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Abstract

We consider a family of integer sequences generated by nonlinear recurrences of
the second order, which have the curious property that the terms of the sequence, and
integer multiples of the ratios of successive terms (which are also integers), appear
interlaced in the continued fraction expansion of the sum of the reciprocals of the
terms. Using the rapid (double exponential) growth of the terms, for each sequence it
is shown that the sum of the reciprocals is a transcendental number.

1 Introduction

For some time there has been considerable interest in rational recurrences which surprisingly
generate integer sequences. Such sequences were made popular by the articles of Gale [7, 8],
who discussed some particular nonlinear recurrence relations of the form

xn+N xn = f(xn+1, . . . , xn+N−1), (1)

where f is a polynomial in N − 1 variables. Observe that the above recurrence is rational,
in the sense that each new iterate xn+N is a rational function of the N previous terms
xn, . . . , xn+N−1. Starting from N initial values x0, . . . , xN−1 which are all integers, there is
no reason to expect that subsequent terms will be, because one must divide by xn at each
step. However, a very wide variety of examples are now known, for which the recurrence
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(1) has the Laurent property: if the initial values are viewed as variables, then for certain
special choices of f , all of the iterates belong to the ring Z[x±1

0 , . . . , x±1

N−1
], consisting of

Laurent polynomials in the initial values with integer coefficients. In particular, the Laurent
property implies that if all the initial values are taken to be 1 (or ±1), then xn ∈ Z for all n.

The Laurent property is a key feature of Fomin and Zelevinsky’s cluster algebras [5],
which are generated by birational iterations of the same shape as (1), that is

old variable× new variable = exchange polynomial,

in the particular case that the exchange polynomial f is a binomial. The main tool available
for proving the Laurent property is the Caterpillar Lemma due to Fomin and Zelevinsky
[6], which also applies to more general choices of f , fitting into the broader framework of
Laurent Phenomenon (LP) algebras [14]. Within the axiomatic setting of cluster algebras or
LP algebras, there is a requirement that the exchange polynomials should not be divisible
by any of the variables. However, this requirement is not necessary for the Laurent property
to hold. Indeed, even for the case of a recurrence of second order, of the form

xn+2 xn = f(xn+1), (2)

the requirement that x 6 | f(x) is not necessary. In work by the author [12, 13] it was shown
that recurrences of the form (2) having the Laurent property fit into three classes, depending
on the form of f : (i) f(0) 6= 0, in which case the recurrence belongs within the framework
of cluster algebras (when it is a binomial) or LP algebras (when it is not); (ii) f(0) = 0,
f ′(0) 6= 0; (iii) f(0) = f ′(0) = 0. In classes (i) and (ii) there are additional requirements on
f , but in class (iii) one can take f(x) = x2F (x) with arbitrary F ∈ Z[x].

The simplest non-trivial example of the form (2) belonging to the third of the classes
identified in previous work by the author [12] is the recurrence

xn+2 xn = x2

n+1(xn+1 + 1). (3)

Due to the Laurent property, the initial values x0 = x1 = 1 generate an integer sequence:

1, 1, 2, 12, 936, 68408496, 342022190843338960032, . . . ; (4)

this is sequence A112373 in the Online Encyclopedia of Integer Sequences (OEIS). As one
might expect from the first few terms, this sequence grows very rapidly: log xn ∼ Cλn with
C ≈ 0.146864 and λ = (3 +

√
5)/2. Another feature of sequence A112373 is that the ratios

yn = xn+1/xn also form an integer sequence, that is

1, 2, 6, 78, 73086, 4999703411742, 1710009514450915230711940280907486, . . . , (5)

which is sequence A114552 in the OEIS, and the same is true for the ratios of ratios, i.e.,
zn = yn+1/yn = xn+1 + 1 by (3); this property of the ratios is common to all recurrences in
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class (iii). Hanna made some very interesting empirical observations about the sequence (4)
[9], by considering S, the sum of reciprocals of the terms:

S =
∞
∑

j=0

1

xj

= 1 + 1 +
1

2
+

1

12
+

1

936
+ · · · ≈ 2.5844017240. (6)

In the OEIS, the digits of this number appear as sequence A114550, yet it is not the decimal
expansion of S that is interesting, but rather its continued fraction representation; with the
notation

[a0; a1, a2, a3, . . . , an, . . .] = a0 +
1

a1 +
1

a2 +
1

a3 + · · ·
1

an + · · ·

,

one finds that

S = [2; 1, 1, 2, 2, 6, 12, 78, 936, 73086, 68408496, 4999703411742, . . .]. (7)

What appears to be the case from the above is that (apart from the initial value a0 = 2)
the sequence of an in (7), which is number A114551, is obtained by interlacing the original
sequence (4) with the ratios (5). As observed by Shallit [16], and shown by Harris [11], this
implies that the even/odd terms satisfy

a2n = a2n−1a2n−2, a2n+1 = a2n−1(a2n + 1), (8)

respectively, where the first formula holds for n ≥ 2 and the second for n ≥ 1.
The purpose of this short note is to prove Hanna’s observations concerning the continued

fraction expansion (7), and generalize them to an infinite family of integer sequences gener-
ated by recurrences belonging to class (iii) in the author’s previous work [12]. At the same
time we show that the number S given by (6) is transcendental, and the same is true for the
sums of reciprocals obtained from the other sequences in this family.

The results presented here are similar in spirit to those in a paper by Davison and Shal-
lit, who found some continued fractions whose partial quotients (coefficients) are explicitly
related to the denominators of their convergents, and used this to prove the transcendence
of Cahen’s constant [3]. For references to examples of other transcendental numbers whose
complete continued fraction expansion is known, the reader should consult the latter paper.

2 Continued fractions for sums of reciprocals

Before we proceed with presenting a family of sequences which generalizes (4), we present
some facts about this particular example, to motivate the proof of the main result. When
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taking the sum of reciprocals (6), it is more convenient to exclude the index j = 0 from the
sum, and then consider the partial sums

SN =
N
∑

j=1

1

xj

.

Calculating the finite continued fractions of these partial sums, we find that

S1 = 1, S2 =
3

2
= 1 +

1

2
, S3 = 1 +

1

1 +
1

1 +
1

2 +
1

2

,

S4 = [1; 1, 1, 2, 2, 6, 12], S5 = [1; 1, 1, 2, 2, 6, 12, 78, 936], and

S6 = [1; 1, 1, 2, 2, 6, 12, 78, 936, 73086, 68408496]

are the first few partial sums. As will be proved in due course, the pattern is

SN = [x0; y0, x1, y1, x2, . . . , yN−2, xN−1], (9)

so that the even/odd coefficients are a2n = xn and a2n+1 = yn respectively, and as we have
chosen to start the sum with 1/x1 = 1 we now have a0 = x0 = 1 which ensures that both
formulae (8) hold for all n ≥ 1. The result for S2 looks anomalous, but in fact (9) is seen to
hold for N = 2 upon noting that

S2 = [1; 2] = [1; 1, 1].

The continued fraction for the infinite sum S∞ =
∑∞

j=1

1

xj
is obtained in the limit N → ∞,

and compared with (6) we have S = S∞ + 1.
We now wish to generalize these observations to integer sequences generated by recur-

rences of the form
xn+2 xn = x2

n+1 F (xn+1), (10)

where F (x) ∈ Z[x], and we assume that d = degF ≥ 1 to avoid a trivial case. If we take
such a recurrence with the initial values x0 = x1 = 1, and set

yn =
xn+1

xn

, zn =
yn+1

yn
=

xn+2xn

x2
n+1

= F (xn+1),

then we have y0 = 1, x2 = y1 = z0 = F (1), and by induction we see that xn, yn, zn ∈ Z

for all n ≥ 0, so we have three integer sequences, as long as the recurrence (10) does not
reach a singularity (division by zero), which can happen if F (x) = 0 for some x ∈ Z. Indeed,
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suppose that for some positive integer m we have 0 6= xn ∈ Z for 0 ≤ n ≤ m, but F (xm) = 0;
then at the next step xm+1 = 0, followed by xm+2 = 0, and then xm+3 is undefined. The
analysis of these recurrences near to a singularity has been performed previously [12].

To avoid the possibility of reaching a singularity from the initial conditions x0 = x1 = 1,
we choose F to have only positive integer coefficients (F (x) ∈ Z≥0[x]), so that F (x) > 0
whenever x > 0, and then all three sequences, (xn), (yn) and (zn), consist of positive integers.
In order for the continued fraction expansion of the sum of reciprocals to behave in the right
way, we must make the further assumption that F (0) = 1, which (since the degree of F is
positive) implies F (1) > 1, and hence xn+1 > xn for n ≥ 1, and the sequences (yn) and
(zn) are strictly increasing as well. The precise rate of growth of these sequences will be
considered in the next section, but for now we proceed with the main result on continued
fractions.

Theorem 1. For a sequence (xn) generated from the initial values x0 = x1 = 1 by the
recurrence (10) with F (x) ∈ Z≥0[x] and F (0) = 1, the partial sums of reciprocals have the
continued fraction expansions

SN =
N
∑

j=1

1

xj

= [a0; a1, a2, . . . , a2N−2] (11)

for all N ≥ 1, where

a2n = xn, a2n+1 =
F (xn+1)− 1

xn

∈ Z>0. (12)

Corollary 2. The infinite sum of the reciprocals of the terms of the sequence (xn) is given
by

S∞ =
∞
∑

j=1

1

xj

= [a0; a1, a2, . . . , an, . . .], (13)

where the coefficients of the continued fraction are as in (12).

The latter result on the infinite sum follows immediately from (11) by taking the limit
N → ∞. Note that the convergence of the sum is guaranteed since the infinite continued
fraction makes sense for any sequence of positive integer coefficients (an); the convergence
of the infinite sum can also be proved directly by using estimates for the growth of (xn), as
given in the next section.

Remark 3. We may write

S∞ − 1 =
∞
∑

j=1

1

y1y2 · · · yj

and observe that (yn) is a non-decreasing sequence of positive integers, with yn ≥ 2 for n ≥ 1,
so this is an example of an Engel expansion (see Theorem 2.3 in Duverney’s book [4]).
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To prove Theorem 1, we start by recalling some general facts about convergents of con-
tinued fractions, which are well known; for a brief summary of these results, the reader is
referred to the first chapter of Manin and Panchishkin’s book [15], or for more details see
the book by Cassels [2]. The nth convergent of the continued fraction [a0; a1, a2, . . .] is given
by

pn
qn

= [a0; a1, a2, . . . , an],

where the numerators pn and denominators qn are given in terms of the coefficients according
to the matrix identity

(

a0 1
1 0

)(

a1 1
1 0

)

. . .

(

an 1
1 0

)

=

(

pn pn−1

qn qn−1

)

, (14)

and both pn and qn are obtained recursively via the same linear three-term recurrence rela-
tion, that is

pn+1 = an+1pn + pn−1,
qn+1 = an+1qn + qn−1,

(15)

with the initial values

q−1 = 0, p−1 = q0 = 1, p0 = a0. (16)

Taking the determinant of both sides of (14) gives the formula

pnqn−1 − pn−1qn = (−1)n+1, (17)

valid for n ≥ 0, and the identity

pnqn−2 − pn−2qn = (−1)nan (18)

for n ≥ 1 follows by combining (15) with (17).
Now consider the convergents of the continued fraction whose coefficients an are given

in terms of the sequence (xn) by (12). First of all, note that if we write F (x) = 1 + xG(x)
for G ∈ Z≥0[x], then a2n+1 = xn+1G(xn+1)/xn = ynG(xn+1) ∈ Z>0 as claimed; so in general
the coefficients with odd index are integer multiples of the ratios yn. We prove by induction
that

q2N−1 = yN − 1 =
xN+1

xN

− 1, q2N = xN+1. (19)

For N = 0 we have q−1 = x1/x0 − 1 = 0 and q0 = x1 = 1 in agreement with (16), and
assuming that (19) holds for some N , from (15) we have

q2N+1 = a2N+1q2N + q2N−1 = (F (xN+1)− 1)
xN+1

xN

+
xN+1

xN

− 1 =
xN+2

xN+1

− 1,

by (10), and hence

q2N+2 = a2N+2q2N+1 + q2N = xN+1

(

xN+2

xN+1

− 1

)

+ xN+1 = xN+2
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as required. Now (11) is clearly true for N = 1, and if it holds for some index N then, by
using the second equation in (19) as well as (18) and (12), we find

SN+1 = SN +
1

xN+1

=
p2N−2

q2N−2

+
1

q2N
=

p2Nq2N−2 − a2N + q2N−2

q2N−2q2N
=

p2N
q2N

which means that the partial sum SN+1 is the 2Nth convergent of the continued fraction
[a0; a1, a2, . . .] with coefficients (12), so (11) holds for the index N + 1. This completes the
proof of Theorem 1.

3 Transcendence of the sums

We now prove the following

Theorem 4. The infinite sum S∞, as in (13), is a transcendental number.

The proof is based on Roth’s theorem, which says that if α is an irrational algebraic
number then for an arbitrary fixed δ > 0 there are only finitely many rational approximations
p/q for which

∣

∣

∣

∣

α− p

q

∣

∣

∣

∣

<
1

q2+δ
(20)

(see Manin and Panchishkin’s book for a brief discussion [15], and for a proof see the book
by Cassels [2]). Note that the number S∞ is irrational, since its continued fraction expansion
(13) consists of an infinite sequence of coefficients an 6= 0. In order to make use of Roth’s
theorem, it is enough for the integer sequence (xn) to satisfy the growth condition

xn+1 > xκ
n for some κ > 2, (21)

for all sufficiently large n. Supposing that this is so, it follows that

xn+j > xκj

n for j ≥ 1

whenever n is large enough. Then from Theorem 1 we have

∣

∣

∣

∣

S∞ − p2n
q2n

∣

∣

∣

∣

=
∞
∑

j=n+2

1

xj

<

∞
∑

j=1

1

xκj

n+1

.

Now the function g(j) = j
1

j−1 is monotone decreasing with g(2) = 2, so κj > jκ for j ≥ 2
and κ > 2, which together with (19) implies

∣

∣

∣

∣

S∞ − p2n
q2n

∣

∣

∣

∣

<

∞
∑

j=1

1

xjκ
n+1

=
(1− x−κ

n+1)
−1

xκ
n+1

<
1

xκ−ǫ
n+1

=
1

qκ−ǫ
2n
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for any ǫ > 0 and n sufficiently large. So if ǫ is chosen such that κ − ǫ = 2 + δ > 2, then
α = S∞ has infinitely many rational approximations satisfying (20), and hence must be
transcendental.

To show that (21) holds for any sequence (xn) defined by the recurrence (10) with x0 =
x1 = 1 and F (0) = 1, F (x) ∈ Z≥0[x] as in Theorem 1, we can use a very crude estimate.
Indeed, we have F (x) = 1+ . . .+ cxd for some integer c ≥ 1, so F (x) > xd for all x > 0, and
then from (10) we obtain

xn+1 >
xd+2
n

xn−1

≥ xd+1

n (22)

for all n ≥ 1, since the ratios yn = xn+1/xn form an increasing sequence. The above growth
condition is sufficient for (21) when the degree d ≥ 2, but not when d = 1, which is the case
relevant to the original sequence (4). However, this estimate can be improved upon by using

xn−1 < x
1

d+1

n in the first inequality in (22), to yield

xn+1 > x
d+2− 1

d+1

n ≥ x5/2
n (23)

for d ≥ 1.
In fact, we can get a more accurate measure of growth from asymptotic arguments. Upon

taking the logarithm of (10) we find that Λn = log xn satisfies

Λn+1 − (d+ 2)Λn + Λn−1 = log c+ αn, with αn = log

(

F (xn)

cxd
n

)

. (24)

Note that αn = log(1+O(x−1
n )) = O(x−1

n ) as n → ∞, which means that, to leading order, the
growth of Λn is governed by a homogeneous linear equation with constant coefficients, given
by the vanishing of the left-hand side of (24). The characteristic equation is λ2−(d+2)λ+1 =
0, with the largest root being

λ =
d+ 2 +

√

d(d+ 4)

2
> 2. (25)

Thus we find that
Λn ∼ Cλn, (26)

for some C > 0. Hence Λn+1/Λn → λ as n → ∞, and so for any ǫ > 0 it follows that
Λn+1 > (λ− ǫ)Λn for all sufficiently large n, giving the required growth condition

xn+1 > xλ−ǫ
n .

The asymptotic properties of the sequence (xn) can be determined more precisely by
adapting the methods of Aho and Sloane [1], leading to the following result, which is easy
to verify directly from (24).
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Proposition 5. For the initial conditions x0 = x1 = 1, the logarithm Λn = log xn of each
term of the sequence satisfying (10) is given by the formula

Λn =

(

(1− λ−1)λn − (1− λ)λ−n

λ− λ−1
− 1

)

log c
1

d +
n−1
∑

k=1

(

λn−k − λk−n

λ− λ−1

)

αk, (27)

where αk is defined as in (24) and λ as in (25).

Corollary 6. To leading order, the asymptotic approximation of the logarithm Λn is given
by (26), where

C =

(

1− λ−1

λ− λ−1

)

log c
1

d +
1

λ− λ−1

∞
∑

k=1

λ−kαk,

and for the terms of the sequence

xn ∼ c−
1

d exp(Cλn).

Remark 7. The form of the expression (27) is the discrete analogue of the solution of a linear
inhomogeneous differential equation as obtained via the method of variation of parameters
[10]; if αk were given in advance, then it would provide the exact solution of (24), viewed as
a linear equation with initial values Λ0 = Λ1 = 0. However, as was pointed out for a different
example by Aho and Sloane [1], a formula such as (27) only represents the solution of the
corresponding nonlinear equation (in this case the equation (10) for xn) in a tautologous
sense, because αk depends explicitly on the terms of the sequence (xn). Nevertheless, this
formula does yield useful asymptotic information about the sequence.
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