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Abstract

We use restricted growth words and multivariate generating functionology to obtain
the ordinary generating function for the number of partitions of an n-set into k blocks
of odd (respectively, even) cardinality.

1 Introduction

The Stirling numbers of the second kind S(n, k) enumerate the partitions of the set [n] =
{1, 2, . . . , n} into k blocks. They satisfy the ordinary generating function identity

∑

n≥k

S(n, k) · tn−k =
1

(1− t) · (1− 2t) · · · (1− kt)
. (1)

Recall that the complete symmetric function hm(x1, x2, . . . , xk) satisfies the generating func-
tion identity

∑

m≥0

hm(x1, x2, . . . , xk) · t
m =

1

(1− x1t) · (1− x2t) · · · (1− xkt)
.

1

mailto:richard.ehrenborg@uky.edu
mailto:dustin.hedmarky@uky.edu
mailto:cyrus.h@uky.edu


The expression S(n, k) = hn−k(1, 2, . . . , k) for the Stirling numbers of the second kind follows
directly. For a reference on Stirling numbers, see [12, Section 1.9].

Let Tn,k and Un,k denote the number of set partitions of the set [n] into k blocks where each
block has odd (respectively, even) cardinality. These numbers have been well-studied in the
literature. The classical approach is via their exponential generating functions sinh(t)k/k!
and (cosh(t) − 1)k/k! or via a more bijective route; see [5, 10] and [1], respectively. We
study the ordinary generating functions of these numbers using restricted growth words and
multivariate generating functions.

In this paper we use the natural bijection between partitions and restricted growth words.
Our first step is to generalize (1) to a multivariate generating function. Next, by picking up
the terms where all the powers are even/odd, we obtain expressions for the ordinary gener-
ating function of partitions with each block size being odd (respectively, even). By viewing
these expressions as sums over walks on the integers, we give explicit product expressions
for them. Here we use homogeneous bivariate generating functions, making the proofs of the
essential identities straightforward. We end with a few open questions.

2 Restricted growth words

A restricted growth word, which we abbreviate as RG-word, is a word u = u1u2 · · · un with the
entries in the positive integers such that uj ≤ max(0, u1, u2, . . . , uj−1) + 1 for all 1 ≤ j ≤ n.
Let RG(n, k) denote the set of all RG-words of length n with largest entry k. The set
RG(n, k) is in bijection with the set partitions of the set {1, 2, . . . , n} into k blocks. Namely,
given an RG-word u1u2 · · · un, construct a partition by letting elements i and j be in the
same block if ui = uj . Hence the cardinality of RG(n, k) is given by the Stirling number
of the second kind S(n, k). The notion of RG-words was introduced by Milne; see [7, 8, 9].
More recently, they appear in the papers [2, 3].

For an RG-word u = u1u2 · · · un in RG(n, k), let xu be the monomial xc1
1 · · · xck

k , where
for all i, ci is one less than the number of times the letter i appears in u. Note that the
monomial xu has total degree n−k. We begin by generalizing equation (1) to a multivariate
version.

Theorem 1. For a non-negative integer k the sum of the monomial of an RG-word over all
RG-words with largest entry k is given by

∑

n≥k

∑

u∈RG(n,k)

xu =
1

(1− x1) · (1− x1 − x2) · · · (1− x1 − x2 − · · · − xk)
.

Proof. Every RG-word u has a unique factorization u = 1 · w1 · 2 · w2 · · · k · wk, where wi

is a word with entries 1 through i. For any word w, let x(w) be the monomial where the
power of xi is the number of times i appears in w. Note that xu is given by the product
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x(w1) · x(w2) · · · x(wk). The result now follows by the sum

∑

wi

x(wi) =
1

1− x1 − x2 − · · · − xi

,

where wi ranges over all words with entries 1 through i.

Note that by setting xi = qi−1 · t we obtain a q-analogue of equation (1) which is due to
Gould [6]; see also [2, Thm. 4.1].

Let RGodd(n, k) denote the set of RG-words u in which each letter occurs an odd number
of times and let RGeven(n, k) denote the set of RG-words u in where each letter occurs an
even number of times. By the bijection between RG-words and partitions we have that
|RGodd(n, k)| = Tn,k and |RGeven(n, k)| = Un,k.

Theorem 2. The multivariate generating functions for RGodd(n, k) and RGeven(n, k) are
given by

∑

n≥k

∑

u∈RGodd(n,k)

xu =
1

2k
·
∑

~c

F (c1x1, c2x2, . . . , ckxk), (2)

∑

n≥k

∑

u∈RGeven(n,k)

xu =
1

2k
·
∑

~c

c1 · c2 · · · ck · F (c1x1, c2x2, . . . , ckxk), (3)

where the sums are over all vectors ~c = (c1, c2, . . . , ck) ∈ {−1, 1}k and F (x1, x2, . . . , xk) is
the generating function in Theorem 1.

Proof. This result follows from the fact that the RG-words in RGodd(n, k) have monomials
with all even powers, and the words in RGeven(n, k) have monomials with all odd powers.
All monomials containing odd powers are eliminated in the first sum and all monomials
containing even powers are eliminated in the second sum.

3 Generating functions

Let Wk(a) be the set of all walks of length k starting at a taking steps either −1 or 1. That
is, Wk(a) = {(a0, a1, . . . , ak) ∈ Z

k+1 : a0 = a, ai − ai−1 ∈ {−1, 1}}. Define the rational
generating functions Gk(s, t) and G±

k (s, t) over the set of walks starting at 0 of length k by
the sums

Gk(s, t) =
1

2k
·

∑

~a∈Wk(0)

1

(s− a0t) · (s− a1t) · · · (s− akt)
,

G±
k (s, t) =

1

2k
·

∑

~a∈Wk(0)

(−1)(k−ak)/2

(s− a0t) · (s− a1t) · · · (s− akt)
.
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Proposition 3. The generating functions Gk(s, t) and G±
k (s, t) satisfy the recursions

Gk+1(s, t) =
Gk(s− t, t) +Gk(s+ t, t)

2s
,

G±
k+1(s, t) =

G±
k (s− t, t)−G±

k (s+ t, t)

2s
,

with the initial condition G0(s, t) = G±
0 (s, t) = 1/s.

Proof. Observe that the substitution s 7−→ s− j · t translates the sequence (a0, a1, . . . , ak) j
steps up, that is,

Gk(s− j · t, t) =
1

2k
·

∑

~a∈Wk(j)

1

(s− a0t) · (s− a1t) · · · (s− akt)
.

By taking the average of Gk(s − t, t) and Gk(s + t, t), we obtain the average over all walks
beginning at ±1. Divide by s, since each term of Gk+1(s, t) contains a factor of 1/s, and
use that the set Wk+1(0) is given by the Cartesian product {(0)} × (Wk(1) ∪Wk(−1)). The
first recursion follows. The same proof applies to G±

k (s, t) by considering the difference
G±

k (s− t, t)−G±
k (s+ t, t).

Proposition 4. The generating functions Gk(s, t) and G±
k (s, t) are given by the products

Gk(s, t) =
k
∏

i=−k
i≡k (mod 2)

(s− i · t)−1, (4)

G±
k (s, t) = (2k − 1)!! · tk ·

k
∏

i=−k

(s− i · t)−1. (5)

Proof. Let gk(s, t) be the right-hand side of equation (4). We would like to prove that Gk(s, t)
and gk(s, t) are equal. Observe first that G0(s, t) = 1/s = g0(s, t). Next observe that

1

(s− (k + 1)t)
+

1

(s+ (k + 1)t)
=

2s

(s− (k + 1)t)(s+ (k + 1)t)
.

Multiply both sides by gk−1(s, t), yielding gk(s − t, t) + gk(s + t, t) = 2 · s · gk+1(s, t). This
shows that gk(s, t) satisfies the same recurrence relations as Gk(s, t).

Let g±k (s, t) be the right-hand side of equation (5). We have that G±
0 (s, t) = 1/s =

g±0 (s, t). Now consider the difference

1

(s− (k + 1)t)(s− kt)
−

1

(s+ (k + 1)t)(s+ kt)
=

2s · (2k + 1)t

(s− (k + 1)t)(s− kt)(s+ kt)(s+ (k + 1)t)
.

Multiply both sides by (2k − 1)!! · tk ·
∏k−1

i=−k+1(s− i · t)−1. This yields the recursion

g±k (s− t, t)− g±k (s+ t, t) = 2 · s · g±k+1(s, t).
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Combining these results yields the following generating functions.

Theorem 5. For a non-negative integer k the ordinary generating function for the number
of RG-words where each entry occurs an odd or even number of times is Gk(1, t) or G

±
k (1, t),

respectively, that is,

∑

n≥k

Tn,k · t
n−k =

k
∏

i=−k
i≡k (mod 2)

(1− i · t)−1,

∑

n≥k

Un,k · t
n−k = (2k − 1)!! · tk ·

k
∏

i=−k

(1− i · t)−1 .

Proof. In Theorem 2, set x1 = · · · = xk = t. Note that the monomial xu becomes tn−k

and the left-hand side of (2) and (3) becomes the generating function for the cardinality
of RGodd(n, k), (respectively, RGeven(n, k)). Next, under this substitution the term on the
right-hand side corresponding to the {−1, 1}-vector ~c becomes the term corresponding to
the walk ~a satisfying ai − ai−1 = ci in the function Gk(1, t) (respectively, G

±
k (1, t)). In the

signed case we use that the sign c1 · · · ck is given by (−1)(k−ak)/2. Finally, the result follows
by Proposition 4.

When k is even the generating function for Tn,k is given by

∑

n≥k

Tn,k · t
n−k =

1

(1− 22 · t2) · (1− 42 · t2) · · · (1− k2 · t2)
.

Similarly, for k odd we have

∑

n≥k

Tn,k · t
n−k =

1

(1− 12 · t2) · (1− 32 · t2) · · · (1− k2 · t2)
.

The generating function for Un,k is given by

∑

n≥k

Un,k · t
n−k =

(2k − 1)!! · tk

(1− 12 · t2) · (1− 22 · t2) · · · (1− k2 · t2)
.

We now obtain the following expressions in terms of the complete symmetric function.

Corollary 6. The number of RG-words with odd (respectively, even) number of each entry
is given by

Tn,k =

{

hn−k

2

(22, 42, . . . , k2), k even;

hn−k

2

(12, 32, . . . , k2), k odd,

Un,k = (2k − 1)!! · hn

2
−k(1

2, 22, . . . , k2).
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Using the recurrence hm(x1, . . . , xk) = xk ·hm−1(x1, . . . , xk)+hm(x1, . . . , xk−1), this corol-
lary yields the classical recurrences for Tn,k and Un,k.

4 Concluding remarks

Is there a bijective proof of Corollary 6? Is there a multivariate refinement of Theorem 5?
For instance, is there a q-analogue of this theorem?

For more on the poset and topological structure of partitions with all blocks odd/even,
see [4, 11, 13].
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