for generating a set of representatives, and by clever use of the
structure of representatives of Moore families for n = 6 they only determined the number of
labeled Moore families — that is, without considering isomorphisms. In our algorithm we
determine the number of labeled union-closed sets resp., labeled Moore families for n = 7
from representatives and their automorphism groups of the union-closed sets for n = 7, resp.,
n ≤ 7. This gives a very good independent test for the implementation in [4] as well as for
our implementation. When computing the number of labeled Moore families for Ω7 from
the number of labeled union-closed sets with n ≤ 7, for those union-closed sets with n < 7,
one must take into account that for Ω7 isomorphic copies not only occur for the universe
{1, . . . , n}, but for each n-element subset of {1, . . . , 7}.
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2 The algorithm

A subset A ⊆ Ωn is represented as a number b(A) given as the binary number bn−1 · · · b0 —
possibly with leading zeros — with bi = 1 if (i+ 1) ∈ A and bi = 0 otherwise.

We use an ordering of the subsets of Ωn. For A,B ⊆ Ωn we define A > B if |A| < |B| (so
sets with more elements are considered smaller in this order) or |A| = |B| and b(A) > b(B).
Whenever we refer to larger or smaller sets, we refer to this ordering.

The construction algorithm generates union-closed sets recursively based on the following
easy lemma:

Lemma 1. If U 6= {Ωn} is a union-closed set and A is the largest non-empty element in U ,
then U \ {A} is also a union-closed set.

This implies that union-closed sets for universe Ωn can be recursively constructed from
the union-closed set {Ωn, ∅} of smallest size by successively adding subsets of Ωn that are
larger than the largest non-empty set already present. Of course it is not assured that adding
a smaller set to a union-closed set does not violate the condition that the set must be closed
under unions.

In order to turn this into an efficient algorithm, two tests that are (in principle) applied
to each structure generated must be very fast:

(i) The test whether the set that has been constructed by adding a new set is closed under
union.

(ii) The test for isomorphisms.

We first discuss (i). A straightforward way to test (i) for a union-closed set U to which a
new set A is added would be to form all unions A∪B with B ∈ U and test whether they are
in U ∪ {A}. Although all these steps can be implemented as efficient bit-operations, their
number would slow down the program. We make the following definition.

Definition 2. For a union-closed set U we define the reduced set red(U) as follows:

red(U) = {A ∈ U|A 6= ∅ and there is no A1 6= ∅ in U , A1 ( A}.

Lemma 3. Let U be a union-closed set for a universe Ωn and let A ⊂ Ωn, that is larger than

any non-empty set in U . Then U ∪ {A} is closed under union if and only if A ∪ B ∈ U for

all B ∈ red(U).

Proof. First assume that U ∪ {A} is closed under union and let B ∈ red(U). Then A ∪B ∈
(U ∪ {A}) and as A is larger than B, we have A ∪ B 6= A, so A ∪B ∈ U .

For the other direction assume that A ∪B ∈ U for all B ∈ red(U) and let D ∈ U .
Choose any D′ ⊂ D so that D′ ∈ red(U). Then A′ = A ∪ D′ ∈ U and therefore also

A′ ∪ D ∈ U as U is closed under union, but A′ ∪ D = A ∪ D — so A ∪ D ∈ U ∪ {A} and
U ∪ {A} is closed under union.
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It would be inefficient to compute red(U) each time a new union-closed set is constructed,
but as a new union-closed set U ′ is constructed by adding a new smallest element A to U ,
the set red(U ′) can easily be constructed from red(U) by adding A and removing elements
that contain A. Nevertheless the few lines of code testing whether the potential union-closed
set is closed under union take more than 50% of the total running time when computing
union-closed sets for Ω6, which is the largest case that can be profiled.

In order to solve problem (ii) efficiently — that is, avoid the generation of isomorphic
copies — we use a combination of Read/Faradžev type orderly generation [6, 9] and the
homomorphism principle (see, e.g., [1]).

Our first aim is to define a unique representative for each isomorphism class — called the
canonical representative — and then only construct union-closed sets that are the canon-
ical representatives of their class. We represent a union-closed set U with k + 1 elements
A1 < A2 < · · · < Ak < ∅ as the string s(U) = b(A1), . . . , b(Ak) of numbers. For a given
isomorphism class of union-closed sets for a universe Ωn we choose the union-closed set with
the lexicographically smallest string as the representative.

It is in principle easy to test whether a given union-closed set U is the representative of
its class by applying all n! possible permutations to U and comparing the strings. As n ≤ 7
this would not be extremely expensive, but due to the large number of times that this test
has to be applied, it is far too expensive to construct the union-closed sets for Ω7. In the
sequel we describe a way how this can be optimized.

In order to increase the efficiency by making it an orderly algorithm of Read/Faradžev
type, we use the canonicity test not only for structures we output, but also during the con-
struction: non-canonical structures are neither output nor used in the construction. This
only leads to a correct algorithm if we can prove that canonical representatives are con-
structed from canonical representatives:

Theorem 4. Let U 6= {Ωn, ∅} be a union-closed set for the universe Ωn that is the canonical

representative for its isomorphism class. If U = {A1, A2, . . . , Ak, ∅} with A1 < A2 < · · · < Ak

and 1 ≤ m ≤ k, then {A1, A2, . . . , Am, ∅} is also the canonical representative of its class.

Proof. We prove the result for m = k− 1. For k = m it is the assumption and for m < k− 1
it then follows by induction.

Let s(U) = (s1, . . . , sk). For a permutation Π of Ωn and a union-closed set U we write
Π(U) for the union-closed set obtained by replacing each element of a set in U by its image
under Π. Assume that U ′ = {A1, A2, . . . , Ak−1, ∅} is not the canonical representative of its
class. So there is a permutation Π of Ωn with s(Π(U ′)) < s(U ′). Let s(Π(U ′)) = (p1, . . . , pk−1)
and we have s(U ′) = (s1, . . . , sk−1). Let j be the first position so that pj < sj. Let us now
look at s(Π(U)) = (p′1, . . . , p

′
k) and let r be the position of Π(Ak) in this string. If r > j

then p′i = pi = si for 1 ≤ i < j and p′j = pj < sj — so there is a smaller representative for
the isomorphism class of U . If r ≤ j then p′i = pi = si for 1 ≤ i < r and p′r < pr ≤ sr and
again we have found a smaller representative contradicting the minimality of s(U).
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This theorem proves that the algorithm can reject non-canonical union-closed sets and
is a correct orderly algorithm, but the cost of the canonicity test would make it impossible
to determine the number of union-closed sets for Ω7.

For a given union-closed set U with universe Ωn and 1 ≤ m ≤ n we write Um for the
subset containing all sets of size k ≥ m and Πm(U) for all permutations Π of Ωn with the
property that Π(Um) = Um.

Lemma 5. Let U 6= {Ωn, ∅} be a non-canonical union-closed set for the universe Ωn with

sets A1 < A2 < · · · < Ak < ∅, so that {A1, A2, . . . , Ak−1, ∅} is canonical and |Ak| = m. Then

all permutations Π with s(Π(U)) < s(U) are in Πm+1(U).

Proof. Any permutation Π not in Πm+1(U) would by definition give an isomorphic but
different union-closed set Π(Um+1). As due to Theorem 4 s(Um+1) is minimal, s(Π(Um+1))
would be larger and therefore also the part of the string of s(Π(U)) describing sets of size at
least m+ 1 would imply s(Π(U)) > s(U).

Lemma 5 speeds up the canonicity test dramatically: We start with a list of all n!
permutations as Πn(U). When testing canonicity of a union-closed set with the smallest set
of size k < n, we only apply permutations from Πk+1(U). During this application, we can
already compute Πk(U) by simply adding exactly those permutations to the initially empty
set Πk(U) that fix U . As we work with small sets, it is no problem to store and use the set
of all group elements instead of just a set of generators.

The impact is immediately clear: the number of permutations that has to be computed
is much smaller and as soon as some Πk(U) contains only the identity — which happens
very fast — no canonicity tests have to be performed, so that the total time for isomorphism
checking is only about 7% of the total running time when computing union-closed sets for
Ω6.

2.1 The implementation

The algorithm was implemented in the computer language C. Next to an efficient algorithm,
of course also implementation details are of crucial importance to be able to compute the
results for Ω7. We precomputed the action of all permutations on all sets, so that they could
be applied very fast and used data structures that allow to check whether a set is contained
in a union-closed set in constant time. Special functions were written that add sets with only
one element. As no sets of smaller size are added, no updates of the automorphism groups
are necessary and it turned out that at this stage it is also not efficient any more to remove
sets from red(U) that are a superset of another element. Details on the implementation can
best be seen in the code which can be obtained from the authors or the Journal of Integer

Sequences.
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2.2 Results

Tables 1 and 2 give the numbers of isomorphism classes of union-closed sets and Moore
families as well as the numbers of labeled structures. Up to 5 elements the running times
are less than 0.01 seconds. For n = 6 it is 8.2 seconds on a Xeon(R) CPU E5-2690 0 running
with 2.90 GHz and a high load (which can make a difference for these processors). For n = 7
the jobs were run in parallel on different machines and some parts had to be divided further
in order to finish, so it is hard to give precise times. Estimating the total running time from
those parts that were run on the same machine used for n = 6, the total time on this type
of machine should be around 10 to 12 CPU-years.

n union-closed sets labeled union-closed sets
1 1 1
2 3 4
3 14 45
4 165 2,271
5 14,480 1,373,701
6 108,281,182 75,965,474,236
7 2,796,163,091,470,050 14,087,647,703,920,103,947

Table 1: The number of union-closed sets (sequence A108798) and labeled union-closed sets
(sequence A102894).

n Moore families labeled Moore families
1 2 2
2 5 7
3 19 61
4 184 2480
5 14,664 1,385,552
6 108,295,846 75,973,751,474
7 2,796,163,199,765,896 14,087,648,235,707,352,472

Table 2: The number of Moore families (sequence A193674) and labeled Moore families
(sequence A102896).

A union-closed set on n elements is called sparse if the average number of elements in a
set — not counting the empty set — is at most n

2
. For union-closed sets that are not sparse,

6

http://oeis.org/A108798
http://oeis.org/A102894
http://oeis.org/A193674
http://oeis.org/A102896


the union-closed sets conjecture is trivially true. Table 3 gives the number of sparse union-
closed sets. These numbers were computed once by filtering all union-closed sets and once by
an independent implementation using special bounding criteria described in [5]. Bruhn and
Schaudt [3] give indications that sparse union-closed sets make up only a vanishingly small
part of all union-closed sets. The numbers of sparse union-closed sets for n ≤ 7 support
this. Nevertheless also for sparse union closed sets the numbers seem to grow so fast that
even with specialized algorithms complete enumeration will not be possible for sizes of the
universe that are interesting for the union-closed sets conjecture.

n sparse union-closed sets
1 0
2 0
3 0
4 2
5 27
6 3,133
7 5,777,931

Table 3: The number of sparse union-closed sets (sequence A299116).

2.3 Testing

The second author [5] developed an independent implementation of the algorithm together
with special bounding criteria for sparse union-closed sets. The implementation was used
to generate all isomorphism classes of union-closed sets for Ω1, . . . ,Ω6, and — using special
bounding criteria — to confirm the numbers of isomorphism classes of sparse union-closed
sets for Ω7.

A further and independent confirmation of the numbers for Ω1, . . . ,Ω6 and also an inde-
pendent confirmation for Ω7 was obtained by computing the number of labeled structures
corresponding to each representative from the size of the automorphism group. Note that
as the size of the automorphism group is known in the algorithm anyway, the additional
cost for this test can be neglected. From this we computed the number of (labeled) Moore
families and got complete agreement with [4] for Ω1, . . . ,Ω7. Due to the completely different
approaches this makes implementation errors leading to the same incorrect results in both
cases extremely unlikely.
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