

Journal of Integer Sequences, Vol. 18 (2015), Article 15.1.4

Fibonacci s-Cullen and s-Woodall Numbers

Diego Marques Departamento de Matemática Universidade de Brasília Brasília, Brazil diego@mat.unb.br

Ana Paula Chaves Instituto de Matemática e Estatística Universidade Federal de Goiás Goiás, Brazil apchaves@ufg.br

Abstract

The *m*-th Cullen number C_m is a number of the form $m2^m + 1$ and the *m*-th Woodall number W_m has the form $m2^m - 1$. In 2003, Luca and Stănică proved that the largest Fibonacci number in the Cullen sequence is $F_4 = 3$ and that $F_1 = F_2 = 1$ are the largest Fibonacci numbers in the Woodall sequence. Very recently, the second author proved that, for any given s > 1, the equation $F_n = ms^m \pm 1$ has only finitely many solutions, and they are effectively computable. In this note, we shall provide the explicit form of the possible solutions.

1 Introduction

A Cullen number is a number of the form $m2^m+1$ (denoted by C_m), where m is a nonnegative integer. This sequence was introduced in 1905 by Father J. Cullen [2] and it was mentioned in the well-known book of Guy [5, Section **B20**]. These numbers gained great interest in 1976, when Hooley [7] showed that almost all Cullen numbers are composite. However, despite being very scarce, it is still conjectured that there are infinitely many Cullen primes. In a similar way, a Woodall number (also called Cullen number of the second kind) is a positive integer of the form $m2^m - 1$ (denoted by W_m). It is also known that almost all Woodall numbers are composite. However, it is also conjectured that the set of Woodall primes is infinite.

These numbers can be generalized to the s-Cullen and s-Woodall numbers which are numbers of the form

$$C_{m,s} = ms^m + 1$$
 and $W_{m,s} = ms^m - 1$,

where $m \ge 1$ and $s \ge 2$. This family was introduced by Dubner [3]. A prime of the form $C_{m,s}$ is $C_{139948,151}$ an integer with 304949 digits.

Many authors have searched for special properties of Cullen and Woodall numbers and their generalizations. We refer the reader to [4, 6, 9, 10] for classical and recent results on this subject.

In 2003, Luca and Stănică [8, Theorem 3] proved that the largest Fibonacci number in the Cullen sequence is $F_4 = 3 = 1 \cdot 2^1 + 1$ and that $F_1 = F_2 = 1 = 1 \cdot 2^1 - 1$ are the largest Fibonacci numbers in the Woodall sequence.

Recall that $\nu_p(r)$ denotes the *p*-adic order of *r*, which is the exponent of the highest power of a prime *p* which divides *r*. Also, the order (or rank) of appearance of *n* in the Fibonacci sequence, denoted by z(n), is defined as the smallest positive integer *k*, such that $n \mid F_k$ (for results on this function, see [13] and references therein). Let *p* be a prime number and set $e(p) := \nu_p(F_{z(p)})$.

Very recently, Marques [11] proved that if the equation

$$F_n = ms^m + \ell \tag{1}$$

has solution, with m > 1 and $\ell \in \{\pm 1\}$, then $m < (6.2 + 1.9e(p)) \log(3.1 + e(p))$, for some prime factor p of s. This together with the fact that e(p) = 1 for all prime $p < 2.8 \cdot 10^{16}$ (PrimeGrid, March 2014) implies that there is no Fibonacci number that is also a nontrivial (i.e., m > 1) s-Cullen number or s-Woodall number when the set of prime divisors of s is contained in $\{2, 3, 5, \ldots, 27999999999999991\}$. This is the set of the first 759997990476073 prime numbers.

In particular, the previous result ensures that for any given $s \ge 2$, there are only finitely many Fibonacci numbers which are also s-Cullen numbers or s-Woodall numbers and they are effectively computable.

In this note, we shall invoke the primitive divisor theorem to provide explicitly the possible values of m satisfying Eq. (1). More precisely,

Theorem 1. Let s > 1 be an integer. Let (n, m, ℓ) be a solution of the Diophantine equation (1) with n, m > 1 and $\ell \in \{-1, 1\}$. Then $m = e(p)/\nu_p(s)$, for some prime factor p of s.

In particular, we have that $m \leq e(p)$ for some prime factor p of s. Also, we can deduce [11, Corollary 3] from the above theorem. In fact, for all $p < 2.8 \cdot 10^{16}$ we have e(p) = 1 and then if (n, m, ℓ) is a solution, with m > 1, we would have the contradiction that $1 < m = e(p)/\nu_p(s) = 1/\nu_p(s)$ for some p dividing s.

2 The proof

Suppose that $n \leq 27$. Then $\max\{2s^2 - 1, m2^m - 1\} \leq ms^m + \ell = F_n \leq F_{27} = 196418$ yields $s \leq 313$ and $m \leq 13$. For this, we prepare a simple *Mathematica* program which, in a few seconds, does not return any solution with m > 1.

So we may suppose that $n \ge 28$. We rewrite Eq. (1) as $F_n - \ell = ms^m$. It is well-known that $F_n \pm 1 = F_a L_b$, where $2a, 2b \in \{n \pm 2, n \pm 1\}$. (This factorization depends on the class of n modulo 4. See [12, (3)] for more details.) Then the main equation becomes

$$F_a L_b = m s^m$$

where $2a, 2b \in \{n \pm 2, n \pm 1\}$ and $|a - b| \in \{1, 2\}$. Since $a - b \in \{\pm 1, \pm 2\}$, then $gcd(a, b) \in \{1, 2\}$ and then $gcd(F_a, L_b) = 1, 2$ or 3. Therefore, we have $F_a = m_1 s_1^m$ and $L_b = m_2 s_2^m$, where $m_1 m_2 = m, s_1 s_2 = s$ and $gcd(m_1, m_2), gcd(s_1, s_2) \in \{1, 2, 3\}$. We claim that $s_1 > 1$. Suppose, to get a contradiction, that $s_1 = 1$, then $F_a = m_1$ and $L_b = m_2 s^m$. Since $2a - 4 \ge n - 6 \ge (n + 8)/2 \ge b + 3$, we arrive at the following contradiction:

$$m^2 \ge m_1^2 = F_a^2 \ge \alpha^{2a-4} \ge \alpha^{b+3} \ge 2L_b = 2m_2 s^m \ge 2^{m+1} > m^2,$$

where $\alpha = (1 + \sqrt{5})/2$. Here, we used that $F_j \ge \alpha^{j-2}$ and $L_j \le \alpha^{j+1}$. Thus $s_1 > 1$. Since $a \ge (n-2)/2 \ge 13$, then by the primitive divisor theorem (see [1]), there exists a primitive divisor p of F_a (i.e., $p \mid F_a$ and $p \nmid F_1 \cdots F_{a-1}$). We also have that $p \equiv \pm 1 \pmod{a}$. In particular, $p \ge a - 1$. Thus $p \mid F_a = m_1 s_1^m$. Suppose that $p \mid m_1$. In this case, one has that $a - 1 \le p \le m_1 \le m$. On the other hand, we get

$$2^m \le m_1 s_1^m = F_a \le \alpha^{a-1} < 2^{a-1}.$$

Thus m < a - 1 which gives a contradiction. Therefore $p \nmid m_1$ and consequently $p \mid s_1$. This yields $\nu_p(F_a) = m\nu_p(s_1) = m\nu_p(s)$ (because $p > 3, s = s_1s_2$ and $gcd(s_1, s_2) \leq 3$). On the other hand, z(p) = a and so $\nu_p(F_{z(p)}) = \nu_p(F_a) = m\nu_p(s)$ as desired.

3 Acknowledgements

The first author is grateful to FAP-DF and CNPq for financial support. The authors wish to thank the editor and the referee for their helpful comments.

References

- [1] R. D. Carmichael, On the numerical factors of the arithmetic forms $\alpha^n \pm \beta^n$. Ann. of Math. 15 (1913), 30–70.
- [2] J. Cullen, Question 15897. Educ. Times, 534 (1905).

- [3] H. Dubner, Generalized Cullen numbers. J. Recreat. Math., 21 (1989), 190–194.
- [4] J. M. Grau and A. M. Oller-Marcén, An Õ(log²(N)) time primality test for generalized Cullen numbers. Math. Comp. 80 (2011), 2315–2323.
- [5] R. Guy, Unsolved Problems in Number Theory. 2nd ed., Springer-Verlag, 1994.
- [6] F. Heppner, Über Primzahlen der Form $n2^n + 1$ bzw. $p2^p + 1$. Monatsh. Math. 85 (1978), 99–103.
- [7] C. Hooley, *Applications of the Sieve Methods to the Theory of Numbers*. Cambridge University Press, Cambridge, 1976.
- [8] F. Luca and P. Stănică, Cullen numbers in binary recurrent sequences, in Applications of Fibonacci Numbers, vol. 10, Kluwer Academic Publishers, 2004, pp. 167–175.
- [9] F. Luca, On the greatest common divisor of two Cullen numbers. Abh. Math. Sem. Univ. Hamburg 73 (2003), 253–270.
- [10] F. Luca and I. Shparlinski, Pseudoprime Cullen and Woodall numbers. Colloq. Math. 107 (2007), 35–43.
- [11] D. Marques, On generalized Cullen and Woodall numbers which are also Fibonacci numbers. J. Integer Sequences, 17 (2014), Article 14.9.4.
- [12] D. Marques, The Fibonacci version of the Brocard-Ramanujan Diophantine equation. Port. Math. 68 (2011), 185–189.
- [13] D. Marques, Sharper upper bounds for the order of appearance in the Fibonacci sequence. *Fibonacci Quart.* 50 (2013), 233–238.

2010 Mathematics Subject Classification: Primary 11B39. Keywords: Fibonacci number, Cullen number.

(Concerned with sequences $\underline{A000045}$ and $\underline{A002064}$.)

Received October 11 2014; revised version received December 24 2015. Published in *Journal* of Integer Sequences, January 6 2015.

Return to Journal of Integer Sequences home page.