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Abstract

In this note we consider the question of whether there are infinitely many primes

in the intersection of two or more Beatty sequences ⌊ξjn+ ηj⌋, n ∈ N, j = 1, . . . , k. We

begin with a straightforward sufficient condition for a set of Beatty sequences to contain

infinitely many primes in their intersection. We then consider two sequences when one

ξj is rational. However, the main result we establish concerns the intersection of two

Beatty sequences with irrational ξj . We show that, subject to a natural “compatibility”

condition, if the intersection contains more than one element, then it contains infinitely

many primes. Finally, we supply a definitive answer when the compatibility condition

fails.

1 Introduction

Let ⌊·⌋ denote the integer part function and {x} the fractional part of x, so that x = ⌊x⌋+{x}.
The sequence ⌊ξn+ η⌋, n = 1, 2, . . . is called a Beatty sequence. If ξ ∈ Z this is an arithmetic
progression, so one can consider Beatty sequences to be, in some sense, a generalisation of
arithmetic progressions. If ξ = a/b ∈ Q with a > b > 1, gcd(a, b) = 1, then the corresponding
Beatty sequence is a union of b arithmetic progressions (mod a). Original problems involving
Beatty sequences therefore come from the case of irrational ξ. The question of primes in
an arithmetic progression is of importance in analytic number theory and correspondingly
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many researchers have recently considered problems involving primes in Beatty sequences
[1, 3, 10, 15]. We write B(ξ, η) = {⌊ξn+ η⌋ : n ∈ N}. The problem we address in this paper
concerns the intersection of a finite number of Beatty sequences. Suppose

ξ = (ξ1, . . . , ξs) and η = (η1, . . . , ηs),

with each ξj a real exceeding 1. Put

B(ξ,η) =
s
⋂

j=1

B(ξj , ηj) .

Clearly we need some conditions on the pair ξ,η just to ensure that B(ξ,η) 6= ∅. We recall an
observation from at least as far back as 1894 [13, p. 123] that in the case s = 2, η1 = η2 = 0,
for any ξ1 > 1, ξ1 /∈ Q, the value ξ2 satisfying 1/ξ1 + 1/ξ2 = 1 gives B(ξ,η) = ∅, while
the union of the two sequences comprises the whole of N. This observation (noted in the
context of the theory of vibrating strings) was stated without proof and predates Beatty’s
original question concerning the sequences which now bear his name, and which inspired
formal demonstrations [4, 14]. This result has led to much further research (for example,
[12, 7, 11, 6, 9]).

Here we shall address the question of whether B(ξ,η) contains infinitely many primes.
The following theorem provides us with a simple sufficient condition.

Theorem 1. Let k ∈ N and reals ξ1, . . . , ξk each exceeding 1 be given such that

1,
1

ξ1
, . . . ,

1

ξk
, are linearly independent over Q. (1)

Then, for every η ∈ Rk, the set B(ξ,η) contains infinitely many primes. Indeed, the number
of such primes up to x equals

x

ξ1 · · · ξk log x
(1 + o(1)). (2)

Our remaining results consider what happens in the case k = 2 when (1) fails. We first
consider the case when one or both of the ξj are rational. When both are rational either
B(ξ,η) is empty or it consists of the union of arithmetic progressions. In that case there will
be infinitely many primes in the intersection if and only if at least one of these progressions
has the form a (mod q) with gcd(a, q) = 1. If exactly one ξj is rational we have the following
result.

Theorem 2. Let ξ1, ξ2 be reals exceeding 1 with ξ1 ∈ Q, ξ2 /∈ Q. If η1 is such that ⌊ξ1n+ η1⌋
takes infinitely many prime values, then the set B(ξ,η) contains infinitely many primes for
evey real η2.

Before discussing the case where both ξj are irrational we need the following definition
given by Balog and Friedlander [2].
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Definition 3. A set of real numbers {α1, . . . , αk} is called compatible if

k
∑

j=1

njαj ∈ Q =⇒
k

∑

j=1

njαj ∈ Z

whenever n1, . . . , nk are integers.

Of course, if (1) holds then the set {1/ξ1, . . . , 1/ξk} is trivially compatible. For the case
k = 2 and a compatible set we can give a definitive answer to the question whether B(ξ,η)
contains infinitely many primes as follows.

Theorem 4. Let k = 2, and ξ1, ξ2 > 1, both irrational such that {1/ξ1, 1/ξ2} is a compatible
set. Then, if the set B(ξ,η) has more than one element, it contains infinitely many primes.

The compatibility condition was introduced in connection with simultaneous Diophantine
approximation using prime denominators, so it is quite natural to see its occurrence here
given the method used to detect primes in Beatty sequences (see the start of the proof of
Theorem 1). However, although compatibility is sufficient to show that

lim inf
p→∞

max
j=1,2

‖αjp‖ = 0,

where ‖x‖ denotes the distance from x to a nearest integer, it is not sufficient by itself
to establish the corresponding simultaneous inequalities in our situation. Neither is the
condition always necessary as we investigate further in the final section of this paper.

We shall establish Theorem 4 by considering the various possibilities when (1) fails.
In the following we assume without further comment that ξ1, ξ2 > 1, both irrational, and
{1/ξ1, 1/ξ2} is a compatible set. We first mention the homogeneous case (η1 = η2 = 0) when
there exist integers m,n, r such that

m/ξ1 + n/ξ2 = r with (m,n, r) = 1, m, n, r > 0. (3)

An important observation here is that the compatibility condition forces m and n to be
coprime. We shall assume this consequence without further comment when assuming the
compatibility condition. Of course we must have r ≥ 2 or else the intersection of the two
Beatty sequences will be empty. This follows from the same argument supplied for the case
m = n = 1. The next result shows that r ≥ 2 is a sufficient condition for two such Beatty
sequences to have infinitely many primes in their intersection, even in the inhomogeneous
case.

Theorem 5. Let k = 2 and suppose that ξ1, ξ2 satisfy (3) with r ≥ 2. Then for every η ∈ R2

the set B(ξ,η) contains infinitely many primes.

For the case k = 2 with m,n both positive it remains to elucidate what happens when
r = 1 in the inhomogeneous case. To that end we also prove the following result which
includes the homogeneous case.
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Theorem 6. Let k = 2 and suppose that ξ1, ξ2 satisfy (3) with r = 1. Then the set B(ξ,η)
contains infinitely many primes if and only if

mη1ξ
−1
1 + nη2ξ

−1
2 /∈ Z . (4)

Indeed, if (4) fails the set B(ξ,η) contains at most one element.

We note that in this case Skolem [12] has already proved (when m = n = 1) that B(ξ,η)
contains at most one element if (4) fails.

Our final cases cover what happens if m,n, r do not all have the same sign. Without loss
of generality we can suppose that m ≥ 1, r ≥ 0, n ≤ −1. We can then replace n by −n to
consider

m/ξ1 − n/ξ2 = r with (m,n, r) = 1, m, n > 0, r ≥ 0. (5)

The case r ≥ 1 is as follows.

Theorem 7. Let k = 2 and suppose that ξ1, ξ2 satisfy (5) with r ≥ 1. Then for every η ∈ R2

the set B(ξ,η) contains infinitely many primes.

Finally, in the case r = 0, we note that Morikawa [11] has already studied the condition
that makes the two sequences disjoint. We show that when this condition fails the intersection
contains infinitely many primes. In the case r = 0 it is, of course, immediate that {1/ξ1, 1/ξ2}
is a compatible set.

Theorem 8. Let k = 2 and suppose that ξ1, ξ2 satisfy (5) with r = 0. There are infinitely
many primes if and only if the following condition fails

1− m

ξ1
≥

{

m(η1 − η2)

ξ1

}

≥ m

ξ1
. (6)

When (6) holds with strict inequality B(ξ,η) is empty. If (6) holds with equality then there
is at most one element in B(ξ,η).

Remark 9. We note from the above that the set B(ξ,η) contains infinitely many primes for
all η if m/ξ1 >

1
2
.

2 Proof of Theorem 1

As is well-known, p = ⌊nξ + η⌋ is equivalent to

0 < {pα + β} ≤ α, (7)

where
α = 1/ξ, β = (1− η)/ξ.
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In the rest of the paper we therefore write

αj = ξ−1
j , βj = (1− ηj)/ξj.

We hence wish to count the number of solutions with p ≤ x to the simultaneous Diophantine
inequalities:

0 < {pαj + βj} ≤ αj, j = 1, . . . , k . (8)

We note that when (1) holds the fractional parts {α1p}, . . . , {αkp} are uniformly distributed
in [0, 1)k (see the comments at the end of §3 of [8]). It follows that, upon writing π(x) for
the number of primes up to x, the number of solutions to (8) is

α1 · · ·αkπ(x)(1 + o(1)) .

Since π(x) ∼ x/ log x this establishes (2).

3 Proof of Theorem 2

Before proceeding further we need a result which will be useful in several remaining cases.

Lemma 10. Let ζ be an irrational number, q be a positive integer, and a be a reduced residue
(mod q). Then the sequence {pζ} with p ≡ a (mod q) is uniformly distributed modulo one.
That is, for every interval I ⊂ [0, 1), |I| > 0, we have

∑

p≤x,p≡a (mod q)
{pζ}∈I

1 ∼ |I|π(x)(1 + o(1))

φ(q)
as x → ∞ . (9)

Here φ(n) denotes Euler’s totient function.

Proof. This follows from a standard modification of the proof that {ζp} is uniformly dis-
tributed as p runs over all primes [16, Chapter 11]. Banks and Shparlinski [3, Theorem 4.2]
have given an explicit proof when ζ is of finite type; the general case follows similarly.

Remark 11. We note that if ζ is of finite type it is possible [3, Theorem 4.2] to give an
explicit error term in (9), but this is not possible in the general case since ζ could “look like”
a rational with relatively small denominator for infinitely many x.

Proof of Theorem 2. From the hypothesis of Theorem 2 we know that ⌊ξ1n + η1⌋ takes in-
finitely many prime values. Since the values taken by ⌊ξ1n + η1⌋ form the union of a set
of arithmetic progressions they must include all sufficiently large primes in some arithmetic
progression. The result then follows from Lemma 10 using the working at the start of Section
2.
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4 Proof of Theorem 4

If 1, 1/ξ1, 1/ξ2 are linearly independent over Q there are infinitely many primes in B(ξ,η) by
Theorem 1. Otherwise, since {1/ξ1.1/ξ2} is a compatible set, we either have (3) or (switching
ξ1 and ξ2 if necessary) (5). If (3) holds then if r = 2 there are infinitely many primes in
B(ξ,η) by Theorem 5. If r = 1 either B(ξ,η) has at most one element or it contains infinitely
many primes by Theorem 6. If (5) holds with r ≥ 1 there are infinitely many primes by
Theorem 7. If (5) holds with r = 0 by Theorem 8 there is either at most one element in
B(ξ,η) or the set contains infinitely many primes. Hence we have demonstrated that if
B(ξ,η) contains more than one element then it contains infinitely many primes.

5 Proof of Theorem 5

Our aim is to establish (given (3) with r ≥ 2) that there are infinitely many primes p such
that both the inequalities

0 < {α1p+ β1} ≤ α1, and 0 < {α2p+ β2} ≤ α2, (10)

are satisfied simultaneously.
Now the first inequality in (10) is satisfied if and only we have

0 <

{

α1p+ β1 + s

n

}

≤ α1

n
, s ∈ {0, 1, . . . , n− 1} .

We therefore assume for the moment that

α1p

n
= A+ λ− β1 + s

n
, A ∈ N, λ ∈ (0, α1/n] .

We shall also suppose for the time being that p ≡ a (modn). Here a is an arbitrary fixed
reduced residue (modn). Using (3) this gives

{α2p+ β2} =

{

β2 +
ar

n
−m

(

λ− β1 + s

n

)}

.

Let β2 +mβ1/n+ ar/n = θ. Then we can rewrite the last expression as
{

θ −mλ+
sm

n

}

.

Write

t =

{

1
n
{nθ}, if {nθ} 6= 0;

1
n
, otherwise.

Since (m,n) = 1 we can choose s such that
{

θ +
sm

n

}

= t .
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It follows that
{

θ −mλ+
sm

n

}

= t−mλ

so long as the right hand side above is positive.
Write

γ = max

(

0,
t− α2

m

)

, δ = min

(

t

m
,
α1

n

)

, I = (γ, δ).

Then, for λ ∈ I, both inequalities in (10) will be satisfied. Of course, δ > γ sincemα1+nα2 >
1. By Lemma 10 the number of solutions to (10) with p ≤ x is therefore at least

π(x)

φ(n)
(1 + o(1))(δ − γ). (11)

This completes the proof of Theorem 5.

6 Proof of Theorem 6

We need to revisit the proof of the last section but now with r = 1. We note that we can
still obtain (11) so long as δ > γ, that is

tn < mα1 + nα2 = 1 .

So we still obtain infinitely many solutions unless nθ ∈ Z, that is

nβ2 +mβ1 ∈ Z . (12)

Using the definitions of αj, βj and the relation mα1+nα2 = 1 this is equivalent to the failure
of (4).

Now suppose that (12) holds so that t = 1/n. Any solutions to (10) must now have

{α1p+ β1} = α1, and {α2p+ β2} = α2, (13)

However, it is easy to see that if {α1g + β1} = α1 has more than one solution in integers g
then α1 is rational: a contradiction. This completes the proof of Theorem 6.

7 Proof of Theorem 7

We still need to solve (10), but the main difference with the previous two cases is that −mλ
becomes mλ. If we now write β2 −mβ1/n− ar/n = θ and define t as in Section 3, we wish
to choose s so that

{α2p+ β2} = t− 1/n+mλ
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for λ > (1/n− t)/m. Write

γ =
1/n− t

m
, δ = min

(

α1

n
,
α2 + 1/n− t

m

)

, I = (γ, δ) .

Then, for λ ∈ I, both inequalities in (10) will be satisfied. We have δ > γ since mα1 > 1
in this case. As before we can apply Lemma 10 to obtain infinitely many prime solutions as
required.

8 Proof of Theorem 8

We note that the proof in the previous section still holds when mα1 > 1 − nt. We could
make an alternative choice of s (there is no restriction of p to an arithmetic progression for
this theorem, of course) to obtain

{α2p+ β2} = t+mλ .

We then obtain solutions for all λ (if any) satisfying

0 ≤ λ ≤ min

(

α1

n
,
α2 − t

m

)

.

This can be satisfied if and only if mα1 = nα2 > nt. We thus obtain infinitely many solutions
if either mα1 > nt or mα1 > 1 − nt. This covers all possibilities if mα1 > 1

2
. If mα1 < 1

2

there will be infinitely many solutions when (6) fails and none if 1 − mα1 > nt > mα1.
Indeed there can be no solutions at all in integers (dropping the prime requirement) in the
latter case. This just leaves the possibility mα1 = nt or mα1 = 1 − nt. In this case any
solution must have {pα1 + β1} = α1. Just as in a previous case it is easy to deduce that
there is at most one solution in integers (dropping the prime requirement) for otherwise α1

would be rational. This completes the proof of Theorem 8.

9 When the compatibility condition fails

We first give a simple example of what can happen when the compatibility condition fails.
Let ζ = 1/(2

√
2). Here ζ could be any sufficiently small irrational number. Write

ξ1 =
3

1− ζ
, ξ2 =

3

1 + ζ
.

This corresponds to 3α1 +3α2 = 2, so we are not dealing with a compatible set. Then, with
the choice η1 = η2 = 0, we find that B(ξ,η) only contains integers ≡ 1 (mod 3), and in fact
contains infinitely many primes. On the other hand, the choice η1 = 1, η2 = 1− 1/ζ ensures
that all the members of B(ξ,η) are multiples of 3 exceeding 3 and so there are no primes in
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this set. It is easy to see that B(ξ,η) is infinite in this case. This example is tackled just by
going through a similar analysis to the above. The crucial point is whether we can solve

{

θ −mλ+
sm

n

}

≤ α2 (14)

with r = 2,m = n = 3 in integers s and a with (a, n) = 1. Since m = n the variable s plays
no role and we only have a to choose. The choice η1 = η2 = 0 allows this with a = 1, but the
choice η1 = 1, η2 = 1 − 1/ζ requires a = 0 corresponding to the fact that only multiples of
3 can be solutions. Explicitly, we must have 3λ < α1 (for otherwise we get a contradiction
that α1 is rational). Then, for a 6= 0, (14) becomes

2

3
− 3λ ≤

{

2 or 3

3
− 3λ

}

≤ α2 .

Since 3λ+ α2 < α1 + α2 =
2
3
there can be no solutions.

To deal with the more general case, suppose that there are positive integers m,n, u, v
with v ≥ 2, (m,n) = (u, v) = 1 and

m

ξ1
+

n

ξ2
=

u

v
. (15)

A simple statement of what can be achieved is as follows.

Suppose ξ1, ξ2 are both irrationals exceeding 1 and that (15) holds with u/v > 1. Then
there are infinitely many primes in B(ξ,η) for all η ∈ R2.

In fact it is possible to give a complete result, but first we need the following measure of
the largest gap between reduced residues to a given modulus.

Definition 12. Given a positive integer v, write w = φ(v) and let 1 = a1, . . . , aw = v − 1
be the reduced residues (mod v). Also, put a0 = −1. We define the function σ(v) by

σ(v) = max
1≤j≤w

|aj − aj−1| .

We are then able to give the analogous result to Theorems 5, and 6 when the compatibility
condition fails.

Proposition 13. Suppose ξ1, ξ2 are both irrationals exceeding 1 and that (15) holds. Then,
if u > σ(v), there are infinitely many primes in B(ξ,η) for all η ∈ R2. However, if u ≤ σ(v),
there exist values η ∈ R2 such that B(ξ,η) only contains integers n with (n, v) > 1.

The example we gave above had v = 3 which gives σ(v) = 2 = u and so the theorem
predicts there exist values η ∈ R2 such that B(ξ,η) only contains integers n which are
divisible by 3.
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Proof. In the proof of Theorem 5 all we needed there essentially was mα1 + nα2 > tn. Now
mα1 + nα2 =

u
v
. However

tn =
{

nβ2 +mβ1 +
au

v

}

,

(replacing tn with 1 if t = 0). Using the definition of σ(v) the correct choice for a with
(a, v) = 1 yields tn ≤ σ(v)/v. Hence there are solutions with p ≡ a (mod v) if u > σ(v).
However if u ≤ σ(v) we can choose η so that tn ≥ σ(v)/v and the original simultaneous
Diophantine inequalities cannot be satisfied.

We can similarly deal with the case when (15) holds with n < 0. Modifying the proof of
Theorem 7 supplies the following result.

Proposition 14. Suppose ξ1, ξ2 are both irrationals exceeding 1 and that

m

ξ1
− n

ξ2
=

u

v
, (16)

with positive integers m,n, u, v such that v ≥ 2, (m,n) = (u, v) = 1. Then, if m/ξ1 > σ(v),
there are infinitely many primes in B(ξ,η) for all η ∈ R2. However, if m/ξ1 < σ(v), there
exist values η ∈ R2 such that B(ξ,η) only contains integers n with (n, v) > 1.

Combining the above with Theorem 5 produces the following comprehensive result.

Theorem 15. Suppose ξ1, ξ2 are both irrationals exceeding 1 and that B(ξ,η) contains more
than one element. Then if B(ξ,η) does not contain infinitely many primes, there are positive
integers m,n, u, v with v ≥ 2, (m,n) = (u, v) = 1 and either
(i) (15) holds with u ≤ σ(v) or
(ii) (16) holds with m/ξ1 < σ(v).
In either case (i) or (ii) each of the infinitely many elements n of B(ξ,η) satisfies (n, v) > 1.
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