
23 11

Article 15.10.7
Journal of Integer Sequences, Vol. 18 (2015),2

3

6

1

47

Solution Sequences for the Keyboard

Problem and its Generalizations

Jonathan T. Rowell
University of North Carolina at Greensboro
Department of Mathematics and Statistics

116 Petty Building
317 College Avenue

Greensboro, NC 27412
USA

jtrowell@uncg.edu

Abstract

The keyboard problem is an optimization problem asking how many characters can

be placed into a blank document using N keystrokes. The question is representative

of a larger class of output maximization problems where there is the opportunity to

expand output capacity by replicating the existing output as a single unit. Here I define

a generalized keyboard sequence as an integer sequence representing the maximum

output of such problems, explain the construction of optimal strings of operations

leading to these outputs, and demonstrate that each sequence is linearly recursive for

sufficiently large N . I then evaluate two competing solutions to the keyboard problem

and connect additional integer sequences to this class. The article concludes with a

brief overview of the crowd-sourcing involved in the keyboard problem’s initial solution.

1 Introduction

Suppose that you are sitting at a computer using a word processing or text editing applica-
tion, and that you are limited to the following four keystroke actions:

1. insertion by the typing of a single character (e.g., the letter “a”);

1

mailto:jtrowell@uncg.edu

Author OEIS sequence
Blewett A178715 1, 2, 3, 4, 5, 6, 9, 12, 16, 20, 27, 36, 48, 64, 81, 108, 144, 192 . . .
Derbyshire A193286 1, 2, 3, 4, 5, 6, 7, 9, 12, 16, 20, 25, 30, 36, 48, 64, 80, 100, 125 . . .

Table 1: Alternative solutions to the keyboard problem.

2. selection of all current text using the select-all command (Ctrl+A for Windows users,
Cmd+A for Mac users);

3. copying the current selection to the clipboard (Ctrl+C or Cmd+C, respectively); and

4. pasting the clipboard contents into the document (Ctrl+V or Cmd+V, respectively).

Beginning with a blank document and an empty clipboard, what is the largest number of
characters that can be produced by using only N keystrokes?

The question given above is called the typing or keyboard problem [1, 2, 3]. This is
an easily conceptualized optimization problem, but the underlying feature of expanding
output capacity is quite extensible. Blewett and Derbyshire offered two competing solutions,
represented respectively by OEIS sequences A178715 and A193286 (Table 1). Both sequences
are actually correct, but they solve different problems predicated on a subtle but important
distinction regarding the de-selection of the workspace prior to pasting.

The two solutions are examples of a broader class of integer sequences that I term gen-
eralized keyboard sequences. These sequences represent solutions for maximizing output
given the availability of a generalized select-and-copy operation that requires p steps (time,
keystrokes, etc.) to package a new, larger unit of production (e.g., going from a single char-
acter insertion to pasting a block of characters, or being able to manufacture an integrated
product). I present an analytic treatment of the solutions to these problems and the strings
of operations which produce them. Generalized keyboard sequences are linearly recursive
for sufficiently large string step-sizes, and both the amplification factor and lag time are
functions of the cost of copying a new integrated unit into the buffer. I demonstrate that the
Derbyshire sequence A193286 is equal to the solution sequence for a problem where copy-
ing costs p = 2 steps (namely the select-all/copy combination), while the Blewett sequence
A178715, because it presumes the de-selection of the document text after the copy operation,
instead is equivalent to the solution when content can be copied to the buffer in p = 1 step,
with selection retained. I then describe solutions for more extensive copy operations (p = 3,
4, or 5) and identify two previously known sequences — the doubling sequence 2n−1 and
the maximal size of an Abelian subgroup of the symmetric group Sn [4] — as members of
this class of sequences corresponding to cost-free copying that, respectively, de-selects and
retains selection of existing text.

2

http://oeis.org/A178715
http://oeis.org/A193286
http://oeis.org/A178715
http://oeis.org/A193286
http://oeis.org/A193286
http://oeis.org/A178715

2 The general keyboard problem

Consider a text-generation problem involving three operations. First there is a simple oper-
ation a that inserts a single character into the document. There is also a generalized copy
operation C which both selects and copies the existing text to a memory buffer, while a gen-
eralized paste operation V appends buffered text to the document text. The copy operation
is said to be with replacement if the first paste or simple insertion after copying eliminates,
overwrites, or otherwise renders obsolete the currently existing text output. This is wholly
analogous to retaining selection of a text field after copying the selection. If the existing text
is immediately de-selected, copying is said to be without replacement.

Definition 1. A string x is an ordered sequence of operations drawn from the set {a, C, V }.

The step-length or cost of the string, denoted ||x||, is equal to the cumulative number of
steps necessary to implement the operations contained within the string. Simple insertion,
a, and pasting, V , each cost a single step, while copying costs p steps.

The output of a string, T (x), is the number of characters created within an initially
blank document after reading the string from left to right and performing the corresponding
operations. The clipboard buffer is likewise assumed to be initially empty. A string x∗ is
optimal if, for all other strings x of equal cost, T (x∗) ≥ T (x).

As an example, if copying requires p = 2 steps, the string s = aaaCV V CV a has a cost
||x|| = 11. With replacement the string output equals T (x) = 7, but without replacement,
this string would output 19 characters. Generically, we can observe that by extending a
given string s, copying with replacement yields

T (sCV) = T (sC) = T (s).

In contrast, if copying occurs without replacement, the same extended string satisfies

T (sCV) = 2T (sC) = 2T (s).

This paper primarily considers those procedures with replacement; however, the section
revisiting the original keyboard problem discusses the underlying relationship between the
two types of copy operations and their corresponding solutions.

Definition 2. A generalized keyboard sequence, (SN), is the sequence of integers representing
the maximum output of a string in {a, C, V }∗ costing N steps to execute,

SN = F (N) = max
||x||=N

T (x). (1)

Optimal strings are not necessarily unique in giving the maximal output for the stated
number of steps, e.g., if copying with replacement costs p = 1 steps, both s1 = a6 and
s2 = a3CV 2 are optimal for strings of step-size 6. Further, note the following heuristic
observations on the construction of optimal strings:

3

• Repeated copying does not increase the number of characters within the buffer, nor
do they contribute to the output. Thus no optimal string contains adjacent copy
operations, and no copying appears initially or terminally within the string.

• A useful copy operation loads into the buffer a number of bundled characters greater
than 1. Therefore, once such a copy operation has been invoked, no single-character
insertion will occur rightward within an optimal string. Consequently, simple insertions
occur only in the earliest (leftmost) segment within the string, which seeds the entire
process.

• No paste operation will occur prior to the first copy operation as the buffer is empty.

• If copying occurs with replacement, there must always be at least two pastes per copy
operation, else there is no effective change to the string’s output from that segment.

In light of these observations, we can restrict our attention to strings of the form (ki ≥ 2)

x = ak0CV k1 · · ·CV kn . (2)

The initial seed of simple character insertions is additive, and the first copy buffers a text
bundle equal to k0 characters. The first paste operation then eliminates the original loose
collection of characters and substitutes a unified collection of equal value. All subsequent
pastings of the buffer content also contribute k0 characters, so that just prior to the second
copy operation, the string has produced k0k1 total characters. This multiplicative effect is
recapitulated after each copy and paste substring. Thus the total output generated by a
string x of the form (2) is equal to the product of each substring’s productive (non-copying)
length,

T (x) = k0k1 · · · kn =
n∏

i=0

ki. (3)

The output of a string of the form (2) is invariant to the exact order of the ki terms.
Thus strings x1 = a3PV 2PV 4 and x2 = a2PV 4PV 3 both produce 24 characters. If there are
H copy operations within a string of step-size N , the problem of maximum string output
is equivalently restated as optimizing the product of positive integers

∏H

i=0 ki whose sum is∑H

i=0 ki = N − pH.

Lemma 3. The number of characters that can be generated by an optimal string is of the

form

T (x∗) = mB(m+ 1)E, (4)

where, m, B, and E are nonnegative integers, and B+E = H+1 is the number of substrings

partitioned by copy operations.

4

Proof. Without loss of generality, assume that the optimal string x has H copy operations,
producing a set of H + 1 productive substring lengths {ki}. Let m = kj and M = kk be the
minimum and maximum values within that set, respectively.

Define a variant string x′ as k′
j = (m + 1) and k′

k = (M − 1). All other substrings are
the same as in the original string (k′

i = ki), and the cost of the two strings are consequently
identical, ||x′|| = ||x||. The total output of the variant string x′ is

T (x′) =
∏

k′
i

= (m+ 1)(M − 1)
∏

i 6=j,k ki
= mM

∏
i 6=j,k ki + (M − (m+ 1))

∏
i 6=j,k ki

= T (x) + (M − (m+ 1))
∏

i 6=j,k ki

(5)

Therefore, if M > m+ 1, T (x′) > T (x), and x is not an optimal string.

This lemma leads directly to the following theorem about the form of the solution.

Theorem 4. For a generalized keyboard problem with copy cost p, the maximum output that

can be generated over N steps is of the form

F (N) = max
H

(
m[(H+1)−E](m+ 1)E

)
, (6)

where H is the number of copy operations contained within the associated string, and

m = ⌊(N + p)/(H + 1)⌋ − p, and
E = (N + p) mod (H + 1).

(7)

Proof. Assume that the optimal output is of the form given by (2). The total number of
factors equals E +B = H + 1. Appending a phantom copy operation just prior to the seed
string of simple insertions gives an extended string of step-size N + p. The terms (m + p)
and E can be calculated directly as the quotient and remainder resulting from the nearly
equal division of the extended N + p steps across H +1 substrings. To compute m, we need
only subtract those steps required for the operational cost of copying p from the quotient to
obtain the final result in Eq. (7).

Theorem 4 reduces the original problem of solving a particular generalized keyboard
problem to the question of finding the optimal number of copy operations to invoke within
the string. Unfortunately, the number of copies to use is not entirely predictable, at least for
low N , but the minimum number of copies needed for an optimal string is a non-decreasing
function of string step-size.

Theorem 5. The least number of copies for an optimal string of step-size N is non-

decreasing, i.e.,

H(N) ≤ H(N + 1).

5

number of copies H 0 1 2 3 4 5 6 7
string step-size N 1 8 15 21 27 34 40 46

Table 2: First occurrences of numbers of copies in optimal strings (p = 2)

Proof. Suppose that for string step-size N , the smallest optimal copy number is h∗, with
a corresponding total output T1 = dB(d + 1)E. The maximum output for a string of the
same step-size but with fewer copy operations (0 ≤ h < h∗) is T2 = δβ(δ + 1)η. T1 > T2 by
optimality, and δ ≥ d by division. Increasing the string step-size by one increases one least
factor by one, so that the new strings have outputs T ′

1 = ((d+1)/d)T1 and T ′
2 = ((δ+1)/δ)T2,

respectively. The string multipliers obey (d + 1)/d ≥ (δ + 1)/δ, therefore T ′
1 > T ′

2. Thus
once a lower number of copies has been superseded by the next higher number, that number
cannot subsequently generate a greater total output at larger string step-sizes.

Theorem 5 assures a natural succession of the optimal number of copies beginning with
H = 0 and incrementing upward as N increases; however, in most instances, the necessary
number of additional string steps required to increment H is subject to some early exceptions
to any proposed regularity (Table 2). For sufficiently largeN , however, a substitution pattern
develops among the factors making up the solution, and the switch to the next higher number
of copies becomes regularly spaced with an optimal number of pastes per copy.

Productive segments have a multiplicative effect on the output of optimal strings (see
Eq. (3)), so the ideal number of pastes k∗ per copy operation with cost p gives the greatest
geometric growth rate over the k + p substring,

G(k) =
k+p
√
k. (8)

If the optimal number of pastes per copy is k∗, we can define I = p + k∗ as the step-size of
the corresponding substring CV k∗ . For sufficiently large N , this generates the recursive rule

F (N) = k∗F (N − I). (9)

Let N∗ be the string step-size such that F (N) is recursively defined for all N ≥ N∗.
Equation (9) implies that k∗ will be a factor in the solution to F (N) when N ≥ N∗, and
thus either m = k∗ or m + 1 = k∗ in the solution given in (6). Although it is tempting to
assume (H + 1) = ⌊(N + p)/I⌋, thus implying m = k∗, we cannot presume k∗ to be the
larger or smaller factor. The optimal number of pastes per copy can be either factor, or even
alternate between them once the sequence becomes predictable.

Theorem 6. If N∗ is the minimum necessary number of steps for a generalized keyboard

sequence with copy cost p to become recursive, i.e., F (N) = k∗F (N − I) for all N ≥ N∗,

then there are non-negative parameters V and Q, such that for all N ≥ N∗ − I,

F (N) = (k∗ − 1)〈Z〉(k∗)(H+1)−|Z|(k∗ + 1)〈−Z〉 (10)

6

where, (H + 1) = max{1, ⌊(N + Q)/I⌋} is the number of partitioned substrings, R = (N +
Q) mod I, Z = V −R, and 〈Z〉 = max{0, Z}.
Proof. Let k∗ be the optimal number of pastes per copy given a copy cost p, and let N∗

be the string step-size at which the solution becomes recursive (6). There are at most two
distinct factors in F (N) for any given N . For all N ≥ N∗ − I, these factors are either the
pair (k∗−1) and k∗ or the pair k∗ and (k∗+1). Accordingly, the solution is of the generalized
form (k∗ − 1)W (k∗)X(k∗ +1)Y , with W and Y ≥ 0, but not both positive. Note we allow for
the possibility that k∗ has a trivial exponent for integers N∗ − I ≤ N < N∗.

Let NQ = MI + ξ, with 0 ≤ ξ < I, be the smallest N greater than N∗ such that F (NQ)
has exactly one more factor than F (N∗). Define V as the number of (k∗ − 1) factors in
F (NQ) and H̃ + 1 the total number of factors. Finally define the parameter Q as

Q = (H̃ + 1−M)I − ξ. (11)

Note that NQ +Q = (H̃ + 1)I.
Between NQ ≤ N < NQ + I, the number of factors in F (N) is constant (else NQ would

not be the minimum N > N∗ with more factors in F (N)). As N increments within this
range, all increases in the product F (N) must be reflected in a change of factors: first by
incrementing the (k∗ − 1) factors and then incrementing k factors to (k + 1).

Now, all positive integers can be expressed in reference to NQ as N = NQ + δI +R, with
0 ≤ R < I, and thus

N +Q = NQ +Q+ δI +R

= (H̃ + 1 + δ)I +R.
(12)

In the range NQ ≤ N < NQ + I, R tracks the position of step N away from the starting
point NQ so that 〈Z〉 correctly accounts for the number of (k∗−1) factors in F (N). Likewise
for 〈−Z〉 and the (k∗ + 1) factors. The remainder position is preserved as one moves up or
down the index N by I steps, i.e., (N +Q) mod I = R. Thus for N ≥ N∗ − I, the number
of (k∗ ± 1) terms is predictable. For the substring count, we see that

⌊(N +Q)/I⌋ = (H̃ + 1) + δ. (13)

Setting H = H̃ + δ correctly accounts for the loss or gain of k∗ factors (δ) through the
recursive formula Eq. (6).

Although exceptions do exist, Theorem 6 also provides a reasonable estimate for the
number of partitioned substrings H + 1 in shorter strings (N < N∗ − I) which can then be
used in conjunction with Theorem 4 to evaluate different possibilities for F (N).

3 The keyboard problem revisited

Returning to the original keyboard problem, the astute reader will have noticed an apparent
discrepancy wherein the keyboard problem is posed with four, not three, potential actions.

7

From a practical consideration, the select-all and copy commands must occur in tandem as an
undivided pair. Any optimal string of keystrokes would necessarily have this characteristic,
otherwise, the string would at best waste a step (e.g., copying an empty insertion cursor)
or even be counter-productive (e.g., inserting or pasting text immediately after selection).
Restriction to this two-keystroke combination reduces the set of operations to three elements
with a single select-and-copy operation which costs p = 2 steps.

Using Theorem 4 with copy cost p = 2, the resulting solution sequence matches OEIS
A193286, confirming that the Derbyshire sequence [1, 3] was generated under the assumption
that selection was retained during copying. For N ≥ 34, this sequence settles into the
recursive formula

f(N) = 4f(N − 6).

In contrast, Blewett generated his solution, A178715, with the assumption that the copy
command released the selection (Blewett, personal communication), and any subsequent
pasting or character insertion would therefore not overwrite existing text but be immediately
additive. Among the effects of this interpretation, the ideal number of pastes per copy must
maximize the geometric growth rate

G(k) =
k+2
√
k + 1, (14)

where the radicand reflects the retention of the preceding output (cf. Eq. (8)). By a simple

linear substitution, solving (14) is identical to optimizing k′+1
√
k′. In fact for all string step-

lengths N , the solution to the original keyboard problem where copying automatically de-
selects text is identical to the generalized keyboard sequence obtained when copying with
replacement bears a reduced cost of p = 1 step.

Moreover, any generalized keyboard problem characterized by a copy operation that costs
p steps and automatically releases selected text produces a solution sequence equal to that
obtained for a problem where copying with replacement costs p−1 steps. Strings under each
interpretation are in a one-to-one equivalence through the relationship C = ĈV , where C is
copying without replacement and has cost p and Ĉ is copying with replacement and has cost
p− 1, for any p ≥ 1. The only distinction between the two interpretations is that one would
technically report the number of optimal pastes per copy without replacement as k∗− 1, not
k∗.

4 Other sequences

Other construction scenarios may require more involved copying procedures, e.g., in many
photo-manipulation and graphic programs, one can select starting and ending actions in a
history palette and create a single command to execute the entire range of actions, all in
sequence. This process can be replicated ad nauseum to create a very elaborate treatment of
multiple images. Similarly, copying and pasting on tablets often require the use of multiple
gestures, e.g., an iOS device (prior to version 8.4) required long press, select all, copy, tap,

8

http://oeis.org/A193286
http://oeis.org/A178715

long press, paste. At the opposite extreme, copying could be freely applied, perhaps as an
ongoing background update process which does not require a loss of user productivity (e.g.,
the cost of string steps) to maintain. Table 3 provides five additional sequences that belong
to this class of solution sequences. Three sequences correspond to copy costs p = 3, 4, or 5,
while two others are for cost-free copying either with or without replacement.

Consider first the case of generalized keyboard sequences where copying is more costly.
OEIS sequences A193455, A193456, and A193457 are the output solutions for p = 3, 4, and
5, respectively. The previous generalized keyboard sequences had the ideal number of pastes
per copy, k∗, either always the greater (p = 1) or always the lesser (p = 2) factor in Eq.
(6); however these new sequences make use of three distinct factors once the sequence is
recursive, and k∗ occurs as both the maximum and minimum factor for different N .

If the generalized keyboard problem is instead distinguished by a free copy procedure
that could be applied at any time without cost (p = 0), the solutions would maximize the
product

∏
i ki subject to the constraint

∑
i ki = N . This famous puzzle problem and its

solution (OEIS sequence A000792) have been known for some time [5, 6, 8]; also see [7,
pp. 30–31, 188]. This sequence is notable also for describing the maximal size of an Abelian
subgroup of the symmetric group Sn [4].

Now extend the idea of free copying further by assuming that copying occurs without
replacement. Per the discussion in the previous section, the solution to p = 0 copying without
replacement can be equivalently identified as the solution when copying with replacement
has a “cost” of p = −1. The optimal number of pastes per copy has a computed value of
k∗ = 2, and the lag is I = 1. The simple recursion formula, F (N) = 2F (N − 1), is valid
for all N > 1, and the sequence is simply the powers of 2 beginning at 1 (OEIS sequence
A131577). For this particular problem, the string’s initial two-bit segment could be either
aa or a(C)V , which has a carryover effect wherein both H + 1 = N and H + 1 = N − 1 are
valid numbers of substrings in optimal solutions.

Table 3 provides the ideal number of pastes per copy for several different costs p, as well
as the recursive rules and parameters for use with (10). The table also gives how many
exceptions there are for the computed number of substrings for N < N∗ − I and lists the
associated OEIS sequence number.

5 Discussion

Generalized keyboard sequences provide solutions for a class of optimization problems that
have taken their inspiration from the keyboard problem. These problems feature the idea
of increasing the rate of production by bundling pre-existing output as an integrated unit,
e.g., copying and pasting all current text in a document. This study distinguished two
competing solutions to the original keyboard problem and led to the discovery of several
new sequences. Additionally, two well-established sequences were shown also to belong to
this class of sequences and to correspond to cost-free copying.

All generalized keyboard sequences with a single-step paste implementation share two

9

http://oeis.org/A193455
http://oeis.org/A193456
http://oeis.org/A193457
http://oeis.org/A000792
http://oeis.org/A131577

p k∗ I N∗ F (N) N∗ − I V Q Except. OEIS
-1 2 1 2 2F (N − 1) 1 1 0 0 A131577
0 3 3 5 3F (N − 3) 2 1 1 0 A000792
1 4 5 16 4F (N − 5) 11 4 5 2 A178715
2 4 6 34 4F (N − 6) 28 0 2 5 A193286
3 5 8 34 5F (N − 8) 26 3 6 1 A193455
4 6 10 69 6F (N − 10) 59 8 12 11 A193456
5 6 11 80 6F (N − 11) 69 3 8 6 A193457

Table 3: Paradigm shift sequence results for different copy costs. Items listed are copy
cost, (p); optimal pastes per copy (k∗); period or recursion lag (I); step where recursion
formula begins to hold (N∗); recursion formula (F (N)); first step where Theorem 2 fully
applies (N∗− I); maximum number of (k∗−1) factors (V); and procedure increment marker
(Q). Also listed are the number of exceptions to the expected number of procedures (H) or
substrings (H + 1) over 1 ≤ N < N∗ − I and the OEIS sequence number.

common factors. The maximum output for each string step-size N can be expressed as a
product of at most two distinct consecutive factors, each raised to a power. Second, for
sufficiently large N , each sequence settles down to a linear recursion formula where the
multiplier is the number of pastes per copy that yields the greatest geometric growth rate,
and the lag is the sum of that number and the copy cost.

The ideal number of pastes per copy, k∗, is merely a non-decreasing function of copy cost,
but the lag or innovation cycle, I, strictly increases with the cost of copying. Parameters V
and Q in Theorem 6 do not correlate with copy costs, nor does the number of exceptions to
the predicted number of optimal pastes for low N . For example, the sequence for copy cost
p = 3 has a single exception, and that for p = 5 has six, but the sequence for p = 4 has the
most exceptions among the tested costs.

The most direct extension of this model is to consider problems where the implementation
of a single paste requires multiple steps to complete. Strings with “lengthy” implementations
share many similarities with the optimal strings presented here, and some results will parallel
those in this paper, yet there are important differences such as the relationship of the seed
length to the ideal number of pastes per copy (unpublished manuscript). Other extensions
include copying or bundling procedures with increasingly inefficient paste implementations
where the buffer value degrades over time, and manufacturing problems with multiple tracks
of production or a stackable memory buffer.

6 An informal history of the keyboard problem

The solution to the keyboard problem and its early dissemination was a product of crowd-
sourcing that reflects the work of both mathematicians and hobbyists, and this history serves

10

http://oeis.org/A131577
http://oeis.org/A000792
http://oeis.org/A178715
http://oeis.org/A193286
http://oeis.org/A193455
http://oeis.org/A193456
http://oeis.org/A193457

as a reminder that simple questions can inspire a broader idea. It is unknown when or by
whom this problem was first posed, but given its simplicity and the ubiquity of its context,
it would be unsurprising to discover that it had been previously asked, or even answered,
by math enthusiasts in isolated circumstances. The history documented here concerns the
connective power of the internet in the form of message boards, web articles and blogs, and
online encyclopedias.

Late in 2010, an unidentified individual posted a version of the keyboard problem to
an intra-company message board at Microsoft Corporation. Bill Blewett, a software design
engineer with the company, responded to that challenge (Blewett, personal correspondence),
and by early 2011, he had submitted his solution to the On-Line Encyclopedia of Integer
Sequences as A178715. A few months later in the summer of 2011, John Derbyshire, a
writer and author of two general readership books on mathematics, gave the keyboard prob-
lem greater visibility when he posed the problem as a monthly brainteaser to his online
readership [1]. He himself had been forwarded the problem by a correspondent who had
encountered the puzzle in a job interview with another software company (Derbyshire, per-
sonal correspondence). Derbyshire subsequently generated many solutions via a brute force
search from whence he detected the sequence’s long-term recursive property. (His updated
solution page [3] has expanded its list of solutions and reports some of the analytic ideas pre-
sented here — which were discussed in correspondence — commingled with those of his own
industry.) N. J. A. Sloane volunteered the sequence’s OEIS entry A193286, while blogger
Jonathan Campbell further publicized the problem and its dueling solutions [2]. Follow-
ing his readers’ observation of the distinction between the competing solutions, Campbell
contributed python scripts that eventually corroborated both the Blewett and Derbyshire
sequences for their respective assumptions [2].

Concurrently I had become aware of the problem and was inspired to provide a formal-
ized description of not only the original problem, but also its generalized form, which led
to the development of the idea of the generalized keyboard sequence (originally termed a
“paradigm shift sequence” in OEIS entries), the contribution of new sequences for extended
copy processes, and the identification of connections to existing sequences.

References

[1] J. Derbyshire, June Diary: On pessimism, Western Civilization, and more, National

Review Online. Published electronically at http://tinyurl.com/q9wgf43, 2011.

[2] J. Campbell. Typing puzzle, in Questions about Politics, Philosophy, and Math. Pub-
lished electronically at http://www.acouplequestions.com/?p=468, 2011.

[3] J. Derbyshire, June 2011 Solutions to puzzles in my National Review Online Diary.
Published electronically at http://tinyurl.com/ntun8z6, 2011.

11

http://oeis.org/A178715
http://oeis.org/A193286
http://tinyurl.com/q9wgf43
http://www.acouplequestions.com/?p=468
http://tinyurl.com/ntun8z6

[4] R. Bercov and L. Moser, On Abelian permutation groups, Canad. Math. Bull. 8 (1965)
627–630.

[5] B. R. Barwell, Cutting string and arranging counters, J. Rec. Math. 4 (1971), 164–168.

[6] B. R. Barwell, Maximum product: solution to problem 2004, J. Rec. Math. 25 (1993),
313.

[7] P. R. Halmos, Problems for Mathematicians Young and Old, Mathematical Association
of America, 1991.

[8] E. F. Krause, Maximizing the product of summands, Math. Mag., 69 (1996), 270–271.

2010 Mathematics Subject Classification: Primary 11N64; Secondary 11N37, 00A08, 11K65,
11B99.
Keywords: keyboard problem, generalized keyboard sequence, doubling sequence, output
optimization.

(Concerned with sequences A000792, A131577, A178715, A193286, A193455, A193456, and
A193457.)

Received June 16 2014; revised versions received March 18 2015; August 22 2015. Published
in Journal of Integer Sequences, October 10 2015.

Return to Journal of Integer Sequences home page.

12

http://oeis.org/A000792
http://oeis.org/A131577
http://oeis.org/A178715
http://oeis.org/A193286
http://oeis.org/A193455
http://oeis.org/A193456
http://oeis.org/A193457
http://www.cs.uwaterloo.ca/journals/JIS/

	Introduction
	The general keyboard problem
	The keyboard problem revisited
	Other sequences
	Discussion
	An informal history of the keyboard problem

