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Abstract

Morphisms are homomorphisms under the concatenation operation of the set of

words over a finite alphabet. Changing the elements of the finite alphabet does not

change the morphism in an essential way. We propose a method to select a unique

representative from all these morphisms. This has applications to the classification of

the shift dynamical systems generated by morphisms. In a similar way, we propose

the selection of a representing sequence out of the class of symbolic sequences over

an alphabet of fixed cardinality. Both methods are useful for the storing of symbolic

sequences in databases, such as The On-Line Encyclopedia of Integer Sequences. We

illustrate our proposals with the k-symbol Fibonacci sequences.

1 Introduction

Here is a sequence on an alphabet of six letters:

x = 1, 4, 2, 1, 6, 3, 5, 4, 2, 3, 5, 6, 1, 4, 2, 1, . . . .

Why should one be interested in this sequence? Well, if one projects with the letter-to-letter
map 1, 3, 5 → 0, 2, 4, 6 → 1, one obtains the Thue-Morse sequence

0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, . . . .
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This is the most famous pure morphic sequence (A010060, A001285, A010059). The sequence
x can be obtained from a 3-block morphism (see Section 4) starting from the Thue-Morse
morphism

0 → 01, 1 → 10.

This gives that x itself is pure morphic under the square of the morphism

ζ : 1 → 23, 2 → 14, 3 → 21, 4 → 56, 5 → 63, 6 → 54.

It is shown by Coven, Dekking, and Keane [5] that the shift dynamical system generated by
ζ is topologically isomorphic to the Thue-Morse system, and that there essentially are only
12 injective morphisms (with associated infinite sequences) that have this property.
How should x be added to the On-Line Encyclopedia of Integer Sequences?

There is a problem here. The choice of the alphabet is quite arbitrary, another popular
choice is {0, 1, 2, 3, 4, 5}. But even with a fixed alphabet of 6 letters, there are 6!=720
morphisms, generating as many sequences, which are essentially the same.

The ternary Thue-Morse sequence generated by a → abc, b → ac, c → b occurs 12 times
in OEIS, exhausting all 3! possibilities of the two alphabets {0, 1, 2} and {1, 2, 3}. It is
inconceivable that this could be done for a pure morphic sequence on an alphabet of, say,
20 letters. So what one needs is a canonical way to extract one morphism out of these huge
collections. This will be done in the next section. In Section 3 we propose a simple way
to standardize symbolic sequences. In Section 4 and 5 we illustrate our approach with a
discussion of the k-symbol Fibonacci morphisms.

2 Standard forms of morphisms

Let θ be a morphism on r letters. The standard alphabet is the set A = {1, 2, . . . , r}.
Let Π be a permutation on A. The permuted version of θ is the morphism θ′ given by

θ′(a) = Π−1θ(Π(a)), for a ∈ A.

A morphism θ is called uniform if |θ(a)| = |θ(b)| for all a, b ∈ A, where |w| denotes the length
of a word w.

Definition 1. The standard form of a uniform morphism θ is obtained by permuting the
letters of the standard alphabet in such a way that the permuted version has the smallest
word θ′(1)θ′(2) · · · θ′(r) in the lexicographical order on words.

As an example, let θ be the Toeplitz or period doubling morphism, see
A096268: Fixed point of the morphism 0 → 01, 1 → 00,
A056832: Fixed point of the morphism 1 → 12, 2 → 11,
A035263: Trajectory of 1 under the morphism 1 → 10, 0 → 11.

The second OEIS entry is on the standard alphabet. The permuted version, with Π = 1 ⇄ 2
is 1 → 22, 2 → 21. Since 1211 < 2212, the standard form of the morphism is 1 → 12, 2 → 11.
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Remark 2. A caveat: the standard form of a morphism has some undesirable properties.
For instance, the square of the standard form need not be equal to the standard form of the
square.

Note that the standard form of a morphisms is uniquely defined, since

θ′(1)θ′(2) · · · θ′(r) = θ(1)θ(2) · · · θ(r) =⇒ θ′ = θ.

This need not hold in the non-uniform case. For example, if θ is given by

θ(1) = 12, θ(2) = 312, θ(3) = 3123,

then θ(123) = 123123123, and the same word appears under the version of θ permuted by
Π = 1 → 2 → 3.

Definition 3. The standard form of a morphism θ is obtained in the following way. First,
permute the letters of the standard alphabet in such a way that the permuted version θ′ has
the smallest word wχ := θ′(1)θ′(2) · · · θ′(r) in the lexicographical order on words. Among
all permutations that have the same wχ, choose the one with the lexicographically smallest
vector (|θ′(1)|, |θ′(2)|, . . . , |θ′(r)|).

Note that once more, the standard form is uniquely defined.
The standard form of ternary Thue-Morse is the morphism 1 → 123, 2 → 13, 3 → 2.

3 Standard forms of symbolic sequences

We now focus on infinite sequences generated by morphisms, and in particular fixed points
of morphisms. These are typical examples of what we call symbolic sequences, where a
change of symbols does not change the essential properties of the sequence. An example of
a non-symbolic sequence on four symbols is (sn) = A002828, which gives the least number
of squares that add up to n.

Without loss of generality we assume that all symbols of A = {1, . . . , r} occur in a
sequence over A. We then have the following very simple way to pick a representing sequence.

Definition 4. The standard form of a sequence x over A is Π(x), where Π is the permutation
of A which yields the smallest sequence in lexicographical order.

For example, the standard form of the the Toeplitz or period doubling sequence is
1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, . . . , and the standard form of the ternary Thue-Morse
sequence is 1, 2, 3, 1, 3, 2, 1, 2, 3, 2, 1, 3, 1, . . . . It is easily seen that both sequences are the
unique fixed point of the corresponding morphism, given in its standard form. This will
not happen in general. An exception, for example, is the 6-symbol Thue-Morse morphism
of Section 1. For archiving purposes we recommend to store both the fixed points of the
standard form of the morphism and the standard form of these fixed points.
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4 k-symbol Fibonacci morphisms and sequences

For any N the N -block morphism θ̂N of a morphism θ yields pure morphic sequences on
an alphabet of p(N) symbols, where p(·) is the subword complexity function of a sequence
generated by θ (cf. [7, p. 95]).

In this section we take a look at another famous morphism, the Fibonacci morphism

ϕ : 0 → 01, 1 → 0.

It is well known (see, e.g.,[7, p. 105]) that p(N) = N+1, so ϕ̂N is a morphism on an alphabet
of N + 1 symbols.

We describe how to obtain for N = 2 the 3-symbol Fibonacci morphism ϕ̂2. The blocks
of length 2 occurring in the language of ϕ are 00, 01, and 10. We have

ϕ(00) = 0101 =: u1u2u3u4, ϕ(01) = 010 =: v1v2v3, ϕ(10) = 001 =: w1w2w3.

The rule is now that the length of ϕ̂2(j1j2) is equal to the length of ϕ(j1). So since
u1u2, u2u3 = 01, 10, v1v2, v2v3 = 01, 10 and w1w2 = 00, one obtains on the 2-blocks

00 → 01, 10, 01 → 01, 10, 10 → 00.

Coding these to the standard alphabet {1, 2, 3} by 00 ↔ 3, 01 ↔ 1 and 10 ↔ 2, we obtain
the standard form

ϕ̂2(1) = 12 ϕ̂2(2) = 3, ϕ̂2(3) = 12.

The unique fixed point of ϕ̂2 is

x(2) = 1, 2, 3, 1, 2, 1, 2, 3, 1, 2, 3, 1, 2, 1, 2, 3, 1, 2, 1, 2, 3, . . . .

This sequence will not be found1 in the OEIS. However, the sequence obtained by mapping
1 → 2, 2 → 0, 3 → 1 is sequence A159917, and is described as the “Fixed point of the
morphism 0 → 01, 1 → 2, 2 → 01”. Except for a relationship with the so-called Fibbinary
numbers (A003714), no other properties are given. We will make a connection with the
sequence (an) = 0, 1, 0, 2, 1, 0, 2, 0, 2, 1, 0, 2, 1, 0, . . . given in A120614. Its definition is

an = gn − gn−1 where gk = ⌊Φ⌊k/Φ⌋⌋ and Φ = (1 +
√
5)/2. (1)

From its comments one can deduce that the sequence 1, 0, 2, 1, 0, 2, 0, 2, 1, 0, 2, 1, 0, . . . ob-
tained after deleting the initial entry 0 is a fixed point of the morphism

0 → 102, 1 → 102, 2 → 02.

Coding this morphism to the standard alphabet via 0 → 1, 1 → 3, 2 → 2 we obtain the
morphism θ given by

θ(1) = 312, θ(2) = 12, θ(3) = 312.

1As of November 2015.
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We will compare θ with ϕ̂2
2. Note that

ϕ̂2
2(1) = 123, ϕ̂2

2(2) = 12, ϕ̂2
2(3) = 123.

We say a morphism α on A can be rotated if (α(a))1 = b for all a ∈ A, and some fixed b ∈ A.
The rotated morphism is the morphism denoted ρα, defined by

ρα(a) = b−1 α(a) b for all a ∈ A.

In the literature such a rotated morphism is also known as a conjugated morphism. Note
that ρ2ϕ̂2

2 = θ. This implies that ϕ̂2
2 and θ generate the same language (this is not hard to

prove, but see also [1, Lemma 3]). Thus arbitrarily long subwords of x(2) will occur in the
sequence (an) from Equation (1), standardized, and conversely. Actually, a little bit more is
true. In the following we write shortly η := ϕ̂2

2.

Proposition 5. Let η be defined by η(1) = 123, η(2) = 12, η(3) = 123, and let θ be defined

by θ(1) = 312, θ(2) = 12, θ(3) = 312. Then the fixed point 12312123123 · · · of η equals the

left shift of the fixed point 31231212312 · · · of θ.

Proof. Note first that for all n

ηn(2) = ηn(1)[ηn−1(3)]−1, θn(2) = [θn−1(3)]−1θn(1),

simply because η(2) = η(1)3−1 and θ(2) = 3−1θ(1). The proposition will be proved if we
show that for all n

3ηn(1) = θn(1)3.

This will be done by induction over two levels. Obviously 3η(1) = 3123 = θ(1)3, and
3η2(1) = 312312123 = θ2(1)3. We have for n ≥ 2

3ηn+1(1) = 3ηn(1)ηn(2)ηn(3) = θn(1)3 ηn(1)[ηn−1(3)]−1 3−1θn(1)3

= θn(1) θn(1)3 [3−1θn−1(1)3]−1 3−1θn(1)3

= θn(3) θn(1) [θn−1(3)]−1 θn(1)3

= θn(3) θn(1) θn(2)3 = θn+1(1)3.

We end this section with 4-symbol Fibonacci. The words of length 3 in the Fibonacci
language are 001, 010, 100, and 101. Coding these to the standard alphabet {1, 2, 3, 4} by
001 ↔ 3, 010 ↔ 1, 100 ↔ 2 and 101 ↔ 4, we obtain the standard form morphism

ϕ̂3(1) = 12, ϕ̂3(2) = 3, ϕ̂3(3) = 14, ϕ̂3(4) = 3.

It has just one fixed point, which is

x(3) = 1, 2, 3, 1, 4, 1, 2, 3, 1, 2, 3, 1, 4, 1, 2, 3, . . . .
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This happens to be A138967, which indeed deserves to be called the Infinite Fibonacci word
on the alphabet {1, 2, 3, 4}. To prove this, note that ϕ̂2

3 is the morphism

1 → 241, 2 → 241, 3 → 24, 4 → 24.

If we make this morphism injective by merging symbols with equals images (cf. [2]), we
obtain the morphism 1̄ → 1̄3̄1̄, 3̄ → 1̄3̄, which is the square of the Fibonacci morphism.
Hence, indeed, the recipe in the Comments of A138967: “replace 1̄ by 1,2,3 and 3̄ by 1,4 in
the infinite 2-symbol Fibonacci word”, generates x(3).

5 A tale of two sequences

In the previous section we showed that the sequence (an+1) = 1, 0, 2, 1, 0, 2, 0, 2, 1, 0, 2, 1, 0, . . .
given in A120614 essentially equals the 3-symbol Fibonacci sequence. Its definition is

an = gn − gn−1 where gk = ⌊Φ⌊k/Φ⌋⌋ and Φ = (1 +
√
5)/2.

Here (gn) is A120613 given by

(gn+1) = 1, 1, 3, 4, 4, 6, 6, 8, 9, 9, 11, 12, 12, 14, 14, 16, 17, 17, 19, 19, 21, 22, 22, . . . .

This sequence was contributed to OEIS by Cloitre in 2006, but the only reference in its
description is to a sequence in the paper [6] by Griffiths, a paper which occurred in 2011.
On page 502 in [6] Griffiths states “Incidentally, it is interesting to note that the sequence

⌊⌊(n+ 1)Φ⌋ − 1

Φ

⌋

is also related to the golden string. The first few terms are given by 1, 1, 3, 4, 4, 6, 6, 8, 9, 9, 11,
12, 12, 14, 14, 16, 17, 17, 19, 19, 21, 22, 22, . . . .”
Griffiths does not give any references to other work.

Problem 6. How to show that ⌊Φ⌊ n
Φ
⌋⌋ =

⌊

⌊nΦ⌋−1
Φ

⌋

for all n ≥ 1?

Using 1/Φ = Φ− 1, the relation is equivalent to

⌊Φ⌊nΦ− n⌋⌋ = ⌊Φ⌊nΦ⌋ − ⌊nΦ⌋ − Φ + 1⌋.

Taking −n out of the floor, and bringing ⌊nΦ⌋ to the other side this is equivalent to

⌊Φ⌊nΦ⌋ − nΦ + ⌊nΦ⌋⌋ = ⌊Φ⌊nΦ⌋ − Φ + 1⌋ for all n ≥ 1. (2)

This clearly exposes the close relationship between the two sequences: putting {nΦ} =
nΦ−⌊nΦ⌋, we of course have −1 ≤ −{nΦ} ≤ 0 and −Φ+1 = −0.618 . . . . We thus see that
Equation (2) is equivalent to

{Φ⌊nΦ⌋} < Φ− 1 ⇐⇒ {Φ⌊nΦ⌋} < {nΦ} for all n ≥ 1. (3)
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Let a be the basic sequence A000201 in the papers by Carlitz et al. in [3], and [4]:

a(n) = ⌊nΦ⌋.

Then Equation (2) is equivalent to

a(a(n)− n) = a(a(n)− 1)− a(n)− 1. (4)

But this relation will not be found in the papers by Carlitz et al. The reason is that
they consequently avoid the shift operator. For instance, if e(n) := ⌊(n + 1)/Φ⌋ is the fifth
basic sequence defined by Carlitz et al., then e(n) = a(n + 1) − (n + 1), but this equation
does not occur. We remark that (e(n)) is A060143 shifted, and A005206 shifted (Hofstadter
G-sequence). It is amusing that Equation (4) can be rewritten as a(n) = a(a(n) − 1) −
a(a(n)− n)− 1, which is a Hofstadter-Conway type of recursion (cf. A004001).

After this digression we will now prove the equivalence in Equation (3).

Proposition 7. For all positive integers n:

{⌊nΦ⌋Φ} < Φ− 1 ⇐⇒ {⌊nΦ⌋Φ} < {nΦ}.

We prove this proposition with the following lemma.

Lemma 8. Let Φ = 1
2
(1 +

√
5) be the golden mean. Then for all positive integers n

{⌊nΦ⌋Φ} = (1− Φ){nΦ}+ 1.

Proof. All that we use is the relation Φ2 = Φ+ 1.

{⌊nΦ⌋Φ} = ⌊nΦ⌋Φ− ⌊⌊nΦ⌋Φ⌋
= nΦ2 − Φ{nΦ} − ⌊⌊nΦ⌋Φ⌋
= nΦ + n− Φ{nΦ} − ⌊⌊nΦ⌋Φ⌋
= ⌊nΦ⌋+ {nΦ}+ n− Φ{nΦ} − ⌊⌊nΦ⌋Φ⌋
= (1− Φ){nΦ}+ n+ ⌊nΦ⌋ − ⌊⌊nΦ⌋Φ⌋
= (1− Φ){nΦ}+ 1.

Here the last step holds because the integer n+ ⌊nΦ⌋ − ⌊⌊nΦ⌋Φ⌋ has to be equal to 1, since
0 ≤ {⌊nΦ⌋Φ} ≤ 1, and −0.73 < 1− Φ ≤ (1− Φ){nΦ} ≤ 0.

Proposition 7 follows directly from Lemma 8 by noting that the line y = (1 − Φ)x + 1
has a negative slope, and cuts the line y = x at x = Φ− 1.

The following well known relationship (see, e.g., [4, Equation (1.11)]) is a corollary to
the proof of Lemma 8.

Corollary 9. For all positive integers n: ⌊⌊nΦ⌋Φ⌋ = ⌊nΦ⌋+ n− 1.
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