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Abstract

We define sequences MTn and CTn of polynomials associated with Motzkin and

Catalan paths, respectively. We show that these polynomials satisfy recurrence rela-

tions similar to the one satisfied by Motzkin and Catalan numbers. We study in detail

many different specializations of these polynomials, which turn out to be sequences

of great interest in combinatorics, such as the Schröder numbers, Fibonacci numbers,

q-Catalan polynomials, and Narayana polynomials. We show a connection between

the polynomials CTn and the family of binary trees, which allows us to find another

specialization for our polynomials in term of path length in these trees. In the last

section we extend the previous results to partial and free Motzkin paths.
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1 Introduction

Catalan and Motzkin numbers (sequences A000108 and A001006 in [25]) are well known in
mathematics. They both appear in many different contexts, from the enumeration of lattice
paths to that of permutation classes, trees, partitions (see e.g., [26, 27] for Catalan numbers
and [2, 8, 10, 21] for Motzkin numbers).

Due to their importance in enumerative combinatorics, several generalizations for Catalan
numbers are present in the literature. Most of such generalizations consist of polynomials in
one or two variables that reduce to Catalan numbers under appropriate specializations. For
example, there are at least three different objects that share the name q-Catalan numbers,

due to Mac Mahon, Carlitz and Riordan, and Polya and Gessel, respectively. All these are
q-analogs of Catalan numbers, i.e., polynomials that yield Catalan numbers when q = 1 (see
[13] for an overwiew of these three families). Similarly, in the case of two variables, different
families of q,t-Catalan polynomials that specialize to Catalan numbers for q = t = 1 were
defined both by Garsia and Haiman in connection with the theory of diagonal harmonics
(see [14, 15] for further details), and by Adin and Roichman in connection with maximal
chains in the non-crossing partition lattice (see [1]).

Even if generalizations of Motzkin numbers are less studied, it is possible to find some
of them in the literature. For example, Flajolet [11] introduced a family of polynomials
defined as the generating functions of appropriate weighted Motzkin paths, and studied their
properties with an emphasis on the relation with continued fractions. In [22] the authors
generalize these polynomials and studied their properties in terms of recurrence relations.
On the other hand, in [4], the authors introduce three families of q-analogs of Motzkin
numbers. All the three families of polynomials are defined by recursions and are shown to
be the generating functions for particular sets of polyominoes and Dyck words according to
various parameters (area, perimeter, width, inversions).

The main goal of this paper is to define and study two new families of polynomials defined
in terms of Motzkin and Dyck paths, respectively. To this aim, we associate a weight with
each step of a Motzkin or Dyck path. Using these weights we define polynomials MTn and
CTn in a number of variables that increases with the length n of the paths. Our approach is
similar to the one proposed in [11], even if in that paper the weight of a step depends only
on its height. On the contrary, our definition of weight takes into account the lengths of the
weak tunnels of the path, namely, a slightly modified version of the tunnels defined in [9].

The polynomials MTn and CTn satisfy recurrence relations analogous to the classical
recursions for Motzkin and Catalan numbers. While under trivial specialization polynomials
MTn and CTn give Motzkin and Catalan numbers, under more subtle specialization they
produce a plethora of well known sequences such as Schröder numbers, Fibonacci numbers,
Carlitz-Riordan q-Catalan polynomials, Narayana polynomials. Combining different special-
izations we get also joint distributions of various parameters over the sets of Motzkin and
Dyck paths. The recurrence relations for MTn and CTn allow us to deduce continued frac-
tion expressions for the generating functions of such parameters. Note that our continued
fraction is different from that obtained in [11] and in other works (see e.g., [4]).
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The outline of the work is the following.
In Section 2, we define the Motzkin tunnel polynomial MTn by assigning to each step

S of a Motzkin path a weight that depends on the length t(S) of the maximal weak tunnel
whose ending point is the starting point of S. We show that the polynomials MTn satisfy
a recurrence relation similar to the one that defines Motzkin numbers. Moreover we prove
a symmetry property for these polynomials. In the last part of the section we exhibit some
specializations of Motzkin tunnel polynomials and deduce a continued fraction expansion for
the multi-variate generating function of Motzkin paths that takes into account the parameters
length, area, peaks, occurrences of UHD, and number of horizontal steps. In a particular
case we are able to compute the Hankel determinant of a sequence of these polynomials.

In Section 3 we associate a polynomial CTn with the set of Dyck paths of a given
semilength n in a way similar to that of previous Section. Since each weak tunnel of a
Dyck path has even length, in this case we label each step S with t(S)/2. Let CTn denote
the n-th Catalan tunnel polynomial. As above, we find specializations for CTn and deduce
a continued fraction expansion for the generating function that takes into account length,
area, peaks and occurrences of UUDD of Dyck paths.

In Section 4 we show that the polynomials CTn have an interpretation in terms of suitable
labellings of binary trees. This allows us to deduce a further specialization for Catalan tunnel
polynomial that coincides with the generating function of binary trees with the parameters
“number of internal nodes” and “internal path length”.

In Section 5 we introduce multi-variable polynomials associated with partial Motzkin
paths (prefixes of Motzkin paths) and to free Motzkin paths (lattice paths in the plane
that consist of n steps arbitrarily chosen among up, down and horizontal steps), study their
properties and specializations and derive a matrix identity that generalizes the one appearing
in [6].

2 Motzkin tunnel polynomials

2.1 Basic definitions

A Motzkin path of length n is a lattice path in the plane from (0, 0) to (n, 0) consisting of
up steps U = (1, 1), down steps D = (1,−1) and horizontal steps H = (1, 0), that never
goes below the x-axis. A Dyck path of semilength k is a Motzkin path of length 2k with no
horizontal steps. We let Mn denote the set of Motzkin paths of length n and by Ck the set
of Dyck paths of semilength k.

One can encode a Motzkin path in Mn by a Motzkin word of length n in the letters U ,
H, and D. A return of a Motzkin path p is a point of p different from (0, 0) and belonging
to the x-axis.

Notice that a Motzkin path p is either of the form p′ H, or p′ U p′′ D, where p′ and p′′ are
Motzkin paths (last return decomposition).

A weak tunnel in a Motzkin path p is a horizontal segment between two lattice points of
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p lying always weakly below p. A weak tunnel can consist of a single point. The length of a
weak tunnel is the difference between the x-coordinates of its ending and starting points. For
every non-horizontal step S of p we let t(S) denote the length of the maximal weak tunnel
ending at the initial point of S.

Now we associate with every Motzkin path p of length n a monomial m(p) in the 2n− 1
variables {x0, x1, . . . , xn−2, y0, y1, . . . , yn−2, z} as follows. We assign to every step S the weight
xt(S) if S is an up step, the weight yt(S) if S is an down step, and the weight z if S is a
horizontal step. We define the monomial m(p) as the product of the weights of each step of
p.

Example 1. Consider the following Motzkin path

x0

x0
x3

z

z

x0

y1

y0

y3

y8

where every step has been labelled with its weight. Then, the corresponding monomial is
x3
0x3y0y1y3y8z

2.

Notice that different Motzkin paths can have the same associated monomial. For example,
if p = HHUUDD and q = UDUHHD, then m(p) = m(q) = x0x2y0y2z

2.
Moreover,

• the exponent of x0 in m(p) equals the number of occurrences of UU, increased by one
if p begins with U.

• The exponent of x1 equals the number of occurrences of UHU, increased by one if p
begins with HU.

• The exponent of y0 in m(p) equals the number of peaks in p, namely, occurrences of
UD. In fact, a down step D of a Motzkin path has label 0 whenever the maximal
tunnel ending at the first point of D reduces to a single point. This happens if and
only if D is the down step of a peak.

• Similarly, the exponent of y1 equals the number of occurrences of UHD in p.

For every integer n, we define the polynomial

MTn = MTn(x0, x1, . . . , xn−2; y0, y1, . . . , yn−2; z) =
∑

p∈Mn

m(p).
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For 0 ≤ n ≤ 5, these polynomials are

MT0 = 1

MT1 = z

MT2 = x0y0 + z2

MT3 = x0y0z + x1y0z + x0y1z + z3

MT4 = x0x2y
2
0 + x2

0y0y2 + x0y0z
2 + x1y0z

2 + x2y0z
2 + x0y1z

2 + x1y1z
2 + x0y2z

2 + z4

MT5 = x0x2y
2
0z + x0x3y

2
0z + x1x3y

2
0z + x0x2y0y1z + x0x3y0y1z + x2

0y0y2z

+ x0x1y0y2z + x2
0y0y3z + x0x1y0y3z + x2

0y1y3z + x0y0z
3 + x1y0z

3 + x2y0z
3

+ x3y0z
3 + x0y1z

3 + x1y1z
3 + x2y1z

3 + x0y2z
3 + x1y2z

3 + x0y3z
3 + z5.

The polynomials MTn have a particular symmetry, namely, they are invariant under the
permutation σ that exchanges every xi with the corresponding yi and leaves z unchanged.
In order to prove this assertion, we need to define a bijection on the set Mn inspired by the
map defined by Deutsch [7]. Consider a path p and decompose it as p = p′ U p′′ Dp′′′, where
p′′′ is a maximal (and possibly empty) sequence of horizontal steps and p′ U p′′ D is the last
return decomposition of the path obtained from p by removing p′′′. Then we recursively
define the map E as follows:

• for every k ≥ 0, E(Hk) = Hk;

• E(p′ U p′′ Dp′′′) = E(p′′)U E(p′)Dp′′′.

Example 2. Consider the following Motzkin path

p =

where p′ = HUUDD, p′′ = UHDH, and p′′′ = H. Since

E−→

E−→
the path E(p) is

E(p) =

Theorem 3. For every integer n, the map E is an involution over the set Mn.

Proof. Straightforward.
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Let f be a polynomial in the variables x0, x1, . . . , y0, y1, . . . , z. Set

fσ(x0, x1, . . . ; y0, y1, . . . ; z) = f(y0, y1, . . . ; x0, x1, . . . ; z).

Theorem 4. MTn = MTσ
n.

Proof. We show that, for every p ∈ Mn, the two monomials m(E(p)) and mσ(p) coincide.
We can prove this assertion by induction. In fact we have

• if p = Hk, we have m(E(p)) = m(p) = mσ(p);

• suppose now the assertion true for every Motzkin path of length n′ < n. Let p be
a Motzkin path of length n decomposed as p = p′ U p′′ Dp′′′, where p′′′ = Hk. The
definition of m(p) implies that t(U) = r and t(D) = s, where r and s are the lengths
of p′ and p′′, respectively. Hence m(p) = xrysm(p′)m(p′′)zk. Then, the path

E(p) = E(p′ U p′′ Dp′′′) = E(p′′)U E(p′)Dp′′′

corresponds to the monomial

m(E(p)) = xsyrm(E(p′))m(E(p′′))zk.

By the induction hypothesis, this last monomial equals

xsyrm
σ(p′)mσ(p′′)zk = mσ(p).

Theorem 5. The polynomials MTn satisfy the recurrence

MTn = z MTn−1 +
n−2∑

i=0

xi yn−2−i MTi MTn−2−i, n ≥ 1 (1)

with initial value

MT0 = 1.

Proof. Consider a Motzkin path p of length n. If the last step of p is horizontal, this leaves
a remaining path p′ of length n− 1, and m(p) = z m(p′). If the last step of p is a down step,
consider the last return decomposition p = p′ U p′′ D, where p′ has length i and p′′ has length
n− 2− i. Then, t(U) = i and t(D) = n− 2− i, and hence m(p) = xi yn−2−i m(p′)m(p′′).
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2.2 Specializations

The polynomials MTn give rise to many specializations, which turn out to be related to
be some well-known combinatorial sequences. The specializations where z = 0 give rise to
combinatorial sequences related to Dyck paths, and they will be studied in detail in Section
3.

a. Needless to say, MTn(1, 1, . . . ; 1, 1, . . . ; 1) is the n-th Motzkin number (see sequence
A001006 in [25]).

b. MTn(1, 1, . . . ; 1, 1, . . . ; 2) is the number of Motzkin paths of length n where horizontal
steps have two possible colors. This number equals the (n + 1)-th Catalan number
cn+1 = 1

n+2

(
2n+2
n+1

)
(see sequence A000108 in [25]).

c. The coefficient of yj0 in MTn(1, 1, . . . ; y0, 1, . . . ; 1) (or, equivalently, the coefficient of xj
0

in MTn(x0, 1, . . . ; 1, 1, . . . ; 1)) is the number of Motzkin paths of length n with j peaks,
namely, occurrences of UD (see sequence A097860 in [25]).

d. The coefficient of yj1 in MTn(1, 1, . . . ; 1, y1, 1, . . . ; 1) (or, equivalently, the coefficient of
xj
1 in MTn(1, x1, 1, . . . ; 1, 1, . . . ; 1)) is the number of Motzkin paths of length n with j

occurences of UHD (see sequence A114583 in [25]).

e. The coefficient of zj in MTn(1, 1, . . . ; 1, 1, . . . ; z) is the number of Motzkin paths of
length n with j horizontal steps (see sequence A097610 in [25]).

f. The area A(p) of a path p is defined to be the area of the trapezoid under the path
and above the x-axis. The coefficient of qj in

MTn(1, 1, . . . ; q, q2, . . . ; 1) = MTn(q, q2, . . . ; 1, 1, . . . ; 1)

is the number of Motzkin paths of length n and area j (see sequence A129181 in [25]).
In fact, the label of every down step D is yt(D), where t(D) is the maximal length of a
weak tunnel ending at the initial point of D, or, equivalently, the area of the trapezoid
lying between the maximal weak tunnels ending at the initial and final point of D,
minus one. Replacing yt(D) by qt(D)+1, we obtain m(p) = qA(p).

Example 6. The Motzkin path of Example 1

q
2

q

q
4

q
9

has area 16.
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2.3 A joint distribution

Consider the polynomials

Tn = Tn(q, z, x0, x1) = MTn(x0q, x1q
2, q3, q4, . . . ; 1, 1, . . . ; z)

which take into account area, peaks, occurrences of UHD, and number of horizontal steps.
The study of this joint distribution encompasses the specializations c., d., e., and f. of the
previous section. We will deduce a continued fraction expression for the generating function

F (w) = F (q, z, w, x0, x1) =
∑

n≥0

Tnw
n.

Formula (1) yields the following recurrence for the polynomials Tn:

Tn = z Tn−1 + x0q Tn−2 + x1q
2zTn−3 +

n−2∑

i=2

qi+1 Ti Tn−2−i, n ≥ 1

with initial value T0 = 1.
Now we multiply the previous identity by wn and sum up for n ≥ 1:

∑

n≥1

Tnw
n =

∑

n≥1

z Tn−1w
n + x0q

∑

n≥2

Tn−2w
n

+ x1q
2z

∑

n≥3

Tn−3w
n + q

∑

n≥2

n−2∑

i=2

qi Ti Tn−2−iw
n,

hence getting

F (w) − 1 = wzF (w) + w2x0qF (w) + w3q2x1zF (w) + w2q(F (qw) − 1 − qwz) · F (w).

From the previous equality we have

F (w) =
1

1 − wz − qw2(x0 − 1) + zq2w3(1 − x1) − w2qF (qw)
.

This yields the following continued fraction expansion for F (w):

F (w) =
1

1 + a0(w)w −
b1w

2

1 + a1(w)w −
b2w

2

1 + a2(w)w − · · ·

,

where
ai(w) = −zqi + q2i+1w(1 − x0) + zq3i+2w2(1 − x1) and bi = q2i−1.
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Specializing x0 = x1 = 1 we get

F (q, z, w, 1, 1) =
1

1 − wz −
qw2

1 − qwz −
q3w2

1 − q2wz −
q5w2

1 − q3wz − · · ·

.

Note that the last expression can be obtained also from Formula (10.48) in [19] setting
bh = zqhw and λk = q2k−1w2.

We recall that the Hankel matrix Hn of order n + 1 of a sequence (un)n∈N is the (n +
1) × (n + 1) matrix whose (i, j)-th entry is ui+j where the indices range between 0 and n.
The Hankel transform of the sequence (un) is the sequence (vn)n∈N where

vn = detHn = det




u0 u1 . . . un

u1 u2 . . . un+1

· · · · · · . . . · · ·
un un+1 . . . u2n


 .

Many different evaluations of Hankel transforms are known in the literature. An exhaus-
tive review of different methods for determinant evaluations, including Hankel determinants,
is given in the papers by Krattenthaler [17] and [18].

Now, [18, Theorem 29] implies, after a trivial calculation, that the Hankel matrix Hn of
the sequence (Tn(q, z, 1, 1))n∈N has determinant given by

detHn = q
n(n+1)(2n+1)

6 .

In particular the previous determinant does not depend on z.
Note that for q = z = 1 the previous result reduces to the well known fact that the

Hankel transform of the sequence of Motzkin numbers is the sequence identically equal to 1.

3 Catalan tunnel polynomials

In this section we consider the polynomials

CTn(λ0, λ1, . . . λn−1;µ0, µ1, . . . , µn−1) := MT2n(λ0, 0, λ1, 0, . . . , λn−1;µ0, 0, µ1, 0, . . . µn−1; 0).
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For 0 ≤ n ≤ 4 these polynomials are

CT0 = 1

CT1 = λ0µ0

CT2 = λ0λ1µ
2
0 + λ2

0µ0µ1

CT3 = λ0λ1λ2µ
3
0 + λ2

0λ1µ
2
0µ1 + λ2

0λ2µ
2
0µ1 + λ2

0λ1µ
2
0µ2 + λ3

0µ0µ1µ2

CT4 = λ0λ1λ2λ3µ
4
0 + λ2

0λ1λ2µ
3
0µ1 + λ2

0λ1λ3µ
3
0µ1 + λ2

0λ2λ3µ
3
0µ1 + λ3

0λ2µ
2
0µ

2
1 + λ2

0λ
2
1µ

3
0µ2

+ λ2
0λ1λ3µ

3
0µ2 + λ3

0λ1µ
2
0µ1µ2 + λ3

0λ3µ
2
0µ1µ2 + λ2

0λ1λ2µ
3
0µ3 + λ3

0λ1µ
2
0µ1µ3 + λ3

0λ2µ
2
0µ1µ3

+ λ3
0λ1µ

2
0µ2µ3 + λ4

0µ0µ1µ2µ3.

Theorem 4 implies

CTn(λ0, λ1, . . . λn−1;µ0, µ1, . . . , µn−1) = CTn(µ0, µ1, . . . , µn−1;λ0, λ1, . . . λn−1). (2)

In the following the polynomial CTn(λ0, λ1, . . . λn−1;µ0, µ1, . . . , µn−1) will be denoted by
CTn, for short.

Formula (1) gives the following recurrence for the polynomials CTn:

CTn =
n−1∑

i=0

λi µn−1−i CTi CTn−1−i, n ≥ 1, (3)

with initial value
CT0 = 1.

As in the case of Motzkin polynomials, the above recurrence can be seen as a consequence
of the last return decomposition of a Dyck path.

Notice that the polynomial CTn can be defined as a sum of monomials

CTn =
∑

p∈Cn

m̂(p),

where Cn is the set of Dyck paths of semilength n and m̂(p) is defined as follows. We associate
with every step S either the variable λ t(S)

2

if S is an up step, or the variable µ t(S)
2

if S is an

down step (this definition is well posed, since in a Dyck path a weak tunnel is always of even
length). Then, the associated monomial m̂(p) is the product of the variables of every step
of p. Notice that

• the exponent of λ0 in m̂(p) exceeds by one the number of occurrences of UU in p, since
an up step such that the weak tunnel preceding it of length 0 is either the initial up
step or the second up step of a double rise.

• Similarly, the exponent of µ0 in m̂(p) is the number of peaks in p. As a consequence,
denoting by i the exponent of λ0 and by j the exponent of µ0 in m̂(p), we have
i + j = n + 1.
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• The exponent of λ1 in m̂(p) is the number occurrences of UUDU in p increased by one
if p begins with UDU .

• The exponent of µ1 in m̂(p) is the number occurrences of UUDD in p.

3.1 Catalan specializations

As in the case of the polynomials MTn, we consider many specializations of the polynomials
CTn, which give rise to some well-known combinatorial sequences.

a. Obviously, CTn(1, 1, . . . ; 1, 1, . . .) is the n-th Catalan number cn (see sequence A000108
in [25]).

b. CTn(1, 1, . . . ; q, 1, 1, 1, . . .) is the n-th Narayana polynomial, namely, the generating
polynomial of sequence Nn,k, where Nn,k is the number of Dyck paths of semilength n
with k peaks (see sequence A001263 in [25]). On the other hand, by identity (2), we
have CTn(1, 1, . . . ; q, 1, 1, 1, . . .) = CTn(q, 1, . . . ; 1, 1, 1, 1, . . .), namely, Nn,k is also the
number of Dyck paths of semilength n with k− 1 double rises. Recalling that in every
Dyck path the sum of the numbers of peaks and double rises equals the semilength,
the symmetry of the Catalan tunnel polynomials gives a further combinatorial proof
of the identity Nn,k = Nn,n+1−k.

c. The coefficient of µi
1 in CTn(1, 1, . . . ; 1, µ1, 1, 1, 1, . . .) is the number of Dyck paths of

semilength n with i occurrences of UUDD, and also the number of  Lukasiewicz paths
of length n with i peaks (see sequence A098978 in [25]). We recall that a  Lukasiewicz
path of length n is a lattice path starting at the origin and ending at (n, 0) whose steps
are of the type (1, j), j = 1, 0,−1,−2, . . ., with the restriction that these paths cannot
go below the x-axis. It is known that the number of all  Lukasiewicz paths of length n
is the n-th Catalan number (see [12]).

d. If n ≥ 2, CTn(1, 1, . . . ; 1, 1, 0, 0, . . .) is the (n − 2)-th Fibonacci number (see sequence
A000045 in [25]), since it counts Dyck paths that are obtained by juxtaposing subpaths
either of the form UD, or UUDD. Moreover, if we consider CTn(1, 1, . . . ; a, b, 0, 0, . . .) =
Fn(a, b), we obtain a family of polynomials in two variables satisfying the recurrence

Fn(a, b) = aFn−1(a, b) + abFn−2(a, b),

with the initial conditions F0(a, b) = 1 and F1(a, b) = a. In [3, p. 542], the authors
consider a slightly different family {n}s,t of Fibonacci polynomials. More precisely,

{n + 1}s,t = Fn

(
s,

t

s

)
.

11

https://oeis.org/A000108
https://oeis.org/A001263
https://oeis.org/A098978
https://oeis.org/A000045


e. Recall that a Schröder path from (0, 0) to (2n, 0) is a lattice path starting at (0, 0),
ending at (2n, 0), consisting of up steps, down steps, and double horizontal steps, and
never going below the x-axis. Such paths are counted by the large Schröder numbers
(see sequence A006318 in [25]). CTn(1, 1, . . . ; 2, 1, 1, . . .) is the n-th large Schröder
number. In fact, define a blue/red Dyck path to be a Dyck path where every peak is
colored either blue or red. A blue/red Dyck path of semilength n can be bijectively
associated with a Schröder path from (0, 0) to (2n, 0) as follows. Replace every blue
peak with a double horizontal step and let all other steps unchanged. More generally,
CTn(1, 1, . . . ; k, 1, 1, . . .) counts large Schröder paths where double horizontal steps may
have a color taken from the set {1, 2, . . . , k − 1}.

f. The normalized area Ã(d) of a Dyck path d is equal to

Ã(d) =
A(d) − n

2
,

where A(d) is the area between the path d and the x-axis defined above.

For example, the normalized area of the Dyck path

is 4,

while its area is 12.

The arguments of Section 2.2 imply that the coefficient of qk in CTn(1, 1, . . . ; 1, q, q2, . . .)
is the number of Dyck paths of semilength n with normalized area equal to k. Hence,
the polynomial CTn(1, 1, . . . ; 1, q, q2, . . .) is nothing but the Carlitz-Riordan q-analogue
of Catalan numbers (see [13]).

g. The polynomials Cn(q, t) = CTn(1, q, q2, . . . ; 1, t, t2, . . .) are the q, t-generalization of
the Carlitz-Riordan polynomials appearing in [1]. In fact, by Formula (3) we have the
following recurrence for such polynomials:

Cn(q, t) =
n−1∑

k=0

qktn−1−k
Ck(q, t)Cn−1−k(q, t), n ≥ 1,

with
C0(q, t) = 1.

12
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This recurrence is precisely the same that defines the q, t-polynomials in [1]. In the
same work the authors describe a combinatorial interpretation for these polynomials
in terms of maximal chains in the non-crossing partition lattice.

3.2 A joint Catalan distribution

Consider the polynomials ĈTn(q, µ0, µ1) = CTn(1, 1, . . . ;µ0, µ1q, q
2, . . .) which take into ac-

count the distribution of normalized area, peaks and occurrences of UUDD. Proceeding as
above, we consider the generating function

G(q, w, µ0, µ1) =
∑

n≥0

ĈTn(q, µ0, µ1)w
n,

and we get the following continued fraction expansion for G(q, w, µ0, µ1):

G(q, w, µ0, µ1) =
1

1 + a0(w)w −
b1w

1 + a1(w)w −
b2w

1 + a2(w)w −
b3w

· · ·

, (4)

where ai(w) = −µ0q
i + qi + µ0q

2i+1w(1 − µ1) and bi = qi−1.
Note that, setting µ0 = 1, µ1 = 1 and w = −aq in (4), we get a continued fraction studied

by Ramanujan (see [5, p. 30]).

4 Binary trees

It is well known that Catalan numbers enumerate also binary trees. The relationship between
Dyck paths and binary trees yields a further specialization of Catalan Tunnel polynomials.

A binary tree is a rooted, unlabeled tree where every node is either a leaf (node without
children) or an internal node having two children (see [16, p. 312]).

Let t be a binary tree. We associate with every internal node v of t the pair (aℓ(v), ar(v)),
where aℓ(v) (respectively ar(v)) is the number of internal nodes of the left (right) subtree of
v. Let Int(t) denote the set of internal nodes of t.

For every binary tree t, the (internal) path length l(t) is defined to be the sum of the
length of the paths from the root to each internal node (see [16, p. 405]). In symbols,
denoting by ṽ the root of t,

l(t) =
∑

v∈Int(t)

d(v, ṽ).

We have

13



Proposition 7. For every binary tree t,

l(t) =
∑

v∈Int(t)

(aℓ(v) + ar(v)).

Proof. We proceed by induction on the number n of internal nodes of t. If n = 0 the
proposition is trivial. Otherwise, let vr and vℓ be the right and the left child of ṽ, respectively.
Then

l(t) =
∑

v∈Int(t)

d(v, ṽ) =
∑

v∈Int(tℓ)

(d(v, vℓ) + 1) +
∑

v∈Int(tr)

(d(v, vr) + 1)

=
∑

v∈Int(tℓ)

d(v, vℓ) +
∑

v∈Int(tr)

(d(v, vr) + al(ṽ) + ar(ṽ)).

By the inductive hypothesis we have
∑

v∈Int(tℓ)

d(v, vℓ) = l(tℓ) =
∑

v∈Int(tℓ)

(aℓ(v) + ar(v)),

and similarly for tr. This gives the assertion.

It is well known (see [16]) that binary trees with n internal nodes are enumerated by the
n-th Catalan number cn, hence, they are in bijection with Dyck paths of semilength n.

A bijection f between these two sets can be defined as follows. Let t be a binary tree.
Denote by tℓ and tr the left and right subtree of the root. Then the image of the tree t is
defined recursively as

f(t) =

{
the empty path, if t is the empty tree;

f(tr)Uf(tℓ)D, otherwise.

This definition implies that at every internal node of t corresponds a pair of steps Ū and
D̄ that face each other (namely, the segment joining the last point of Ū and the first point
of D̄ is a weak tunnel). It is possible to determine the weights of Ū and D̄ directly from t.
In fact, we obtain the following proposition.

Proposition 8. Let t be a binary tree and p = f(t). Consider an internal node v and let Ū
and D̄ denote the steps of p corresponding to v. Then the weights of Ū and D̄ are λar(v) and

µaℓ(v). In particular

m̂(p) =
∏

v∈Int(t)

λaℓ(v)µar(v).

Proof. By the recursive definition of the map f, it suffices to prove the assertion for the root
ṽ of t. Note that, since f(t) = f(tr)Ūf(tℓ)D̄, the root ṽ corresponds precisely to the pair of
steps Ū and D̄. On the other hand, the step Ū has weight λh, where h is the semilength of
the path f(tr), namely, the number of internal nodes of the tree tr. Similarly, the step D̄ has
weight λi, where i is the number of internal nodes of the tree tℓ.

14



Example 9. Consider the binary tree t given by

(4,1)

(3,0)

(1,1)

(0,0) (0,0)

(0,0)

where the internal nodes are circled and the leaves are squared. In each internal node we
indicate the pair (aℓ(v), ar(v)). This tree corresponds to the Dyck path p

x0 y0
x1

x0

x0

y0
x1

x0

y0

y1

y3

y4

As an immediate consequence of the previous results we get

Theorem 10. The coefficient of qk in the polynomial CTn(1, q, q2, . . . ; 1, q, q2, . . .) is the

number of binary trees with n internal nodes and path length k.

Observe that the number of binary trees with n internal nodes and path length k is
sequence A138157 in [25].

Let H(q, w) =
∑

n≥0 CTn(1, q, q2, . . . ; 1, q, q2, . . .)wn be the generating function of these
polynomials. Recurrence (3) yields

CTn(1, q, q2, . . . , 1, q, q2, . . .) =

qn−1
∑n−1

i=0 CTi(1, q, q
2, . . . , 1, q, q2, . . .) · CTn−1−i(1, q, q

2, . . . , 1, q, q2, . . .).

The previous identity allows us to deduce the following functional equation for H(q, w):

H(q, w) = w ·H(q, qw)2 + 1.

Note that this functional equation is the same obtained directly by Knuth in [16, p. 595].
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5 Partial and free Motzkin paths

In [6], Chen et al. introduce the notions of partial Motzkin path and free Motzkin path with
the aim to generalize a matrix identity due to Shapiro (see [24]).

In this section we introduce multi-variable polynomials associated with a partial Motzkin
path and to a free Motzkin path, study their properties and specializations and derive a
matrix identity that further generalizes that of Chen et al.

First of all we recall the definitions of partial Motzkin path and free Motzkin path,
following [6]. A partial Motzkin path of length n is a prefix of length n of a Motzkin path,
namely, a Motzkin path in which one drops the requirement that the last point lies on the
x-axis. A free Motzkin path of length n is a lattice path in the plane that starts at (0, 0)
and consists of n steps arbitrarily chosen among up, down and horizontal steps, in other
terms, it is a partial Motzkin path without the restriction to lie above the x-axis. Let PM n

and FM n denote the sets of partial Motzkin paths and free Motzkin paths of length n,
respectively.

Suppose that the last point of a partial Motzkin path d has height j. Then the path d
contains j up steps, one for each level, such that to their right there are no other steps having
the same level. These up steps are called R-visible in [6]. Now we associate with each partial
Motzkin path d a monomial m(d), as follows. Each R-visible up step of d is labelled with
the weight x∞. Each other step in d is labelled considering the corresponding weak tunnel as
done in Section 2 (the notion of weak tunnel makes sense also in this case). The monomial
m(d) is the product of the weights of the steps of d.

Example 11. In the following partial Motzkin path

x∞

x0
x3

z x0

y1

y0

y2

x∞

x∞

every step has been labelled with its weight. Here the first up step and the last two up steps
are the R-visible ones, and m(d) = x3

∞x2
0x3y0y1y2z.

Now consider a free Motzkin path d. In this path there can be both R-visible up steps
and L-visible down steps, where an L-visible down step is a down step with no other steps to
its left. We associate with each free Motzkin path a monomial in the usual way assigning to
each L-visible down step the weight y∞ and labelling all the other steps as done for partial
Motzkin paths.

Let d be a partial Motzkin path whose last point has height j. An elevation line for d is
any line of the form y = h with 0 ≤ h ≤ j.

We have the following.

Proposition 12. There is a bijection El between partial Motzkin paths with a specified

elevation line and free Motzkin paths. If d is a partial Motzkin path with elevation line y = h

16



and associated monomial m(d) then

m(El(d)) =

(
y∞
x∞

)h

m(d).

Proof. The map El is the same considered in [6] and called elevation. Consider a partial
Motzkin path d with an elevation line y = h. Then El(d) is the free Motzkin path obtained
from d by replacing each R-visible up step below the elevation line with a down step. The
map is clearly invertible and the second assertion follows from the fact that all the new down
steps created in this way are L-visible.

Example 13. Consider the same partial path d of the previous example and the elevation
line y = 2. Then El(d) is given by

y∞

x0
x3

z x0

y1

y0

y2 y∞
x∞

Now we associate with the sets PM n and FM n the polynomials PTn and FTn defined
in the following way

PTn =
∑

d∈PMn

m(d),

and
FTn =

∑

d∈FMn

m(d).

We need to further refine the polynomials PTn. Let PM
(j)
n be the subset of PM n

consisting of those partial Motzkin paths whose last point has height j. We set PT
(j)
n to be

the polynomial

PT (j)
n =

∑

d∈PM
(j)
n

m(d).

As a consequence we have

PTn =
n∑

j=0

PT (j)
n .

Note that PT
(0)
n = MTn .

Now we are in position to prove the main result of this Section.

Theorem 14. Set R =
y∞
x∞

. Then
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MT0 0 0 0 0 . . .

MT1 PT
(1)
1 0 0 0 . . .

MT2 PT
(1)
2 PT

(2)
2 0 0 . . .

MT3 PT
(1)
3 PT

(2)
3 PT

(3)
3 0 . . .

MT4 PT
(1)
4 PT

(2)
4 PT

(3)
4 PT

(4)
4 . . .

...
...

...
...

...
. . .




×




1
1 + R

1 + R + R2

1 + R + R2 + R3

1 + R + R2 + R3 + R4

...




=




FT0

FT1

FT2

FT3

FT4
...



. (5)

Proof. As in [6], we write the previous identity in a one-row-form:

n∑

j=0

PT (j)
n (1 + R + . . . + Rj) = FTn, ∀n ∈ N.

Since each partial Motzkin path whose last point has height j can have elevation lines
y = 0, y = 1, . . . y = j, Proposition 12 implies that the left hand side of the previous identity
gives precisely the polynomial associated with free Motzkin paths of length n, as the right
hand side does.

The first few lines of the previous matrix identity read




1 0 0
z x∞ 0

x0y0 + z2 2x∞z x2
∞


×




1
1 + R

1 + R + R2


 =




1
x∞ + y∞ + z

x2
∞ + y2∞ + x∞y∞ + 2x∞z + 2y∞z + x0y0 + z2


 .

Observe that when the polynomials

MTn = MTn(x0, x1, x2, . . . , xn−2; y0, y1, y2, . . . , yn−2; z),

PT (j)
n = PT (j)

n (x0, x1, x2, . . . , xn−2, x∞; y0, y1, y2, . . . , yn−2; z),

and
FTn = FTn(x0, x1, x2, . . . , xn−2, x∞; y0, y1, y2, . . . , yn−2, y∞; z),

are evaluated at z = k − t− 1, xi = 1 for every 0 ≤ i ≤ ∞ and yi = t for every 0 ≤ i ≤ ∞
Equation (5) reduces to the formula proved in [6]. This last formula further reduces to the
Shapiro identity [24] when k = 4 and t = 1.

Now we study the polynomials PT
(j)
n and FTn in their own right.

First of all it is easy to see, considering the last return decomposition, that the polynomi-
als PT

(j)
n satisfy the following recurrence relation involving the Motzkin tunnel polynomials:

PT (j)
n =

{
MTn, if j = 0;∑n−1

i=0 x∞ MTi PT
(j−1)
n−i−1, otherwise.

. (6)
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Hence for the generating function P (j)(w) =
∑

n≥0 PT
(j)
n wn and P (w) =

∑
n≥0 PTnw

n

we have
P (j)(w) = wx∞ MT(w)P (j−1)(w) = (wx∞)j MT(w)j+1, (7)

and

P (w) =
MT(w)

1 − x∞w MT(w)
, (8)

where MT(w) =
∑

n≥0 MTnw
n.

As a consequence the matrix [PT
(j)
i ]i,j≥0 is a Riordan array. In the notation of [23] it is

the Riordan array R(MT(w), x∞ MT(w)) .
Since the generating function of the column vector in the left hand side of Equation (5)

is

R(w) =
∑

j≥0

(1 + R + . . . + Rj)wj =
1

1 −R

(
1

1 − w
− R

1 −Rw

)
=

1

(1 − w)(1 −Rw)
,

we deduce immediately that the generating function F (w) =
∑

n≥0 Fnw
n of the column

vector of the right hand side of Equation (5) is

F (w) =
MT(w)

(1 − wx∞ MT(w))(1 − wRx∞ MT(w))
=

MT(w)

(1 − wx∞ MT(w))(1 − wy∞ MT(w))
.

As an application we can find the multivariate generating function F̂ (w) (P̂ (w)) for the
joint distribution of peaks, occurrences of UHD, number of R-visible and L-visible steps
and length over free Motzkin paths (partial Motzkin paths, respectively). We recall that
the coefficient of yj0 in MTn(1, . . . , 1; y0, 1, . . . , 1; 1) is the number of Motzkin paths of length
n with j peaks, while the coefficient of yj1 in MTn(1, 1, . . . ; 1, y1, 1, . . . ; 1) is the number of
Motzkin paths of length n with j occurences of UHD. As a consequence the generating
functions we are looking for are

F̂ (w) =
∑

n≥0

FTn(1, . . . , 1, x∞; y0, y1, 1, . . . , 1, y∞; z)wn,

and
P̂ (w) =

∑

n≥0

PTn(1, . . . , 1, x∞; y0, y1, 1, . . . , 1; z)wn.

From the results of Subsection 2.3 and recalling that MTn(1, . . . , 1; y0, y1, . . . , 1; z) =
MTn(x0, x1, . . . , 1; 1, 1, . . . , 1; z) we deduce that

∑

n≥0

MTn(1, . . . , 1; y0, y1, . . . , 1; z)wn =
−b−

√
b2 − 4w2

2w2
,
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where b = −1 + wz + w2y0 − w2 + w3y1z − w3z.
Hence

P̂ (w) =
−b−

√
b2 − 4w2

2w2 + x∞wb + x∞w
√
b2 − 4w2

, (9)

and

F̂ (w) =
2(−b−

√
b2 − 4w2)

(2w + x∞b + x∞

√
b2 − 4w2)(2w + y∞b + y∞

√
b2 − 4w2)

. (10)

For example, specializing (9) and (10) in x∞ = 1, y∞ = 1, y1 = 1, we get the generating
function of the distribution of peaks over partial Motzkin paths and free Motzkin paths (see
sequences A132893 and A181371 in [25]).

Consider now the polynomials An(x∞, z) = PTn(1, 1, . . . , 1, x∞; 1, . . . , 1; z). Our aim is
to evaluate the Hankel transform of the sequence (An)n∈N .

Theorem 15. The sequence (An)n∈N has Hankel transform (1)n∈N.

Proof. Let Hm and Ĥm, m ≥ 0, be the Hankel matrices of the sequences (Mn)n∈N and
(An)n∈N , respectively, where Mn = MTn(1, 1, . . . , 1; 1, . . . , 1; z) and let Bm = [bi,j ]i,j≥0 the
m×m matrix defined as follows:

bi,j =





1, if i = j;

x∞Aj−i−1, if j > i;

0, otherwise.

.

By the recurrence (6) we have

An = Mn +
n−1∑

j=0

Mjx∞An−1−j =
n∑

j=0

Mjbj,n. (11)

As a consequence of the previous identity, we have that the (i, j − 1)-th element of the
product BT

m ·Hm ·Bm is

∑

0≤h≤j−1

∑

0≤k≤i

bk,iMk+hbh,j−1 =
∑

0≤h≤j−1

∑

0<k≤i

bk,iMk+hbh,j−1 + b0,i
∑

0≤h≤j−1

Mhbh,j−1

=
∑

0≤h≤j−1

∑

0≤k≤i−1

bk+1,iMk+1+hbh,j−1 + b0,iAj−1

=
∑

0<h≤j

∑

0≤k≤i−1

bk+1,iMk+1+h−1bh−1,j−1 + x∞Ai−1Aj−1

=
∑

0<h≤j

∑

0≤k≤i−1

bk,i−1Mk+hbh,j + Ai−1b0,j

=
∑

0≤h≤j

∑

0≤k≤i−1

bk,i−1Mk+hbh,j,
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that is the (i−1, j)-th element of BT
m ·Hm ·Bm, showing that this last matrix is constant along

antidiagonals. Moreover the first row of this matrix is easily seen to be equal to (Ai)i≥0.
Hence we have the matrix identity

Ĥm = BT
m ·Hm ·Bm.

Since detBm = 1 ∀m ≥ 0, det Ĥm = detHm = 1 and we get the assertion.

Note that the previous result can be also obtained as a consequence of the results con-
tained in [20].
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