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Abstract

We prove a conjecture that the sequence defined recursively by a1 = 1, a2 = 2, an =

4an−1−2an−2 counts the number of length-n permutations avoiding the four generalized

permutation patterns 1-32-4, 1-42-3, 2-31-4, and 2-41-3.

1 Introduction

Let (an)n≥1 be defined recursively by a1 = 1, a2 = 2, and an = 4an−1 − 2an−2 for n ≥ 3.
Callan [2, A006012] conjectured that an gives the number of permutations of length n for
which no subsequence abcd has the following two properties: b and c occur consecutively
in the permutation and max{a, c} < min{b, d}. In this paper, we prove Callan’s conjecture
by first restating it in terms of generalized pattern avoidance. Next, we show that the
permutations that avoid the relevant generalized patterns are exactly the same ones that
avoid a similar set of ordinary patterns, and we finally count the number of permutations
that avoid this set of ordinary patterns.

2 Preliminaries

First, we rewrite the conjecture in the language of pattern avoidance using the dashed
notation introduced by Babson and Steingŕımsson [1]. Therefore, we define a pattern to be a
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permutation π1 · · · πk where some of its elements may be separated by dashes. A subsequence
of a permutation is an occurrence of a pattern if

(i) all the elements have the same relative order as the elements of the pattern; and

(ii) if there is no dash between the ith and i+1th elements of the pattern, then the ith and
i+ 1th elements of the subsequence occur consecutively in the permutation.

We say that a permutation avoids a pattern if it does not contain any occurrence of the
pattern, and a permutation avoids a set of patterns if it does not contain any occurrence
of any of them. If A is a set of patterns, then Av(A) is the set of permutations that avoid
them, and Avn(A) is the set of length-n permutations that avoid them. The following two
examples should help clarify these definitions.

Example 1. The permutation 251346 contains the subsequence 5146 which is an occurrence
of the pattern 3-1-24 because the elements of the subsequence occur in the same relative order
as 3124, and the 4 and 6 are consecutive in the original permutation. Note that the 5 and 1
are also consecutive - that is allowed but not necessary.

Example 2. The permutation 251346 avoids 32-1-4; i.e.,

251346 ∈ Av6({32-1-4}) ⊆ Av({32-1-4}).

We are now ready to rewrite the conjecture using this notation. To express it and
the theorems in the next section concisely, we let A = {1-32-4, 1-42-3, 2-31-4, 2-41-3} and
B = {1-3-2-4, 1-4-2-3, 2-3-1-4, 2-4-1-3}.

Proposition 3. A subsequence of a permutation abcd has the properties that b and c occur

consecutively in the permutation and max{a, c} < min{b, d} if and only if that subsequence

is an occurrence of a pattern in A.

Proof. Let abcd be a subsequence with the two indicated properties. Suppose that a < c

and b < d. Because max{a, c} < min{b, d}, it follows that a < c < b < d, and so abcd is an
occurrence of 1-3-2-4. Also, because b and c occur consecutively, we can remove the middle
dash and say that abcd is an occurrence of 1-32-4. If a > c or b > d, we can apply the same
argument as long as we switch 1-32-4 with another appropriately chosen member of A.

Conversely, suppose that abcd is an occurrence of a pattern in A. In every pattern in A,
the first and third elements are 1 and 2, while the second and fourth are 3 and 4. Therefore,
we have max{a, c} < min{b, d}. Further, since there is no dash between the second and
third elements of any pattern in A, it must be that b and c occur consecutively.

Using Proposition 3, we rewrite Callan’s conjecture as

an = |Avn(A)|. (1)
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3 Main results

We will prove two theorems. The first is that Av(A) and Av(B) are the same set. In
particular, this theorem establishes that |Avn(A)| = |Avn(B)| for n ≥ 1. The second
theorem is that an = |Avn(B)| for n ≥ 1, so together these two theorems prove that
Equation 1 holds.

Theorem 4. Let A and B be the sets defined in Section 2. Then Av(A) = Av(B).

Proof. It is immediately clear that any permutation containing an occurrence of an element
of A must contain an occurrence of an element of B, so we only need to show that the
converse is also true. Let π be a permutation. First, recall that a subpermutation πaπbπcπd

of π is an occurrence of a pattern in A if and only if c = b+1 and max{πa, πc} < min{πb, πd}.
Similarly, a subpermutation πaπbπcπd of π is an occurrence of a pattern in B if and only if
max{πa, πc} < min{πb, πd}.

Choose any element of B, and suppose that π contains an occurrence of this element. As
noted above, this means that we can find a < b < c < d such that max{πa, πc} < min{πb, πd}.
Let e be the largest index less than c such that πe > max{πa, πc}, i.e., e = max{i : i < c, πi >

max{πa, πc}}. Because b is an element of {i : i < c, πi > max{πa, πc}}, it follows that e exists
and a < b ≤ e < e+1 ≤ c < d. Now, we claim that πaπeπe+1πd is an occurrence of a pattern
in A. Obviously, e+1 = e+1, and so it remains to check that max{πa, πe+1} < min{πe, πd}.
Because max{πa, πc} < min{πb, πd}, we conclude that πa < πd, and by the choice of e, we
also have πa < πe. Now, either e+1 = c, in which case πe+1 = πc, or else πe+1 < max{πa, πc}
because otherwise we would have chosen e+1 as the max{i : i < c, πi > max{πa, πc}} instead
of e. It follows that πe+1 ≤ max{πa, πc} < πd, πe for the same reasons as πa. Therefore,
max{πa, πe+1} < min{πe, πd} and πaπeπe+1πd is an occurrence of a pattern in A. We conclude
that the permutations avoiding the patterns of A are the same as the permutations avoiding
the patterns of B.

Armed with this theorem, we now need only show that
(

|Avn(B)|
)

n≥1
satisfies the same

recurrence as (an)n≥1. Our strategy will be as follows: given Avn−1(B), define four maps
which, when all of them are applied to all the permutations of Avn−1(B), will generate all
of the permutations of Avn(B). Then we will count how many permutations of Avn(B)
are double-counted in this way, and find that there are two for every element of Avn−2(B),
thereby establishing the recurrence.

Note that, for a permutation to avoid all the patterns of A, it must be the case that
either 1 and 2 occur consecutively (not necessarily in that order) or either 1 or 2 is the last
element of the permutation. This observation motivates the following definitions of the four
maps fbefore, fafter, fend, and fbump. Let fbefore be the function that inputs a permutation and
outputs that permutation with all elements increased by 1 and a 1 inserted immediately
before the new 2. Let fafter be the function that also inputs a permutation and outputs that
permutation with all the elements increased by 1 and a 1 inserted immediately after the new
2. Similarly, let fend be the function that inputs a permutation, increases all its elements
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by 1 and puts a 1 at the end of it, and let fbump be the function that inputs a permutation,
increases all its elements by 1, replaces the new 2 with a 1 and puts a 2 at the end. The
following example gives a concrete illustration of the four functions.

Example 5. Let π = 31542. Then fbefore(π) = 412653, fafter(π) = 421653, fend(π) = 426531,
and fbump(π) = 416532. Note that π ∈ Av(B), and so are all its images.

Suppose n ≥ 2. The following two lemmas will together establish that

fbefore(Avn−1(B)) ∪ fafter(Avn−1(B)) ∪ fend(Avn−1(B)) ∪ fbump(Avn−1(B)) = Avn(B). (2)

Lemma 6. The functions fbefore, fafter, fend, and fbump all map elements of Avn−1(B) to

elements of Avn(B).

Proof. Choose some σ ∈ Avn−1(B), and consider each function in turn. If fbefore(σ) or
fafter(σ) contains an occurrence τ of a pattern in B, then this occurrence must use the
element 1 or else τ would already be an offending pattern in σ. But then replacing 1 by 2
would again give an offending pattern in σ. Thus, no such occurrence is possible in either
fbefore(σ) or fafter(σ). In addition, if fend(σ) or fbump(σ) contains an occurrence of a pattern
in B, then this occurrence cannot use the last element because that element is either a 1
or a 2, and patterns in B only end with 3 or 4. So, this occurrence would already be an
occurrence of the pattern in σ, and therefore cannot exist.

Lemma 7. Every permutation in Avn(B) is the image of a permutation in Avn−1(B) under
at least one of the functions fbefore, fafter, fend, or fbump.

Proof. Choose some π ∈ Avn(B). As previously noted, either 1 and 2 occur consecutively
in π, or else either 1 or 2 is the final element of π. Let π′ be π with the 1 removed and
each element decreased by 1. We have introduced no new patterns, and so π′ ∈ Avn−1(B).
Suppose that 1 occurs immediately before 2 in π, then fbefore(π

′) = π. If the 1 occurs
immediately after 2 in π, then fafter(π

′) = π. If the 1 occurs at the end of π, then fend(π
′) = π.

If the 2 occurs at the end of π, then we need to define π′′, which is π with the 1 removed,
the 2 moved the position where the 1 used to be, and each element decreased by 1. Again,
we have introduced no new patterns, and so π′′ ∈ Avn−1(B), and fbump(π

′′) = π.

Now that we have established Equation 2, we can prove the main result.

Theorem 8. The sequence
(

|Avn(B)|
)

n≥1
satisfies the same recurrence as (an)n≥1.

Proof. Since Av1(B) = {1} and Av2(B) = {12, 21}, the initial conditions hold. If the
four functions fbefore, fafter, fend, and fbump all had disjoint ranges, we could conclude from
Equation 2 that |Avn(B)| = 4 · |Avn−1(B)|. Unfortunately, some permutations are counted
in the range of multiple functions. Each f outputs a certain kind of permutation: fbefore
outputs permutations where 1 immediately precedes 2, fafter outputs permutations where 2
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immediately precedes 1, fend outputs permutations where 1 occurs at the end, and fbump

outputs permutations where 2 occurs at the end. A permutation in Avn(B) that fulfills
two of these criteria will be hit twice, hence double-counted. Such permutations must be
hit once by either fbefore or fafter and again by either fend or fbump because no permutation
can be hit by both fbefore and fafter or both fend and fbump. Thus, the final two elements of
such permutations are 1 and 2 (not necessarily in that order). Let g : Avn(B) → Avn−2(B)
be defined as the function that takes a permutation, removes from it the elements 1 and
2, and reduces all other elements by 2. If we restrict g to those permutations that end in
either 12 or 21, g becomes a 2-to-1 map from the double-counted permutations of Avn(B) to
the permutations of Avn−2(B), and so the number of double-counted permutations is twice
|Avn−2(B)|. It follows that |Avn(B)| = 4 · |Avn−1(B)| − 2 · |Avn−2(B)| for n ≥ 3.
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