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Abstract

Mills showed that there exists a constant A such that ⌊A3n⌋ is prime for every

positive integer n. Kuipers and Ansari generalized this result to ⌊Acn⌋ where c ∈ R

and c ≥ 2.106. The main contribution of this paper is a proof that the function ⌈Bcn⌉
is also a prime-representing function, where ⌈X⌉ denotes the ceiling or least integer

function. Moreover, the first 10 primes in the sequence generated in the case c = 3 are

calculated. Lastly, the value of B is approximated to the first 5500 digits and is shown

to begin with 1.2405547052 . . ..

1 Introduction

Mills [6] showed in 1947 that there exists a constant A such that ⌊A3n⌋ is prime for all
positive integers n. Kuipers [5] and Ansari [1] generalized this result to all ⌊Acn⌋ where
c ∈ R, c ≥ 2.106, i.e., there exist infinitely many A’s such that the above expression yields a
prime for all positive integers n. Caldwell and Cheng [2] calculated the minimum constant
A for the case c = 3 up to the first 6850 digits (A051021), and found it to be approximately
equal to 1.3063778838 . . .. This process involved computing the first 10 primes bi in the
sequence generated by the function (A051254), with b10 having 6854 decimal digits.

The main contribution of this paper is a proof that the function ⌈Bcn⌉ satisfies the same
criteria, where ⌈X⌉ denotes the ceiling function (the least integer greater than or equal toX).
In other words, there exists a constant B such that for all positive integers n, the expression
⌈Bcn⌉ yields a prime for c ≥ 3, c ∈ N. Moreover, the sequence of primes generated by such
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functions is monotonically increasing. Lastly, analogously to [2] the case c = 3 is studied
in more detail and the value of B is approximated up to the first 5500 decimal digits by
calculating the first 10 primes bi of the sequence.

In contrast to Mills’ formula and given that here the floor function is replaced by a ceiling
function, the process of generating the prime number sequence P0, P1, P2, . . . involves taking
the greatest prime smaller than P c

n at each step instead of smallest prime greater than P c
n, in

order to find Pn+1. As a consequence, the sequence of primes generated by ⌈Bcn⌉ is different
than the one generated by ⌊Acn⌋ for the same value of c and the same starting prime (apart
from the first element of course).

2 The prime-representing function

This paper begins with a proof of the case c = 3 and will proceed to a generalization of the
function to all c ≥ 3, c ∈ N.

By using Ingham’s result [4] on the difference of consecutive primes:

pn+1 − pn < Kp5/8n ,

and analogously to Mills’ reasoning [6], we construct an infinite sequence of primes P0, P1, P2, . . .
such that ∀n ∈ N : (Pn − 1)3 + 1 < Pn+1 < P 3

n using the following lemma.

Lemma 1. ∀N > K8 + 1 ∈ N : ∃p ∈ P : (N − 1)3 + 1 < p < N3, where P denotes the set of

prime numbers.

Proof. Let pn be the greatest prime smaller than (N − 1)3.

(N − 1)3 < pn+1

< pn +Kp5/8n

< (N − 1)3 +K
(

(N − 1)3
)5/8

(since pn < (N − 1)3)

< (N − 1)3 + (N − 1)2 (since N > K8 + 1)

< N3 − 2N2 +N

< N3.

Note that since (N−1)3 < pn+1, (N−1)3+1 < pn+1 since (N−1)3+1 = N(N2−3N+3)
is not prime.

Given the above we can construct an infinite sequence of primes P0, P1, P2, . . . such that
for every positive integer n, we have: (Pn − 1)3 + 1 < Pn+1 < P 3

n .
We now define the following two functions:
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∀n ∈ Z
+ : un = (Pn − 1)3

−n

,

∀n ∈ Z
+ : vn = P 3−n

n .

The following statements can immediately be deduced:

• un < vn,

• un+1 = (Pn+1 − 1)3
−n−1

> ((Pn − 1)3 + 1)− 1)
3−n−1

= (Pn − 1)3−n = un,

• vn+1 = P 3−n−1

n+1 < (P 3
n)

3−n−1

= P 3−n

n = vn.

It follows that un forms a bounded and monotone increasing sequence.

Theorem 2. There exists a positive real constant B such that ⌈B3n⌉ is a prime-representing

function for all positive integers n.

Proof. Since un is bounded and strictly monotone, there exists a number B such that

B := lim
n→∞

un.

From the above deduced properties of un and vn, we have

un < B < vn,

(Pn − 1)3
−n

< B < P 3−n

n ,

Pn − 1 < B3n < Pn.

Theorem 3. There exists a positive real constant B such that ⌈Bcn⌉ is a prime-representing

function for c ≥ 3, c ∈ N and all positive integers n.

Proof. We can use the generalizations to Mills’ function as shown by Kuipers [5] and Dudley
[3] in order to show that ⌈Bcn⌉ is also a prime-representing function for c ≥ 3, c ∈ N. This
proof is short as it is essentially identical to the one presented above, with the following
modifications.

As shown by Kuipers [5] for Mills’ function, we first define a = 3c − 4, b = 3c − 1.
Therefore a/b ≥ 5/8. This means that in Ingham’s equation there exists a constant K ′ such
that

pn+1 − pn < K ′pa/bn .

Lemma 1 can then be modified by taking N > K ′b + 1, defining pn as the greatest
prime smaller than (N − 1)c and noticing that ca + 1 = b(c− 1). Analogously to the proof
in Lemma 1, we quickly obtain the bounds (N − 1)c + 1 < p < N c. This means that
we can construct a sequence of primes P0, P1, P2, . . . such that for every positive integer n,
(Pn − 1)c + 1 < Pn+1 < P c

n.
This is then concluded with a similar reasoning as in the proof of Theorem 2.
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3 Numerical calculation of B

In this section, a numerical approximation of B is presented for the case c = 3. Mills [6]
suggested using the lower bound K = 8 for the first prime in the classical Mills function
⌊A3n⌋, where K is the constant defined in Ingham’s paper [4]. Other authors, including
Caldwell and Cheng [2], decided to begin with the prime 2 and then choose the least possible
prime at each step. In this case, since the ceiling function replaces the floor function, we
choose the greatest possible prime smaller than P 3

n as the next element Pn+1.
If pi denotes the ith prime in the sequence, we obtain

• p1 = 2

• p2 = 7

• p3 = 337

• p4 = 38272739

• p5 = 56062005704198360319209

• p6 = 17619999581432728735667120910458586439705503907211069\
6028654438846269

• p7 = 54703823381492990628407924713718713957740513297193414\
21259587335767096542227048457036456872683352033529421007878\
29141860830768725102385452609882503551811073140339908096068\
8125590506176016285837338837682469

The primes p8, p9 and p10 are far too large to show in this paper — for instance p10 has
5528 decimal digits. The primes pi for i ≤ 8 were verified using a deterministic primality
test in Wolfram Mathematica 11 with the ProvablePrimeQ function in the PrimalityProving
package, while p9 and p10 were certified prime by the Primo software [7]. The certification
of p10 took 14 hours and 23 minutes on an Intel i7-4770 CPU and 4GB RAM. The prime
certificates for p9 and p10 as well as the primes themselves can be found alongside this paper
as auxiliary files.

The value of B was calculated up to its first 5500 decimal digits. The first 600 are
presented below:
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1.2405547052 5201424067 4695153379 0034521235 3396725255
9232034386 1886622104 9111642316 9209174137 7064313608
3109555650 9480848158 9481662421 8378961303 7426392535
6658242301 8524802142 1960037621 1464734105 8229918628
4182439221 9437396337 9442594273 8936874985 9158491115
7886891108 4262398559 2731605607 5719554304 2915944781
6278755834 4774412491 8125993063 4590081972 8945860313
1303247244 0907981721 7119324606 1009855753 6063847008
6985820925 6038920740 0817313213 1691077511 3322609476
3239264899 5703729933 8452155290 5152647430 8960522935
3735771869 0936560934 8000430515 4856069064 6309177739
2832001365 6550953673 1549789328 9032942357 7708168137
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