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Abstract

It is well known that the number of distinct non-crossing matchings of n half-
circles in the half-plane with endpoints on the x-axis equals the nth Catalan num-
ber Cn. This paper generalizes that notion of linear non-crossing matchings, as well
as the circular non-crossing matchings of Goldbach and Tijdeman, to non-crossings
matchings of curves embedded within an annulus. We prove that the number of
such matchings |Ann(n,m) | with n exterior endpoints and m interior endpoints cor-
respond to an entirely new, one-parameter generalization of the Catalan numbers with
Cn = |Ann(2n+ 1, 1) |. We also develop bijections between specific classes of annular
non-crossing matchings and other combinatorial objects such as binary combinatorial
necklaces and planar graphs. Finally, we use Burnside’s lemma to obtain an explicit
formula for |Ann(n,m) | for all integers n,m ≥ 0.

1 Introduction

The Catalan numbers are arguably the most studied sequence of positive integers in math-
ematics. Among their seemingly countless combinatorial interpretations is an identification
of the nth Catalan number Cn = 1

n+1

(
2n
n

)
with non-crossing matchings of 2n points along

the x-axis via n half-circles in the upper half-plane. In an effort to avoid confusion, we will
sometimes refer to such arrangements as linear non-crossing matchings of order n. The nth

Catalan number is also known to equal the number of ordered rooted trees with n non-root
vertices. One bijection between these two interpretations is shown in Figure 1. That map
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involves placing a vertex in each region of the complement of a matching, with the “external”
region receiving the root vertex, and then adding an edge if two regions are separated by
a half-circle. For an extended treatment of the many different interpretations of Catalan
numbers and the bijections between them, see Stanley [5].

⇔
Figure 1: The bijection between linear non-crossing matchings and ordered rooted trees.

Non-crossing matchings admit many interesting generalizations if one restricts curves to
a subset of R2 that is not the upper half-plane. One such modification is what we refer to as
circular non-crossing matchings. In a circular non-crossing matching of order n, 2n distinct
points on the unit circle are connected by a set of n non-intersecting smooth curves within
the unit circle. Circular non-crossing matchings are considered equivalent if they differ by
isotopies within the unit circle (including isotopies that “slide” endpoints), as long as those
isotopies do not result in curves or endpoints intersecting. In particular, circular matchings
related by rotation about the center of the unit circle are equivalent. However, matchings
that can only be related via reflections are considered distinct. We henceforth refer to the
number of circular non-crossing matchings of order n, modulo these relations, by C̃n.

One in-depth study of circular non-crossing matchings was undertaken by Goldbach and
Tijdeman [1]. In that work, an involved application of Burnside’s lemma showed that:

C̃n =
1

2n



∑

d|n

ϕ(n/d)

(
2d

d

)
−

1

2
Cn +

1

2
C(n−1)/2, (1)

where ϕ(k) is Euler’s totient function and Ck is taken to be zero when k is not an integer,
so that the final term only appears when n is odd.

Although not obvious from (1), there is also a bijection between circular non-crossing
matchings of order n and unrooted planar trees with n+1 nodes (n edges). For an illustration

of this bijection, see Figure 2. Notice that this correspondence identifies C̃n with the (n−1)st

entry of OEIS A002995. See Harary and Palmer [3] for further discussion of the graph-

theoretic interpretations of C̃n.

⇔

Figure 2: The bijection between circular non-crossing matchings and unrooted planar trees.
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In this paper we introduce a new, two-parameter generalization of linear non-crossing
matchings in which our smooth curves are embedded within an annulus. So let n,m be
non-negative integers such that n+m is even. We define an annular non-crossing matching

of type (n,m) to be a collection of n+m
2

non-intersecting smooth curves within the annulus
whose endpoints lie at n +m distinct points along the annulus, with n of those endpoints
on the exterior boundary of the annulus and m of those endpoints on the interior boundary
of the annulus. Two annular matchings are considered equivalent if they differ by isotopies
within the annulus (including isotopies that “slide” endpoints), as long as those isotopies
don’t result in curves or endpoints intersecting. Annular matchings that can only be related
by reflections are considered distinct; also disallowed are isotopies where an edge must pass
through the hole in the middle of the annulus. We denote the set of annular non-crossing
matchings of type (n,m), modulo these relations, by Ann(n,m). If we wish to reference the
larger collection of all annular non-crossing matchings with N total endpoints, no matter
how those endpoints are partitioned between inner and outer boundary components, we
write Ann(N). Thus Ann(N) = {M ∈ Ann(n,m) | n + m = N} and Ann(N) 6= 0 if and
only if N is even.

In many settings, it will be advantageous to sub-divide annular matchings according to
the the number of curves that do not isotope to half-circles on one boundary component. We
define a cross-cut to be a curve in an annular non-crossing matching with one endpoint on
the inside of the annulus and one endpoint on the outside of the annulus. We denote the set
of annular non-crossing matchings of type (n,m) with precisely k cross-cuts by Annk(n,m),
so that Ann(n,m) =

⋃
k Annk(n,m). See Figure 3 for several quick examples.

Figure 3: An element of Ann2(6, 4), and an element of Ann0(6, 0).

Observe that every annular matching may be isotoped so that all of its cross-cuts ap-
pear as straight chords that meet both boundary circles at a right angle. Also notice that
|Annk(n,m) | = 0 unless n − k and m − k are both even. When working with an element
of Annk(n,m), we will sometimes refer to the (n− k)/2 curves with both endpoints on the
outside of the annulus as “external half-circles”, and to the (m − k)/2 curves with both
endpoints on the inside of the annulus as “internal half-circles”.

1.1 Outline of results

The primary goal of this paper is to enumerate |Ann(n,m) | for arbitrary non-negative
integers n and m. This will be accomplished by enumerating |Annk(n,m)| for arbitrary
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integers n,m, k and then summing over k. Section 2 will begin the process with a series of
basic results about annular non-crossing matchings, laying the theoretical framework for our
subsequent enumerations. Along the way we will demonstrate a bijection between elements
of Annk(n,m) and sets of planar graphs that possess a single k-cycle and no cycles of any
other size (Proposition 5, Theorem 8).

Section 3 presents our enumerative results. Subsection 3.1 begins with a consideration
of the sets Annk(2n + k, k), a sub-case that we refer to as “maximal cross-cut annular
matchings”. Burnside’s lemma will be used to prove the following, which later appears as
Theorem 9.

Theorem 1. Let n and k be non-negative integers. Then

|Annk(2n+ k, k) | =





1, if n = k = 0;

1

2n+ k

∑

d| gcd(k,n)

ϕ(d)

(
(2n+ k)/d

n/d

)
, otherwise;

where ϕ(d) is Euler’s totient function.

Subsection 9 will also exhibit a direct bijection between these maximal cross-cut annular
matchings and binary combinatorial necklaces. If N2(n1, n2) denotes the number of binary
combinatorial necklaces with n1 black beads and n2 white beads, then Theorem 11 will prove
the following statement.

Theorem 2. Let n and k be non-negative integers. Then |Annk(2n+ k, k) | = N2(n+ k, n).

Our results for |Annk(2n+k, k) | are then used in Subsection 3.2 to enumerate |Annk(2n+
k, 2m + k)| for the remaining choices of n, m, and k. In particular, Theorem 12 will prove
the result below.

Theorem 3. Let n,m, k be non-negative integers. Then

|Annk(2n+k, 2m+k) | =





|Ann0(2n, 0)| · |Ann0(2m, 0)|, if k = 0;

k

(2n+ k)(2m+ k)

∑

d| gcd(k,n,m)

ϕ(d)

(
(2n+ k)/d

n/d

)(
(2m+ k)/d

m/d

)
, if k > 0;

where ϕ(d) is Euler’s totient function.

We close the paper with an appendix of tables giving outputs for |Ann(n,m) |, |Annk(n,m) |,
and |Ann(N) |, all calculated in Maple using Theorems 9 and 12.
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2 Basic results about annular non-crossing matchings

In this section we present a series of fundamental results about annular non-crossing match-
ings, some of which will be utilized to prove the more general enumerative results of Section
3. We also take the opportunity to draw bijections between annular matchings and various
classes of planar graphs, and relate the number of “zero cross-cut” matchings in Ann(2n, 0)

to Cn and C̃n.

Proposition 4. Let n,m be non-negative integers. Then |Annk(n,m) | = |Annk(m,n) | for
all k ≥ 0. In particular, |Ann(n,m) | = |Ann(m,n) | for all n,m ≥ 0.

Proof. Begin by isotoping elements of Annk(n,m) and Annk(m,n) so that all cross-cuts
appear as straight chords orthogonal to the boundary circles. Reflection across the “core” of
the annulus then maps every cross-cut to itself, and defines a bijection between Annk(n,m)
and Annk(m,n) for any k ≥ 0.

The primary use of Proposition 4 is that it will allow us to restrict our attention to
Ann(n,m) and Annk(n,m) such that n ≥ m. Yet even within the realm where n ≥ m,
there will be specific “easy” choices for n and m that will prove to have the most useful
combinatorial interpretations. The first of these special cases is Ann(2n, 0) = Ann0(2n, 0),
corresponding to the situation where all curves in the matchings are external half-circles.

Proposition 5. Let n be any non-negative integer. Then |Ann(2n, 0) | equals the number

of unrooted trees with a distinguished vertex and n additional vertices.

Proof. The required bijection is analogous to the constructions of Figures 1 and 2 for linear
and circular matchings. We add one vertex for each region in the matching and connect two
vertices with an edge if they are separated by a half-circle:

⇔

Here the distinguished vertex is placed in the sole region that borders the interior boundary
of the annulus. In placing the edges for our graph, we disregard whether that edge would
have passed through the hole in the center of the annulus (we treat the hole as part of the
internal region). As the half-circles in our matchings may be cyclically rotated around the
center of the annulus in “blocks”, this gives us the desired notion of equivalence for our
trees.

Notice that the class of planar graphs from Proposition 5 is not equivalent to rooted trees
with n + 1 vertices, as we allow for cyclic reordering of subtrees around the distinguished
vertex. The construction of Proposition 5 does identify |Ann(2n, 0) | with the nth entry of
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OEIS A003239. See Harary and Palmer [3] or Stanley [7] for further bijections involving
|Ann(2n, 0) |.

Via the planar graph bijections of Section 1 and Proposition 5, it is immediate that
C̃n ≤ |Ann(2n, 0) | ≤ Cn for all n ≥ 0. One can easily verify that C̃n = |Ann(2n, 0) | = Cn

for both n = 0 and n = 1. For n = 2 we have |Ann(4, 0) | = C2 = 2 yet C̃2 = 1. As shown in
the following proposition, n = 2 is the largest value of n for which any of the three quantities
are equal.

Proposition 6. For all n ≥ 3 we have C̃n < |Ann(2n, 0) | < Cn.

Proof. We define a map φ from the set of all linear non-crossings of order n to Ann(2n, 0) by
identifying the endpoints of the x-axis and placing the resulting circle as the outer boundary
of the annulus. We then define a map ψ from Ann(2n, 0) to the set of all circular non-crossing
matchings of order n by “deleting” the hole in the middle of the annulus.

φ( A ) =

A

ψ(

A

) =

A

Both φ and ψ are clearly well-defined and surjective for all n ≥ 0. To see that neither map is
injective, we construct a counterexample to injectivity that simultaneously holds for all n ≥ 3.
If A is any non-empty block of half-circles, then the (distinct) linear non-crossing matchings
on the left of the subsequent image map to the same annular non-crossing matching via φ,
while the (distinct) annular non-crossing matchings on the right of the subsequent image
map to the same circular non-crossing matching via ψ.

φ(A ) = φ(A ) ψ(

A

) = ψ(

A

)

With the zero cross-cuts case well-understood, we expand our attention to Annk(n,m)
with k ≥ 1. In what follows we re-index variables to consider Annk(2n+ k, 2m+ k), as this
alternative notation explicitly references the presence of n external half-circles andm internal
half-circles. The cases that will prove most useful are what we refer to as maximal cross-

cut annular matchings. In maximal cross-cut annular matchings, the only endpoints on the
interior boundary belong to cross-cuts. In our new notation this implies that m = 0, so that
we are dealing with sets of the form Annk(2n+ k, k). Notice that the previously considered
sets Ann(2n, 0) = Ann0(2n+ 0, 0) qualify as maximal cross-cut annular matchings.

When k = 1, maximal cross-cut annular matchings are counted by the Catalan numbers,
namely Ann1(2n+ 1, 1) = Cn. As shown in Figure 4, a bijection of such annular matchings

6

http://oeis.org/A003239


with linear non-crossing matchings is realized by identifying the outer boundary of the annu-
lus with the real line, in such a way that the outer endpoint of the sole cross-cut corresponds
to ±∞.

A

⇔ A

Figure 4: The bijection between Ann1(2n+ 1, 1) and linear non-crossing matchings of order
n.

Maximal cross-cut annular matchings will be directly enumerated in Subsection 3.1 for all
k ≥ 0, and those enumerations will be necessary building blocks for the general enumerations
of Subsection 3.2. Although the full importance of the maximal cross-cut case will not become
obvious until those subsections, we pause to prove one useful property shared by maximal
cross-cut matchings and annular matchings with zero cross-cuts.

Proposition 7. Let n,m, k be non-negative integers. If m = 0 or k = 0 then

|Annk(2n+ k, 2m+ k) | = |Annk(2n+ k, k) | · |Annk(2m+ k, k) |

Proof. We define a general map φ : Annk(2n+k, 2m+k) → Annk(2n+k, k)⊕Annk(k, 2m+k)
that becomes a bijection when m = 0 or k = 0. This φ is defined by deleting internal half-
circles in the first coordinate of the output and deleting external half-circles in the second
coordinate, as in the example below.

7→ ( , )
This map φ is clearly a bijection whenever m = 0. To see that φ is a bijection when k = 0,
notice that the lack of cross-cuts in the k = 0 case means that the internal half-circles
and external half-circles may be isotoped independently around their respective boundary
components and hence “do not interact”.

It can be shown that the equality of Proposition 7 holds precisely when n = 0 or m = 0
or k < 2. If k ≥ 2, n ≥ 1, and m ≥ 1 all hold, the left side of the expression always proves to
be strictly larger than the right side. However, only the m = 0 and k = 0 cases are needed
in Section 3, motivating our omission of the more general result.

For our final result of this section, we adapt the planar graph bijection of Proposition 5
to the general case of Annk(2n + k, 2m + k). Although the resulting language of Theorem
8 is arguably rather contrived, it combines with Proposition 5 to give a succinct geometric
characterization of any class of annular matchings with at least one cross-cut.
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Theorem 8. Let n,m, k be non-negative integers and let k ≥ 1. Then |Annk(2n+k, 2m+k) |
equals the number of connected planar graphs such that:

1. The only cycle in the graph is a single k-cycle.

2. There are n edges within the area bounded by the cycle.

3. There are m edges outside the area bounded by the cycle.

Proof. The methodology used is extremely similar to what has already been presented in
Proposition 5. Notice that a collection of k cross-cuts produces a single k-cycle, as shown
below.

⇔

Any internal half-circles are then counted by edges inside the k-cycle, while external half-
circles are counted by edges outside the k-cycle.

3 Enumeration of annular non-crossing matchings

We are now ready for the general enumerative results that form the core of this paper.
Subsection 3.1 begins with an enumeration of maximal cross-cut annular matchings, and
shows that those matchings are in bijection with certain types of binary combinatorial neck-
laces. Subsection 3.2 then collects all of our results to give an explicit formula for general
|Annk(n,m) |, thus allowing for the direct calculation of |Ann(n,m) | and |Ann(N) |. As in
Section 2, when the number of cross-cuts is specified we will typically re-index variables and
treat |Annk(2n + k, 2m + k) | so that the number of internal and external half-circles are
immediately discernible.

3.1 Enumeration of maximal cross-cut annular matchings and com-

binatorial necklaces

Burnside’s lemma has already been mentioned as the method used in Goldbach and Tijdeman
[1] to calculate the number of circular non-crossing matchings. Given that our annular
non-crossing matchings possess a similar notion of rotational equivalence, it comes as little
surprise that the lemma may also be applied to the enumeration of distinct matchings in the
annulus. Recall that Burnside’s lemma (also known as the Cauchy-Frobenius lemma) applies
to any situation where a finite group G acts upon a set A. It asserts that the number of orbits
|A/G| with respect to the action equals the average size of the sets Ag = {a ∈ A | ga = a}
when ranging over all g ∈ G, that is |A/G| = 1

|G|

∑
g∈G |Ag|.
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So fix n, k ≥ 0, and let A equal the set of all non-crossing matchings in the annulus
(prior to any notion of equivalence) with 2n + k endpoints located at 2π

2n+k
radian intervals

about the exterior boundary and precisely k straight cross-cuts that meet both boundary
components orthogonally. We may define a (left) action of G = Z2n+k on A whereby g · a
is counter-clockwise rotation of a by 2πg

2n+k
radians. Then |A/G| = |Annk(2n + k, k) |, with

distinct orbits in A/G corresponding to matchings that are equivalent via rotation. This
sets up the following application of Burnside’s lemma:

Theorem 9. Let n and k be non-negative integers. Then

|Annk(2n+ k, k) | =





1, if n = k = 0;

1

2n+ k

∑

d| gcd(k,n)

ϕ(d)

(
(2n+ k)/d

n/d

)
, otherwise;

where ϕ(d) is Euler’s totient function.

Proof. The first case follows immediately, as there is a single “empty” annular non-crossing
matching. For the second case, if we use the aforementioned group action and Burnside’s
lemma we merely need to show that

∑
g∈Z2n+k

|Ag| =
∑

d|(2n+k,n) ϕ(d)
(
(2n+k)/d

n/d

)
. So take

g ∈ Z2n+k, and assume that g has order d in Z2n+k Notice that Lagrange’s theorem guarantees
d | (2n+ k), although it may or may not be true that d | n.

The elements of Ag are those matchings that can be radially divided into d identical
sub-matchings. Each of these sub-arrangements features (2n+ k)/d endpoints on the outer
boundary of the annulus, k/d of which are the outer endpoints of cross-cuts and n/d of which
are left-endpoints of exterior half-circles. Notice that, when dividing an element of Ag into
sub-matchings, it may be that the two endpoints of a specific half-circle lie in different sub-
matchings, so long as each of the sub-matchings features an identical arrangements of such
half-circles. Further notice that each sub-matching must contain just as many “outgoing”
half-circles whose left-endpoint is in that sub-matching as it contains “incoming” half-circles
whose right-endpoint is in that sub-matching.

Now if d ∤ n, the left-endpoints of the external half-circles cannot be evenly sub-divided
into sub-matchings as described above and we may conclude that |Ag| = 0. However, d | n
and d | k together guarantee that d | (2n+ k), making |Ag| 6= 0 a possibility in that case. If
d | n, notice that every possible sub-arrangement may be uniquely identified by specifying
which of the (2n+ k)/d endpoints correspond to left (clockwise) endpoints of exterior half-
circles. To explicitly see that |Ag| =

(
(2n+k)/d

n/d

)
, we proceed as below.

1. Begin with any linear arrangement of (2n+ k)/d points of the x-axis, n/d of which are
white and (n + k)/d of which are black. Although we do not close the x-axis off into
a circle, we consider the cyclic ordering of these points (so that the rightmost point is
considered to be directly left of the leftmost point).
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2. Identify all white points that lie directly left of a black point (in the cyclic ordering)
and make those points the left endpoints of external half-circles whose right-endpoints
are the black points on their right. If the resulting half-circle “wraps around” in the
cyclic ordering, split it in two as an “outgoing” strand and an “incoming” strand.
These will correspond to half-circles whose endpoints are split between sub-matchings
in the resulting annular matching.

3. Repeatedly apply the previous step, ignoring all points that are already the endpoint
of some half-circle. In particular, recursively identify available white points where the
nearest available point on their right is a black point, and then connect that “adjacent”
pair via a half-circle. Continue to split all half-circles that “wrap around” into an
outgoing and incoming strand.

4. When all white points have been used, make each remaining black point the external
terminus of a cross-cut. The result is an element of Ag.

See Figure 5 for an example of the procedure outlined above. If g has order d in Z2n+k,
it follows that |Ag| =

(
(2n+k)/d

n/d

)
whenever d | n and d | k, whereas |Ag| = 0 when either d ∤ n

or d ∤ k.
If q | N , basic number theory ensures that there are precisely ϕ(q) elements i ∈ ZN with

gcd(i, N) = N/q. As the order of i in ZN is N/(i, N), there exist precisely ϕ(q) elements
i ∈ ZN with order |i| = q. Letting N = 2n + k, this ensures that there are precisely
ϕ(d) elements g ∈ Z2n+k such that |Ag| =

(
(2n+k)/d

n/d

)
, thus deriving the summation of the

theorem.

⇒ ⇒
Figure 5: For every choice of n left-endpoints (white circles) from a set of 2n+k points there
is a unique annular sub-matching with n half-circles and k cross-cuts. Here the piece of the
external boundary corresponding to one sub-matching is drawn as the x-axis.

Table 1 of Appendix A exhibits values of |Annk(2n + k, k) | for 0 ≤ n, k ≤ 10, all
calculated in Maple via the equation of Theorem 9. An examination of that table places
|Annk(2n + k, k) | into direct correspondence with the T (n + k, n) entry of OEIS A241926.
Using Proposition 4 when necessary to ensure that 2n+ k > n, |Annk(2n+ k, k) | may also
be identified with the “circular binomial coefficient” T (2n+ k, n) of OEIS A047996. Both of
those OEIS sequence reveal a bijection between the Annk(2n+k, k) and binary combinatorial
necklaces, a fact that will be formalized in Theorem 11. Note that a summation equivalent
to the one of Theorem 9 has already been shown to equal the number of binary combinatorial
necklaces of certain types [2], and that another proof of the result from Theorem 9 was given
by Sloane [4].
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Before investigating how these results directly relate to annular non-crossing matchings,
we observe that the formula of Theorem 9 may be significantly simplified when k is prime.

Corollary 10. Let p be a prime integer and let n be any non-negative integer. Then

|Annp(2n+ p, p) | =
1

2n+ p

(
2n+ p

n

)
+
p− 1

p
Cn/p,

where Cn/p is the (n/p)-th Catalan number if n/p is an integer, and is zero otherwise.

Proof. It is a straightforward exercise to calculate that gcd(2n+p, n) = 1 when gcd(p, n) = 1,
as well as that gcd(2n+ p, n) = p when gcd(p, n) = p. Theorem 9 then gives

|Annp(2n+ p, n) | =





1
2n+p

(
2n+p
n

)
, when p ∤ n;

1
2n+p

(
2n+p
n

)
+ 1

2n+p
(p− 1)

(
(2n+p)/p

n/p

)
, when p | n.

A simplification of the final term in the second case yields the desired formula.

Notice that the more straightforward formula for |Annk(2n + k, n) | in Corollary 10
simplifies to the sequences OEIS A007595 when k = 2 and OEIS A003441 when k = 3.

Motivated by sequences A241926 and A047996, we now work to develop an explicit
bijection between the |Annk(2n+k, k) | and binary combinatorial necklaces, providing a new
combinatorial identity that supplements the one given by Elashvili, Jibladze and Pataraia [2].
A k-ary combinatorial necklace is a circular arrangement of “beads” of up to k distinguishable
varieties (typically referred to as “colors”), such that rotations of the beads around the
circle are considered equivalent. Necklaces that are related only via (orientation-reversing)
reflection are not considered equivalent. The number of distinct k-ary combinatorial necklace
with precisely n total beads is denoted by Nk(n). Combinatorial necklaces are well-studied in
the literature, and different classes of combinatorial necklaces are the focus of many integer
sequences [8].

In this paper we deal only with binary (2-ary) combinatorial necklaces, whose colors we
refer to as “black” and “white”. Our results require increased specificity in that we need
to designate the number of beads of each color, so we denote the number of distinct binary
necklaces with precisely n1 black beads and precisely n2 white beads by N2(n1, n2). Some
places in the literature refer to such combinatorial necklaces as “binary necklaces of weight
n1”.

Theorem 11. Let n and k be non-negative integers. Then |Annk(2n+k, k) | = N2(n+k, n).

Proof. Denote the set of all combinatorial necklaces with n1 = n+k black beads and n2 = n
white beads by S. We define a function φ : Annk(2n+k, k) → S and show it is bijective. We
define φ by placing white beads at the left-endpoints of exterior half-circles and black beads
at right-endpoints of exterior half-circles as well as at the exterior endpoints of cross-cuts.
An example of this procedure is shown below.
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⇒ ⇒

The map φ is clearly injective. To show that φ is surjective, take any combinatorial
necklace x ∈ S. The (unique) annular matching in the inverse image of φ−1(x) may be
recovered via the procedure below.

1. Begin at any point along the necklace x, and proceed in a counter-clockwise direction.
Every time we meet a black bead that is immediately counter-clockwise of a white
bead, add an external half-circle who right-endpoint is the given black bead and whose
left-endpoint is the previous white bead.

2. Continue in a clockwise direction around x, repeatedly applying the previous step with
the exception that we now ignore beads that are already the endpoint of a half-circle
(so we look to identify black beads that are the first available beads in the counter-
clockwise direction from an available white bead).

3. When all white beads have been used, add the inner boundary of the annulus. For
every black bead that is not already the right-endpoint of a half-circle, add a cross-cut
whose exterior endpoint is that black bead.

An example of this inverse procedure is shown below. Notice that the excess of (n +
k) − n = k black beads in the inverse procedure yields precisely k cross-cuts, as required.
As the rotational notion of equivalence is identical for combinatorial necklaces and annular
non-crossing matchings, φ is a bijection and the result follows.

⇒ ⇒

⇒ ⇒
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3.2 Enumeration of annular matchings, general case

We are finally ready for the enumeration of general Annk(2n + k, 2m + k) that do not
correspond to the special m = 0 case of Subsection 3.1. There are actually two sub-cases
here depending upon whether or not k is nonzero.

Theorem 12. Let n, m , and k be non-negative integers. Then

|Annk(2n+k, 2m+k) | =





|Ann0(2n, 0) | · |Ann0(2m, 0) |, if k = 0;

k

(2n+ k)(2m+ k)

∑

d| gcd(k,n,m)

ϕ(d)

(
(2n+ k)/d

n/d

)(
(2m+ k)/d

m/d

)
, if k > 0;

where ϕ(d) is Euler’s totient function.

Proof. Case #1 follows directly from Proposition 7 and Theorem 9. For Case #2 we apply
Burnside’s lemma by defining an action of Z(2n+k)(2m+k) on a set A of all non-crossing match-
ings with 2n + k external endpoints and 2m + k internal endpoints, prior to any notion of
equivalence.

So fix n,m ≥ 0, k > 0, and consider annular non-crossing matchings with precisely n
exterior half-circles, m interior half-circles, and k cross-cuts. To form our set A, we require
that the 2n + k exterior endpoints are located at 2π

2n+k
radian intervals about the exterior

boundary, and that the 2m+k interior endpoints are located at 2π
2m+k

radian intervals about
the interior boundary. Unlike in the proof of Theorem 9, we do not require that the k cross-
cuts appear as straight lines that meet the boundaries at right angles, as that condition
could require the re-spacing of endpoints on one of the boundary components. Here we
consider cross-cuts up to isotopy that fix their endpoints. Absolutely no rotational isotopy of
endpoints or rotation of either boundary component is allowed. Notice that A is composed of
exactly k

(
2n+k
n

)(
2m+k
m

)
matchings. Here the binomial coefficients are derived from specifying

which of the endpoints on the inner and outer boundary component correspond to the left-
endpoints of half-circles (as in the proofs of Theorems 9 and 11), while the additional k term
results from the ambiguity in matching up the remaining k endpoints on each side to form
k cross-cuts. Notice that specifying both endpoints of a single cross-cut determines how all
remaining cross-cuts are matched amongst the remaining (k − 1) endpoints on each side.

We then define a left action of Z(2n+k)(2m+k) on A where g · a is a counter-clockwise
rotation of the entire matching by 2πg

(2n+k)(2m+k)
radians. If the order of g in Z(2n+k)(2m+k) is d,

the elements of Ag are matchings that may be radially divided in d identical sub-matchings
along both the inner and outer boundaries, with analogous identifications of cross-cuts in
each sub-matching. Observe that we do not require that both endpoints of each cross-cut
lie in the same sub-matching, merely that each sub-matching exhibits an identical pattern
with regards to any cross-cuts involved. If the order of Ag is to be nonzero, it is immediate
that we must have both d | (2n + k) and d | (2m + k). To ensure that left-endpoints of

13



half-circles are mapped to left-endpoints and that cross-cuts are mapped to cross-cuts, it is
also required that d | n, d | m, and d | k. It is obvious that d | gcd(k, n,m) is necessary and
sufficient to satisfy all of these conditions. Thus the order of Ag is nonzero if and only if
d | gcd(k, n,m).

So take g ∈ Z(2n+k)(2m+k), where g has order d in Z(2n+k)(2m+k) and we assume that

d | gcd(k, n,m). There are
(
2n+k
n

)
choices of how to arrange the outer boundary of each

sub-matching and
(
2m+k
m

)
independent choices for the inner boundary of each sub-matching.

After the endpoints belonging to cross-cuts have been identified, there are also k independent
choices for how the cross-cuts match up across the annulus. These k choices correspond to
similarly-symmetrical matchings whose blocks are identical apart from the fact that their
cross-cuts uniformly “twist around” the annulus by different amounts. We may conclude
that |Ag| = k

(
(2n+k)/d

n/d

)(
(2m+k)/d

m/d

)
if d | gcd(k, n,m).

Similarly to our argument from the proof of Theorem 9, if q | (2n+ k)(2m+ k) one may
show that there are precisely ϕ(q) elements i ∈ Z(2n+k)(2m+k) with order |i| = q. It follows

that there are precisely ϕ(d) elements g ∈ Z(2m+k)(2n+k) with |Ag| = k
(
(2n+k)/d

n/d

)(
(2m+k)/d

m/d

)
,

yielding the equation of Case #2 via an application of Burnside’s lemma.

Theorems 9 and 12 combine to provide a closed formula for every |Annk(2n+k, 2m+k) |
where m,n, k are any choice of non-negative integers. This allows us to directly enumerate
Ann(n,m) =

⋃
k Annk(n,m) for all n,m ≥ 0.

Table 2 of Appendix A presents values of |Ann(n,m) | for all 0 ≤ n,m ≤ 12, calculated
in Maple using the equations of Theorems 9 and 12. In Proposition 5, we have already
established that the n = 0 row (or m = 0 column) of Table 2 corresponds to OEIS A003239.
Also noted in Section 2 what the fact that the n = 1 row (or m = 1 column) of Table
2 corresponds to the Catalan numbers. However, no other rows, diagonals, or triangles of
numbers from Table 2 appear to correspond to any known sequences on OEIS [8]. This
yields an entire family of new integer sequences with an explicit geometric interpretation.
Of particular interest are the rows for n > 2, representing new generalizations of the Catalan
numbers that appear as later terms in a sequence of sequences beginning with OEIS A003239
and the Catalan numbers.

Table 3 of Appendix A shows values of Ann(2n) for small values of n. These values are
most easily derived by summing over the anti-diagonals from Table 2. The sequence of Table
3 also fails to appear as a known integer sequence on OEIS [8].

4 Future directions

Our success in determining closed formulas for the |Ann(n,m) | invites generalizations of
non-crossing matchings to even more complicated subsets of the real plane. One possibility
is the enumeration of non-crossing matchings in a plane with n circular “holes”.

Immediately notice that the one hole case will yield enumerations identical to the circular
non-crossing matchings of Goldbach and Tijdeman [1], as those two classes of matchings may
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be related via “reflection” across the single boundary circle. However, the n hole case should
yield a new collection of enumerations for all n ≥ 2. In particular, the n = 2 hole case
should give enumerations that are distinct from the annular non-crossing matchings of this
paper. As we are dealing with subsets of R2 (as opposed to subsets of the 2-sphere, where
the twice-punctured plane and the annulus are topologically equivalent), any enumeration
of non-crossing matchings in the two hole case will need to account for both cross-cuts and
“wrap-arounds”. Here we use “wrap-arounds” to refer to half-circles that, despite having
both endpoints on one boundary component, fully enclose the second boundary component.
An even more complex consideration of various cross-cuts “wrap-arounds” would be required
for the n hole case when n > 2.
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A Tables of values

All tables in this appendix were generated in Maple 18 using Theorems 9 and 12. Coding is
available upon request from Paul Drube (paul.drube@valpo.edu).

n/k 0 1 2 3 4 5 6 7 8 9 10

0 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
2 2 2 3 3 4 4 5 5 6 6 7
3 4 5 7 10 12 15 19 22 26 31 35
4 10 14 22 30 43 55 73 91 116 140 172
5 26 42 66 99 143 201 273 364 476 612 776
6 80 132 217 335 504 728 1038 1428 1944 2586 3399
7 246 429 715 1144 1768 2652 3876 5538 7752 10659 14421
8 810 1430 2438 3978 6310 9690 14550 21318 30667 43263 60115
9 2704 4862 8398 14000 22610 35530 54484 81719 120175 173593 246675
10 9252 16796 29414 49742 81752 130752 204347 312455 468754 690690 1001603

Table 1: Enumeration of |Annk(2n+ k, k) |.
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n/m 0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 1 2 4 10 26 80
1 1 1 2 5 14 42
2 1 2 3 7 17 48 146
3 1 2 3 8 24 72
4 2 3 7 14 38 106 335
5 2 3 8 20 60 189
6 4 7 14 34 90 263 834
7 5 8 20 58 175 560
8 10 17 38 90 255 750 2420
9 14 24 60 175 546 1764
10 26 48 106 263 750 2268 7372
11 42 72 189 560 1764 5774

12 80 146 335 834 2420 7372 24198

Table 2: Enumeration of |Ann(n,m) |. Entries where |Ann(n,m) | = 0 have been left blank,
and |Ann(n, n) | is bolded to emphasize n↔ m symmetry.

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13
|Ann(2n) | 1 3 8 20 57 166 538 1762 6045 21040 74628 267598 970134 3544416

Table 3: Enumeration of |Ann(2n) |.
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