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Abstract

For an arithmetic function f0, we define a new arithmetic function f1, generalizing
the linear recurrence for the numbers of compositions of positive integers. Using f1 in
the same way, we then define f2, and so on.

We establish some patterns related to the sequence f1, f2, . . .. Our investigations
depend on the following result: if f0 satisfies a linear recurrence equation of order k,
then each function fm will also satisfy a linear recurrence equation of the same order.

In several results, we derive a recurrence equation for fm(n), in terms of m and n.
For each result, we give a combinatorial meaning for fm(n) in terms of the number of
restricted words over a finite alphabet.

We also find new combinatorial interpretations of the Fibonacci polynomials, as
well as the Chebyshev polynomials of the second kind.

1 Introduction

Researchers usually investigate compositions of positive integers through their generating
functions, connecting them to the so-called invert transforms.

In this paper, we take a different approach. Investigating some generalizations of the
linear recurrence equations for the numbers of compositions, we proceed to show that cer-
tain linear recurrences may be considered as recurrences for the numbers of some kinds of
compositions.
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In conclusion, we provide a number of results, which illustrate some consequences of our
findings. We are interested in two particular problems: obtaining a recurrence equation for
fm(n) when f0 is given, and investigating relationships of the sequence f1, f2, . . . with the
number of restricted words over a finite alphabet.

In our interpretation of fm(n) in terms of restricted words, the number of letters in the
alphabet is determined by the parameter m, while the length of a word is determined by the
parameter n.

In particular, if f0 takes values in {0, 1}, then f1(n) counts the number of some com-
positions of n, so that f1 always produces a relationship between the compositions and the
binary words.

In fact, our sequence of functions might be understood as a way to transfer some prop-
erties from the binary words to words over a finite alphabet.

We derive connections our sequence of our sequence with the Fibonacci polynomials and
the Chebyshev polynomials of the second kind. Fibonacci numbers are generalized in several
ways.

We finish the paper by giving the combinatorial meaning for a class of sequences when
f0 satisfies a particular linear recurrence equation of second order with constant coefficients.

We start with the definition of our sequence.

Definition 1. We define a pair (f0, f1) of arithmetic functions as follows: Let f0 be an
arbitrary arithmetic function. A function f1 is recursively defined through the convolution

f1(n) =
n

∑

i=1

f0(i)f1(n− i), (n ≥ 1), (1)

where f1(0) = 1.
Inductively, for each m > 0, we define the pair (fm−1, fm).

Corollary 2. For each m ≥ 1, we have

fm(1) = f0(1), fm(2) = mf0(1)
2 + f0(2).

Proof. We use induction with respect to m. From Equation (1), we conclude that the claim
holds for m = 1. Suppose that the claim is true for m. Then fm+1(1) = fm(1), and so
fm+1(1) = f0(1). In the same way, we obtain fm+1(2) = fm(1)

2 + fm(2). Applying the
induction hypothesis gives

fm+1(2) = f0(1)
2 +mf0(1)

2 + f0(2) = (m+ 1)f0(1)
2 + f0(2).

Remark 3. If f0(i) = 1, (i ≥ 1) then Equation 1 becomes the recurrence for the numbers of
compositions of positive integers.

Remark 4. Note that fm is a particular case of 1-determinants, defined in Janjić [2].
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Using the notion of the invert transform, we easily find the generating function for the
sequence f1(1), f1(2), . . ..

Proposition 5. The sequence {f1(n)}∞n=1 is the invert transform of the sequence {f0(n)}∞n=1.

Proof. It is easy to see that Equation (1) is equivalent to
[

1 +
∞
∑

i=1

f1(i)x
i

]

·
[

1−
∞
∑

i=1

f0(i)x
i

]

= 1.

Hence, the generating function of the sequence f1(1), f1(2), . . . is

1

1−∑∞

i=1
f0(i)xi

.

In general, an arithmetic function maps the set of positive (or nonnegative) integers into
the set of complex numbers. The results of the next section are valid for such functions.

2 A result on linear recurrences

We proceed to prove that, if f0 satisfies a linear recurrence equation of order k, then f1 also
satisfies a linear recurrence of the same order. To stress the dependence of f0 and f1 on k,
we write fi(n; k) instead of fi(n) for i = 1, 2.

Theorem 6. Let f0 be an arithmetic function, and let k be a positive integer. If there exist
constant numbers (complex) a0(1), a0(2), . . . , a0(k) such that

f0(n+ k; k) =
k

∑

i=1

a0(i)f0(n+ k − i; k), (n ≥ 1), (2)

where f0(1; k), f0(2; k), . . . , f0(k; k) are arbitrary numbers (complex), then we have

f1(i; k) =
i

∑

j=1

f0(j; k)f1(i− j; k), (i = 1, 2, . . . , k), and (3)

f1(n+ k; k) =
k

∑

i=1

a1(i)f1(n+ k − i; k), (n ≥ 1), (4)

where

a1(1) = a0(1) + f0(1; k),

a1(i) = a0(i) + f0(i; k)−
i−1
∑

j=1

a0(j)f0(i− j; k), (2 ≤ i ≤ k). (5)
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Proof. We first consider the case k = 1. If f0(n+ 1; 1) = a0(1)f0(n; 1), (n ≥ 1), then

f1(n+ 1; 1) =
n+1
∑

i=1

f0(i; 1)f1(n+ 1− i; 1) = f0(1; 1)f1(n; 1) +
n+1
∑

i=2

f0(i; 1)f1(n+ 1− i; 1),

which implies f1(n+ 1; 1) = [f0(1; 1) + a0(1)]f1(n; 1). Hence, Theorem 6 is true for k = 1.
Assume that k > 1. For 1 ≤ i ≤ k, we have

f1(n+ k − i; k) =
n+k−i
∑

j=1

f0(j; k)f1(n+ k − i− j; k).

We denote f1(n+ k − i; k) = Xi + Yi, (i = 1, . . . , n), where

Xi =
k−i
∑

j=1

f0(j; k)f1(n+ k − i− j; k), Yi =
n+k−i
∑

j=k−i+1

f0(j; k)f1(n+ k − i− j; k), (6)

with Xk = 0. It follows that

k
∑

i=1

a0(i)Xi =
k

∑

i=2

[

i−1
∑

j=1

a0(j)f0(i− j; k)

]

f1(n+ k − i; k). (7)

Also, after some calculations, we obtain

k
∑

i=1

a0(i)Yi = f1(n+ k; k)−
k

∑

i=1

f0(i; k)f1(n+ k − i; k). (8)

From equations (7) and (8), we obtain

k
∑

i=1

aif1(n+ k − i; k) =
k

∑

i=1

ai(Xi + Yi) =

k
∑

i=2

[

i−1
∑

j=1

a0(j)f0(i− j; k)

]

f1(n+ k − i; k) + f1(n+ k; k)−
k

∑

j=1

f0(j; k)f1(n+ k − j; k).

We finally have

f1(n+ k; k) =
k

∑

i=1

[ai + f0(i; k)]f1(n+ k − i; k)−
k

∑

i=2

[

i−1
∑

j=1

aif0(i− j, k)

]

f1(n+ k − i; k),

which is Equation (4), under the conditions (3).

Remark 7. In the conditions of Theorem 6, we may always find an explicit formula for
f1(n; k), when k = 1, 2, 3, 4 by solving the characteristic equations.
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The simplest case of Theorem 6 is

Corollary 8. If f0(n+ 1) = af0(n), (n ≥ 1), for some a, then for m ≥ 1 we have

fm(n+ 1) = [mf0(1) + a]fm(n), (n ≥ 1).

The explicit formula for fm is

fm(n) = f0(1)[mf0(1) + a]n−1, (n ≥ 1).

Proof. For m = 1, according to Theorem 6, we have a1(1) = a+ f0(1), and the claim is true
for m = 1. The rest follows by induction.

We finished this section by stating the recurrence equation for fm, (m ≥ 1), assuming
that f0 satisfies a linear recurrence of order 2.

Corollary 9. If f0(1), f0(2) are arbitrary, and

f0(n+ 2) = a0(1)f0(n+ 1) + a0(2)f0(n),

then
fm(1) = f0(1), fm(2) = mf0(1)

2 + f0(2), (9)

and
fm(n+ 2) = am(1)fm(n+ 1) + am(2)fm(n), (10)

where am(1) = a0(1) +mf0(1), am(2) = a0(2)−ma0(1)f0(1) +mf0(2).

Proof. This is a particular case of Theorem 6.

We stress that in all that follows the values of arithmetical functions fm, (m ≥ 0) will be
nonnegative integers.

3 Compositions and words

The function f1 generalizes the notions of the numbers of compositions of positive integers
for several kinds of compositions. We state some of them.

Corollary 10. 1. If f0(i) is either 1 or 0 and Q = {i : f0(i) = 1}, then f1(n) equals the
number of compositions of n, the parts of which belong to Q.

2. If f0(i) = 1 for all i, then f1(n)(= 2n−1) equals the number of all compositions of n.

3. If f0(i) ≥ 0 for all i, then f1(n) equals the number of the colored compositions of n, in
which part i may appear in f0(i) different colors.

Proof. All claims are easy to prove.
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Remark 11. Note that Claim 3 above is, in fact, the combinatorial interpretation of the
invert transform in Bernstein and Sloane [1].

The Catalan numbers Ci, (i = 0, 1, . . .) may also be considered as a kind of colored
compositions.

Proposition 12. If f0(i) = Ci−1 for all i ≥ 1, then f1(n) = Cn.

Proof. The claim follows from Segner’s formula for the Catalan numbers; see Koshy [5,
Formula (5.6), p. 117].

Now we show that the function f1 also counts the number of the k-matrix compositions,
considered by Munarini at al. [6].

A k-matrix composition of n is a matrix with k rows, in which the entries are nonnegative
integers, there are no columns consisting of zeros only, and the sum of all entries equals n.
Let mc(n; k) denote the number of such compositions. We have

Proposition 13. If f0(i) =
(

k+i−1

k−1

)

, (i = 1, 2, . . .), then mc(n; k) = f1(n).

Proof. For given i, (1 ≤ i ≤ k), the equation x1 + x2 + · · ·+ xk = i has
(

k+i−1

k−1

)

nonnegative

solutions. This means that there are
(

k+i−1

k−1

)

·mc(n− i; k) k-matrix compositions of n, ending
with a column having the sum of all elements equal i. Taking mc(0; k) = 1, we obtain

mc(n; k) =
n

∑

i=1

(

i+ k − 1

k − 1

)

mc(n− i; k).

Comparing this equation with Equation (1), we conclude that mc(n; k) = f1(n).

Remark 14. The sequences in Sloane [7], the members of which count k-compositions are:
A003480, A145839, A145840, A145841, A161434.

We next note that, for a suitably chosen f0, the function f1 counts the number of par-
ticular partitions of positive integers. Namely, for the set Q = {q1, q2, . . . , qn} of positive
integers, we let p(Q, n) denote the number of partitions of n, the parts of which belong to
Q.

Janjić and Petković, in [3], consider the following function:

ai =
i

∑

j=0

(−1)i−j

(

n+ k + 1

i− j

)(

j, n

k,Q

)

, (i ≥ 0),

where numbers
(

j,n

k,Q

)

are defined in the following way:

1. k =
∑n

t=1
(qt − 1).

2. Consider a set X consisting of n blocks X1, X2, . . . , Xn, such that |Xi| = qi for all i
and an additional block Y , such that |Y | = j.
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The number
(

j,n

k,Q

)

is the number of (n + k)−subsets of X intersecting each block Xi, (i =

1, 2, . . . , n).
From Janjić [4, Theorem 2], we obtain

Proposition 15. If f0(i) = −ai for all i, then

f1(n) = p(Q, n), (n = 1, 2, . . . , n).

Remark 16. Some sequences in Sloane [7] generated by f1 in Proposition 15 are: A001401,
A001045, A008616, A008676, A109707, A025795, A008677, A025839, A029144, A029280.

Corollary 17. If a = 1, m = 1, and f0(1) = p, where p is a positive integer, then f1(n) =
p(1 + p)n−1, which is the number of the colored compositions of n, such that each part may
appear in p different colors.

Remark 18. Some sequences in Sloane [7] generated by f1 from Corollary 17 are: A000079,
A000244, A025192, A020699, A093138.

Assume that f0(i) = 1, (i ≥ 1). Then, by Corollary 17 we have

fm(n) = (m+ 1)n−1.

In this particular case, we obtain the following relationship of our sequence and numbers
of words over an alphabet with m+ 1 letters.

Corollary 19. The number fm(n) equals the number of words of length n−1 over an alphabet
of m+ 1 letters.

We consider the case when values of f0 are either 0 or 1. Take g0(i) = 1, (i = 1, 2, . . .).
Then, for all i, we have f0(i) ≤ g0(i). Since each term in Equation (1) is nonnegative, we
conclude that fm(n) ≤ gm(n), (n ≥ 0) for each m, and since gm(n) = (m+ 1)n+1, we obtain

Proposition 20. If the values of f0 are either 0 or 1, then fm counts some restricted words
over the alphabet {0, 1, . . . ,m}.

Our further investigation may be summarized by the following two problems.

Problem 21. Suppose that f0 takes values either 0 or 1.

1. Find either a recurrence or an explicit formula for fm(n) in terms of m and n.

2. Describe the set of restricted words over the alphabet {0, 1, . . . ,m} counted by fm(n).

Problem 22. Solve Problem 21 when f0 may have values other than 0 and 1.

7

http://oeis.org/A001401
http://oeis.org/A001045
http://oeis.org/A008616
http://oeis.org/A008676
http://oeis.org/A109707
http://oeis.org/A025795
http://oeis.org/A008677
http://oeis.org/A025839
http://oeis.org/A029144
http://oeis.org/A029280
http://oeis.org/A000079
http://oeis.org/A000244
http://oeis.org/A025192
http://oeis.org/A020699
http://oeis.org/A093138


4 Some results concerning Problem 21

Proposition 23. Assume that f0(1) = 0, and f0(i) = 1, (i > 1). Then we have

fm(1) = 0, fm(2) = 1,

and
fm(n+ 2) = fm(n+ 1) +mfm(n).

Proof. The function f0 clearly satisfies the following linear recurrence of order 2.

f0(1) = 0, f0(2) = 1, and f0(n+ 2) = a0(1)f0(n+ 1) + a0(2)f0(n), (n ≥ 1),

where a0(1) = 1, a0(2) = 0.
Now the assertion is an immediate consequence of Corollary 9.

Corollary 24. For n ≥ 0, the number fm(n+ 2) from Proposition 23 counts the number of
words of length n − 1, over the alphabet {0, 1, . . . ,m}, where no two consecutive letters are
nonzero.

Proof. We let g(n) denote the number of required words of length n. We have g(0) = 1 =
fm(3), since only an empty word has length 0. Further, we have g(1) = m+ 1 = fm(4).

Consider words of length n+1, (n > 0). There are g(n) such words beginning with 0. If a
word begins with j 6= 0, then the next letter must be 0, which yields that there are g(n− 1)
such words. Since j may take m different values, we see that g(n+ 1) = g(n) +mg(n− 1).
It follows that g(n− 1) = fm(n+ 2), (n ≥ 0).

Remark 25. In the case m = 1, Corollary 24 gives the following well-known property of the
Fibonacci numbers: For n ≥ 1, Fibonacci number Fn+1 counts 11-avoiding binary words of
length n− 1. The case m = 2 gives the analogous property of the Jacosthal numbers.

Remark 26. Some sequences in Sloane [7] generated by fm from Corollary 24 for different
m’s are: A000045, A001045, A006130, A006131, A015440, A015441, A015442, A015443,
A015445, A015446, A015447, A053404.

Proposition 27. We define

f0(i) =

{

1, if i is odd;

0, if i is even.

Then
fm(1) = 1, fm(2) = m,

and
fm(n+ 2) = mfm(n+ 1) + fm(n). (11)
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Proof. The function f0 satisfies the following recurrence:

f0(1) = 1, f0(2) = 0,

f0(n+ 2) = a0(1)f0(n+ 1) + a0(2)f0(n),

where a0(1) = 0, a0(2) = 1. The claim is now a simple consequence of Corollary 9.

Corollary 28. If f0(i) is defined as in Proposition 27, then the number fm(n+1) equals the
number n-length over the alphabet {0, 1, . . . ,m} avoiding runs of zeros of odd lengths.

Proof. We let d(n) denote the number of required words of length n. Then, obviously,
d(0) = 1, d(1) = m. For n > 1, there are md(n − 1) words of length n beginning with a
nonzero letter. If a word begins with 0, then it must begin with at least two zeros. Hence
there are d(n− 2) such words.

We conclude that d(n) = fm(n+ 1), (n ≥ 0).

As an immediate consequence of Proposition 27, we obtain the following connection of
our functions with Fibonacci polynomials Fn(x).

Corollary 29. In terms of Proposition 27, we have

fm(n) = Fn(m).

Proposition 27 also generalizes the Fibonacci number through the golden ratio.

Corollary 30. If α and β are solutions of the characteristic equation of Equation (11), then
the explicit formula for fm in Proposition 27 is

fm(n) = C1(Φm)
n + C2(−Φ−1

m )n,

where

C1 =
fm(2)− βfm(1)

α(α− β)
, C2 = −fm(2)− αfm(1)

β(α− β)
.

For Φm, we have

1. Φ1 is the golden ratio, that is, Φ1 =
1+

√
5

2
.

2. Φ2 is the silver ratio, that is, Φ2 = 1 +
√
2.

3. Φ3 is the bronze ratio, that is, Φ3 =
3+

√
13

2
.

4. Generally, Φm = m+
√
4+m2

2
.

Remark 31. Some sequences from Sloane’s [7] generated by recurrence from Corollary 30 are:
A000045, A000129, A006190, A001076, A052918, A005668, A054413, A041025, A041041.
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Proposition 32. Let k be a positive integer. We define

f0(i; k) =

{

1, if 1 ≤ i ≤ k;

0, otherwise.

Then, for m ≥ 1, we have

fm(i; k) = (m+ 1)i−1, (i = 1, 2, . . . , k), (12)

and

fm(n+ k; k) = m

k
∑

i=1

f1(n+ k − i; k). (13)

Proof. In this case, we have f0(i; k) = 1, a0(i) = 0, (i = 1, 2, . . . , k). Equation (3) now gives
a1(i) = 1, (1 ≤ i ≤ k), which yields that Equation (13) holds for m = 1.

Assume that Equation (13) holds for m. To prove that fm+1(i; k) = (m+ 2)i−1, (1 ≤ i ≤
k), it is enough to use induction and the identity:

(m+ 2)i−1 = (m+ 1)i−1 +
i−1
∑

j=1

(m+ 1)j−1(m+ 2)i−1−j.

This identity is easy to prove.
We have am(i) = m, (i = 1, . . . , k). Using equation (5), we obtain am+1(1) = m +

fm(1; k) = m+ 1. For 2 ≤ i ≤ k, using induction and the identity

m+ 1 = m+ (m+ 1)i−1 −m

i−1
∑

j=1

(m+ 1)i−1−j,

which is also easy to prove, we conclude that the claim holds for m+ 1.

It is known that Fn+2 equals the number of 00-avoiding binary words of length n. Example
32 generalizes this property in the following way:

Corollary 33. The number fm(n+1; k) from Proposition 32 equals the number of words of
length n over the alphabet {0, 1, . . . ,m}, avoiding runs of k zeros.

Proof. Let g(n; k) denote the number of required words of length n. We have g(0; k) = 1,
since only the empty word has length 0. Next, we have g(i; k) = (m + 1)i, (1 ≤ i ≤ k − 1),
since no word of length < k has a run of k zeros. Suppose that n ≥ k. We calculate
g(n+k−1; k), (n ≥ 1). There are mg(n+k−2; k) words of length n+k−1, beginning with
a nonzero letter. The remaining words begin with 0. It is clear that there are mg(n+k−3; k)
words beginning with an isolated zero. In the same way, we have mg(n + k − 4; k) words
beginning with the run of two isolates zeros, and so on.
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Finally, there are mg(n+ 1; k) words beginning with k − 1 successive zeros. Hence,

g(n+ k − 1; k) = m

k
∑

i=1

g(n+ k − 1− i; k), (n ≥ 1).

We see that g(n; k) and fm(n+ 1; k) satisfy the same recurrence equation.

Remark 34. In particular, the function f1(n + 1; 2) counts binary words with no adjacent
zeros. It follows that f1(n + 1; 2) = Fn+2. The case k = 3 produces analogous property of
Tribonacci numbers, and so on.

Remark 35. Several sequences in Sloane [7] generated by fm form Corollary 33 are: A000045,
A028859, A155020, A125145, A086347, A180033, A180167, A000073, A119826, A000078,
A209239, A001591, A001592, A122189, A079262, A104144, A122265, A168082, A168083,
A168084, A220469, A220493, A249169.

5 Some results concerning Problem 22

We first derive a recursion for fm in the case when f0 is a linear function of i.

Proposition 36. If p, q 6= 0 are arbitrary numbers, and f0(i) = q(i− 1) + p, (i ≥ 1), then

fm(1) = p, fm(2) = q + p+mp2, (14)

fm(n+ 2) = (mp+ 2)fm(n+ 1) + (mq −mp− 1)fm(n), (n > 0). (15)

Proof. It is easy to see that f0 satisfies the following recurrence:

f0(1) = p, f0(2) = q + p,

f0(n+ 2) = a0(1)f0(n+ 1) + a0(2)f0(n),

where
a0(1) = 2, a0(2) = −1.

Therefore we may apply Corollary 9. It follows that

fm+1(1) = fm(1) = p, fm+1(2) = [fm(1)]
2 + fm(2) =

p2 + q + p+mp2 = q + p+ (m+ 1)p2.

Also, we have

am+1(1) = am(1) + fm(1) = mp+ 2 + p = (m+ 1)p+ 2,

am+1(2) = am(2) + fm(2)− am(1)fm(1) =

mq −mp− 1 + q + p+mp2 − (mp+ 2)p = (m+ 1)q − (m+ 1)p− 1,

and the proposition is proved.
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In a particular case of the preceding proposition, we find the combinatorial meaning of
fm(n) in terms of restricted words.

Corollary 37. 1. If f0(i) = i, (i ≥ 1) then, for m ≥ 1, we have

fm(1) = 1, fm(2) = m+ 2, (16)

fm(n+ 2) = (m+ 2)fm(n+ 1)− fm(n), (n > 0). (17)

2. The number fm(n) equals the number of 01-avoiding words of length n − 1 over the
alphabet {0, 1, 2, 3, . . . ,m+ 1}.

3. For n ≥ 1, we have fm(n) = Un−1(
m+2

2
), where Un(x) is the nth Chebyshev polynomial

of the second kind, evaluated at x = m+2

2
.

Proof. 1. This is the case q = p = 1 of Proposition 36.

2. We let g(n) denote the number of required words of length n − 1. It is clear that
g(1) = 1, and g(2) = m+ 2.

At the beginning of each word of length n+1 put a letter of {0, 1, . . . ,m+1} to obtain
(m + 2)g(n + 1) words of length n + 2. Exactly g(n) of these words begin with 01.
Subtracting this number from (m+2)g(n+1), we conclude that g satisfies Recurrence
(17), which means that g(n) = fm(n), (n ≥ 1).

3. Equations (16) and (17) are the recurrence for the numbers Un−1(
m+2

2
).

We see that, for m = 1, formula (17) is the recurrence for Fibonacci numbers of even
indices, that is f1(n) = F2n, (n = 1, 2, . . .).

We stress two particular results. The first concerns a relationship between Fibonacci
numbers and Chebyshev polynomials of the second kind, and the second describes the re-
stricted words counting by F2n.

Remark 38. 1. For n ≥ 1, we have

F2n = Un−1

(

3

2

)

.

2. The number F2n equals the number of 01-avoiding words of length n − 1 over the
alphabet {0, 1, 2}.

Remark 39. Some sequences in Sloane [7] generated by Recurrence (17) are: A001906,
A001353, A004254, A001109, A004187, A001090, A018913, A004189, A004190, A004191,
A078362, A007655, A078364, A077412, A078366, A049660, A078368, A075843, A092499,
A077421, A097778.
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We finish our investigation with a result which gives a combinatorial interpretation in
terms of restricted words for a class of the functions fm, when f0 satisfies a linear recurrence
equation of the second order.

Proposition 40. Let p > 1 and q be integers such that 1 ≤ q ≤ p. Define f0 recursively in
the following way:

f0(1) = 1, f0(2) = p,

and
f0(n+ 2) = (p− 1)f0(n+ 1) + (p− q)f0(n), (n ≥ 1).

Then, for m ≥ 0, we have
fm(1) = 1, fm(2) = m+ p,

and
fm(n+ 2) = (m+ p− 1)fm(n+ 1) + (m+ p− q)fm(n). (18)

Proof. We again apply Corollary 9. Clearly, fm(1) = 1, fm(2) = m+ p. Further we have

am+1(1) = fm(1) + am(1) = 1 +m+ p− 1 = m+ p,

am+1(2) = fm(2) + am(2)− fm(1)am(1) =

m+ p+m+ p− q −m− p+ 1 = m+ 1 + p− q.

Corollary 41. For m ≥ 0, the number fm(n+ 1) from Proposition 40 equals the number of
ii-avoiding words of length n over the alphabet {0, 1, . . . ,m+p− 1}, for i ∈ {0, 1, . . . , q− 1}.
Proof. Let g(n) be the number of required words of length n. We obviously have g(0) =
1, g(1) = m+ p.

It remains to prove that g(n) satisfies recurrence equation (18). There are (m+p−q)g(n)
words of length n+2 in which the first two letters are the same. The remaining words begin
with two different letters. At the beginning of a word of length n + 1 which begins with a
letter i, put a letter j (j 6= i) to obtain (m+ p− 1) words of length n+ 2, the second letter
of which is i. When i runs over all elements of the alphabet, we obtain all words of length
n+ 2 beginning with two different letters. Hence,

g(n+ 2) = (m+ p− 1)g(n+ 1) + (m+ p− q)g(n), (n ≥ 0).

We conclude that g(n) = fm(n+ 1), (n ≥ 0).

Remark 42. Some sequences in Sloane [7] generated by the preceding corollary are: A000045,
A000129, A126473 , A126501, A126528, A122391, A180037, A099842, A003948, A015451,
A003949, A015453, A003950, A015454, A003951, A015455, A003952, A003953, A015456,
A015457, A003954, A170732, A170733, A170734.

Remark 43. Note that the first two sequences in the above remark are Fibonacci and Pell
numbers.
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