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Abstract

The reversal of a positive integer A is the number obtained by reading A backwards
in its decimal representation. A pair (A,B) of positive integers is said to be palindromic
if the reversal of the product A × B is equal to the product of the reversals of A and
B. A pair (A,B) of positive integers is said to be polynomial if the product A×B can
be performed without carry.

In this paper, we use polynomial pairs in constructing and in studying the properties
of palindromic pairs. It is shown that polynomial pairs are always palindromic. It is
further conjectured that, provided that neither A nor B is itself a palindrome, all palin-
dromic pairs are polynomial. A connection is made with classical topics in recreational
mathematics such as reversal multiplication, palindromic squares, and repunits.
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1 Introduction

On March 13, 2012 the following identity appeared on K. T. Arasu’s Facebook posting1:

Notice that
25986 = 213× 122.

Now, read the expression above in reverse order and observe that

221× 312 = 68952.

The point here is, of course, that the second equality still holds in first order arithmetic!
For A ∈ N let the reversal of A, denoted by A∗, be the integer obtained by reading A

backwards in base 10. We say that A is a palindrome if A = A∗. In this paper, we investigate
how to determine which pairs (A,B) of positive integers satisfy the property

C = A×B and C∗ = A∗ × B∗. (1)

In words, the product of the reversals is the reversal of the product. We shall call such a
pair a palindromic pair.

Note that there are integers C with more than one corresponding pair (A,B) satisfying
Eq. (1). For example, we have

2448 = 12× 204 = 24× 102.

Upon reversal, one has
8442 = 21× 402 = 42× 201.

It is easy to see that palindromic pairs always occur in distinct pairs (A,B) and (A∗, B∗)
unless both A and B are palindromes. The pair (12, 13), for instance, comes with the pair
(21, 31) upon reversal.

The question of how to characterize palindromic pairs had appeared in Ball and Cox-
eter [1, p. 14] where the pair (122, 213) was given, yet this matter has hardly been looked at
more closely. In this short note we introduce the notion of polynomial pairs as a tool to study
palindromic pairs. We show that all the examples of palindromic pairs presented below can
be explained in terms of polynomial pairs. We conjecture, but cannot yet prove that, when
neither A nor B is a palindrome, all palindromic pairs (A,B) are polynomial pairs.

The concept of polynomial pairs intersects many classical topics in recreational mathe-
matics. An interesting topic concerns the repunits which are numbers all of whose digits are
1 [2, Ch. 11]. Another topic deals with a known technique to produce palindromes usually
referred to as reversal multiplication [4]. The integers A with the property that A × A∗

is a palindrome form sequence A062936 in the Online Encyclopedia of Integer Sequences

1His account has since been deactivated for personal reasons.
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(henceforth, OEIS) [3]. Whenever (A,A∗) form a polynomial pair, we learn that reversal
multiplication always produces a palindrome.

The material is arranged as follows. Section 2 introduces, and Section 3 develops, the
concept of palindromic pairs. Section 4 explores the multiplicity of the representation of a
repunit as a product of a palindromic pair of integers. Section 5 covers the special case where
the two members of a palindromic pair are reversals of each other. Section 6 is dedicated to
palindromes that are perfect squares. Section 7 replaces multiplication by addition in the
definition of a palindromic pair. The paper ends with a summary.

2 Formalization

To formalize the problem mathematically, some notation is in order. Let

A :=
a∑

i=0

ai10
i

be an integer expressed in base 10. Its reversal is

A∗ :=
a∑

i=0

ai10
a−i.

Define the polynomial P (A, x) :=
∑a

i=0 aix
i ∈ Q[x] so that P (A, 10) = A. Then its reciprocal

P ∗(A, x) :=
a∑

i=0

aix
a−i = xaP (A, 1/x)

satisfies P ∗(A, 10) = A∗. A pair (A,B) of not necessarily distinct positive integers is said to
be a palindromic pair if

P ∗(A, 10)P ∗(B, 10) = P ∗(A× B, 10).

We shall say that the pair (A,B) is polynomial if

P (A, x)P (B, x) = P (A×B, x).

The pair (12, 21), for instance, is a polynomial pair since

P (12× 21, x) = 2x2 + 5x+ 2 = (x+ 2)(2x+ 1),

but (13, 15) is not a polynomial pair because

(x+ 3)(x+ 5) = x2 + 8x+ 15 while P (13× 15, x) = x2 + 9x+ 5.

The following characterization of polynomial pairs will be used repeatedly.
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Proposition 1. The following assertions are equivalent.

1) (A,B) is a polynomial pair.

2) The multiplication of A by B can be performed without carry.

3) The coefficients of the polynomial P (A, x)P (B, x) are bounded above by 9.

Proof. Let j be the smallest integer such that cj :=
∑

j=i+k aibk > 9. Then cj is the coefficient

of xj in P (A, x)P (B, x), while the coefficient of xj in P (A×B, x) is cj (mod 10) 6= cj. Thus,
1) implies 2) by contrapositive argument.

Now, assume that there is some j such that cj :=
∑

j=i+k aibk > 9. Then, in the

multiplication A × B, the term y :=
⌊ cj
10

⌋
is carried over to the coefficient of 10j+1. This

establishes that 2) implies 3).
Lastly, to show that 3) implies 1), we begin by substituting x = 10. Hence,

A×B = P (A, 10)P (B, 10) =
a+b∑

k=0

(
∑

i+j=k

aibj

)

10k.

The coefficient of xk in P (A×B, x) is
∑

k=i+j aibj, which is assumed to be ≤ 9. This means
that (A,B) is indeed a polynomial pair. The proof is therefore complete.

Polynomial pairs are palindromic pairs as the next result shows.

Proposition 2. A polynomial pair (A,B) is palindromic.

Proof. If P (A, x)P (B, x) = P (A×B, x), then, by taking reciprocals, we get

P ∗(A, x)P ∗(B, x) = P ∗(A× B, x).

Using x = 10 completes the proof.

This observation raises an initial question:

Problem 3. Are there palindromic pairs that are not polynomial?

Our investigation quickly reveals that the answer is yes. If we allow either A or B to be
palindromes then there are palindromic pairs which are not polynomial pairs.

The test that a pair (A,B) is palindromic is done simply by checking if the definition is
satisfied. We record A,B, and C whenever we have A × B = C and A∗ × B∗ = C∗. We
then perform a check if the multiplication of A by B can be performed without carry. The
pair (A,B) that fails to pass this check is not a polynomial pair by Proposition 1. Table 1
provides the list of all such pairs (A,B) with A ≤ B and A × B = C ≤ 107 generated by
exhaustive search. We require A ≤ B to avoid duplication of pairing.
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Table 1: Palindromic but not polynomial pairs (A,B) with A ≤ B and A×B ≤ 107

(A,B) A× B (A,B) A× B (A,B) A×B (A,B) A× B
(7, 88) 616 (555, 979) 543345 (737, 888) 654456 (707, 8558) 6050506
(8, 77) (55, 9999) 549945 (777, 858) 666666 (7, 880088) 6160616
(55, 99) 5445 (99, 5555) (969, 5335) 5169615 (8, 770077)
(7, 858) 6006 (707, 858) 606606 (575, 9119) 5243425 (77, 80008)
(77, 88) 6776 (7, 88088) 616616 (979, 5555) (88, 70007)
(55, 999) 54945 (8, 77077) (55, 99999) 5499945 (77, 80088) 6166776

(99, 555) (77, 8008) (99, 55555) (88, 70077)
(77, 858) 66066 (88, 7007) (7, 858088) 6006616 (898, 7227) 6489846

In addition to providing a positive answer to Problem 3, the table reveals some interesting
facts. Except for the two values of C printed in boldface, all other Cs are themselves
palindromes in which case both A and B are palindromes. The pairs (7, 858088), yielding
C = 6006616, and (77, 80088) and (88, 70077), giving C = 6166776, contain a palindrome
A. On the other hand, up to C ≤ 107, no palindromic pairs were found, with neither A nor
B being a palindrome, that was not polynomial. Computational evidence strongly suggests
the following conjecture.

Conjecture 4. If (A,B) is a palindromic pair, with neither A nor B a palindrome, then
(A,B) is a polynomial pair.

In attempting to answer the conjecture, we begin by establishing properties of polynomial
pairs in the next section.

3 Some properties of polynomial pairs

For A ∈ N, let A∞ denote the maximum of the coefficients of P (A, x).

Proposition 5. If (A,B) is a polynomial pair, then A∞B∞ ≤ 9. If, moreover, A∞ ≥ 5,
then B∞ = 1.

Proof. This proposition is a direct consequence of Proposition 1. Let j and l be, respectively,
the smallest index such that aj = A∞ and bl = B∞. Then A∞B∞ > 9 would imply that the
coefficient of xj+l in the multiplication P (A, x)P (B, x) is > 9, violating Proposition 1 Part
3).

To derive a sufficient condition for (A,B) to be a palindromic pair we define the norm of
an integer by the formula A1 = P (A, 1).

Proposition 6. For A,B ∈ N, (AB)∞ ≤ A∞B1.
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Proof. Write P (A, x) =
∑a

i=0 aix
i, and P (B, x) =

∑b

i=0 bix
i. Then, the coefficient of xk in

P (AB, x) is
∑

i+j=k

aibj ≤ A∞

b∑

j=0

bj = A∞B1.

A construction of polynomial pairs can be deduced from Proposition 6.

Proposition 7. Let A,B ∈ N with A∞B1 ≤ 9. Then (A,B) is a polynomial pair.

Proof. Combine Proposition 1 Part 3) and Proposition 6.

Table 2 list downs all polynomial pairs (A,B) with A×B = C, A ≤ B, and C ≤ C∗ ≤ 104.
Neither A = A∗ nor B = B∗ is allowed although C = C∗ is allowed. For each pair, there is
a corresponding pair (A∗, B∗) with A∗ ×B∗ = C∗. When C is a palindrome, it is written in
bold.

Table 2: The list of polynomial pairs (A,B) with A ≤ B, neither A = A∗ nor B = B∗ is
allowed, and A× B = C ≤ C∗ ≤ 104

C (A,B) C (A,B) C (A,B) C (A,B) C (A,B)
144 (12, 12) 1356 (12, 113) 2352 (21, 112) (24, 112) 3624 (12, 302)
156 (12, 13) 1368 (12, 114) 2369 (23, 103) 2743 (13, 211) 3648 (12, 304)
168 (12, 14) 1428 (14, 102) 2373 (21, 113) 2769 (13, 213) 3744 (12, 312)
169 (13, 13) 1456 (13, 112) 2394 (21, 114) 2772 (12, 231) 3768 (12, 314)
252 (12, 21) 1464 (12, 122) 2436 (12, 203) (21, 132) 3864 (12, 322)
273 (13, 21) 1469 (13, 113) 2448 (12, 204) 2793 (21, 133) 3888 (12, 324)
276 (12, 23) 1476 (12, 123) (24, 102) 2796 (12, 233) 3926 (13, 302)
288 (12, 24) 1488 (12, 124) 2556 (12, 213) 2814 (14, 201) 3984 (12, 332)
294 (14, 21) 1568 (14, 112) 2562 (21, 122) 2873 (13, 221) 4284 (21, 204)
299 (13, 23) 1584 (12, 132) 2568 (12, 214) 2892 (12, 241) (42, 102)
384 (12, 32) 1586 (13, 122) 2576 (23, 112) 2899 (13, 223) 4386 (43, 102)
1224 (12, 102) 1596 (12, 133) 2583 (21, 123) 2954 (14, 211) 4494 (21, 214)
1236 (12, 103) 1599 (13, 123) 2599 (23, 113) 3193 (31, 103) 4669 (23, 203)
1248 (12, 104) 2142 (21, 102) 2613 (13, 201) 3264 (32, 102) 4836 (12, 403)
1326 (13, 102) 2163 (21, 103) 2639 (13, 203) 3296 (32, 103) 4899 (23, 213)
1339 (13, 103) 2184 (21, 104) 2676 (12, 223) 3468 (34, 102) 4956 (12, 413)
1344 (12, 112) 2346 (23, 102) 2688 (12, 224) 3584 (32, 112) 6496 (32, 203)

4 Integers with many polynomial pairs

From Tables 1 and 2 we notice that some C ∈ N can be the product of the elements of
distinct polynomial pairs. Here we give a construction to show that some numbers can be
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the product of the elements of an arbitrarily large number of distinct polynomial pairs.
First, let us define a repunit R(n) as the n-digit number whose digits are ones. The term,

which abbreviates repeated unit, first appeared in Beiler [2, Ch. 11]. More formally,

R(n) =
n−1∑

i=0

10i =
10n − 1

9
.

Sequence A004023 in the OEIS [3] records the known values of n for which R(n) is prime.

Theorem 8. The repunit R(2n) is the product of n pairwise distinct positive integers. It
can be expressed as the product A×B of 2n−1 − 1 pairwise distinct polynomial pairs (A,B).

Proof. It is clear that R(2) = 101 +1 and R(4) = R(2)(100+ 1) = (101 +1)(102 +1). Using
the difference of squares, we can inductively write

R(2n) =
1

9
(102

n

− 1) =
1

9
(102

n−1

− 1)(102
n−1

+ 1) = R(2n−1)(102
n−1

+ 1) =
n−1∏

i=0

(102
i

+ 1).

This establishes the first assertion. Moreover, all of the multiplications can be performed
without carry since R(a)∞ = 1, for all integers a ≥ 1.

Since there are n distinct factors, we can group them into two disjoint nontrivial sets A
and B. Let A be the product of the elements in A. Let B be defined analogously based on B.
Since we want to avoid repetition, two cases based on the parity of n need to be considered.

When n = 2k + 1, the set A has j elements with 1 ≤ j ≤ k = (n − 1)/2. The
remaining n − j elements not chosen for A automatically form the set B. Thus, there are
∑k

j=1

(
n

j

)
= 2n−1 − 1 pairwise distinct pairs (A,B).

When n = 2k, we can do similarly for 1 ≤ |A| ≤ k − 1 but we need to treat the case
of |A| = |B| = k with more care. To avoid forming repetitive pairs, we halve the count. In
total, the number of pairwise distinct pairs (A,B) formed is

∑k−1
j=1

(
n

j

)
+ 1

2

(
n

k

)
= 2n−1−1.

5 Reversal multiplication

A popular way to obtain palindromes is to multiply a number by its reversal. This is
called reversal multiplication in [4] and the numbers that give palindromes in that way form
Sequence A062936 in the OEIS [3]. This recipe always works with polynomial pairs as the
next result shows.

Proposition 9. If (A,A∗) is a polynomial pair, then A× A∗ is always a palindrome.

Proof. It suffices to confirm that P (A∗, x) = P ∗(A, x) and that P (A, x)P ∗(A, x) is a self-
reciprocal polynomial.
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De Geest [4] observes that all elements > 3 in sequence A062936 have only the digits 0, 1,
and 2. This is easy to show in the polynomial pair case, and correlates with an observation
made by David Wilson A062936 on July 6, 2001 stating that said sequence includes positive
integers not ending in 0 whose sum of squares of the digits is ≤ 9.

Proposition 10. If (A,A∗) is a polynomial pair, then the sum of the squares of the digits
of A is ≤ 9. In particular, if A > 9, we have A∞ ≤ 2. Conversely, if the sum of the squares
of the digits of A is ≤ 9, then (A,A∗) is a polynomial pair.

Proof. Write P (A, x) =
∑d

i=0 aix
i. By the Cauchy-Schwarz inequality, for 0 ≤ k ≤ d,

k∑

l=0

alad−k+l ≤
d∑

i=0

a2i .

The left-hand side is the coefficient of xk while the right-hand side is the coefficient of xd in
P (A× A∗, x). Thus, by Proposition 9, we have

(A× A∗)∞ =
d∑

i=0

a2i , (2)

which is the sum of the squares of the digits of A. This establishes the first statement from
which follows that if A has at least two nonzero digits, then none can be ≥ 3.

The converse follows from Eq. (2) and Proposition 1.

We have generated a list of elements A < 109 of sequence A062936 and verified that the
sum of the squares of the digits of A is bounded above by 9. Applying the converse part of
Proposition 10, we are led to the following conjecture.

Conjecture 11. If A× A∗ is a palindrome, then (A,A∗) is a polynomial pair.

To emphasize that we make Conjecture 11 for base b = 10 only, we observe the following
counterexamples for b 6= 10.

In base 2, we have 11× 11 = 1001. More generally, for any integer l ≥ 2,

11

2l
︷ ︸︸ ︷

00 · · · 0 10101

2l−1
︷ ︸︸ ︷

00 · · · 0 11× 11

2l−1
︷ ︸︸ ︷

00 · · · 0 10101

2l
︷ ︸︸ ︷

00 · · · 0 11

= 1001× 28l+12 + 10111101× 26l+7 + 1001001001× 24l+3 + 10111101× 22l+1 + 1001, (3)

which can be seen to be a palindrome. Using 2l + 1, instead of 2l − 1, also works. Our
computation reveals that there are no other counterexamples with A having less than 20-
digit base 2 representation.

In base 4, the only counterexample with A having less than 10-digit representation is
2232213 × 3122322 = 21111033011112. The next counter example, if exists, must be a
considerably large number.
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Table 3 gives the counterexamples we found for base b ∈ {3, 4, 5, 7, 8, 9, 11}. We have not
been able to find counterexamples in either base 6 or base 10.

Table 3: Examples of A and A × A∗ where (A,A∗) is not a polynomial pair for A ≤ A∗ in
bases b ∈ {3, 4, 5, 7, 8, 9, 11}. In base 11, a stands for 10

Base A A× A∗ Base A A× A∗

3 2 11 8 47 4444
202 112211 303 112211
2002 11022011 306 225522
20002 1100220011 333 135531
200002 110002200011 3003 11022011
201102 111221122111 3006 22055022
2000002 11000022000011 3033 12244221
20000002 1100000220000011 3116 23300332
20011002 1101211111121011 3306 24377342
200000002 110000002200000011 3333 13577531
2000000002 11000000022000000011 30003 1100220011
2000110002 11001210111101210011 30006 2200550022

4 2232213 21111033011112 30033 1211441121
5 314 242242 30303 1122332211

22033 1334334331 9 516 350053
220033 133133331331 44055 2667557662
2200033 13310333301331 440055 266255552662
2301123 14000211200041 2403555 14682744728641
22000033 1331003333001331 4400055 26620555502662
23410123 1423123003213241 11 6 33
24200303 1344343003434431 66 3993

7 4 22 77 5335
44 2662 374 161161
55 4444 419 350053
404 224422 606 336633
4004 22044022 6006 33066033
4114 23300332 21896 139a00a931
25124 1456446541 33088 1669999662
40004 2200440022 60006 3300660033
400404 222426624222 60606 3366996633
403304 223652256322 63328 4779559774
404004 222426624222 283306 156695596651
4000004 22000044000022 330088 266279972662

8 3 11 391744 15a484484a51
6 44 441739 379373373973
33 1331 600006 330006600033
36 2772 600606 333639936333
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Proposition 12. There are infinitely many values of b for which the analogue of Conjec-
ture 11 in base b is false.

Proof. First, consider the base b such that b = r2 − 1 for 2 ≤ r ∈ N. Writing in base b,
r × r = 11, and for any non-negative integer j,

r

j+1
︷ ︸︸ ︷

00 · · · 0 r × r

j+1
︷ ︸︸ ︷

00 · · · 0 r = (r × bj+2 + r)2 = (r2 × b2j+4) + (2× r2 × bj+2) + r2

= 11

j
︷ ︸︸ ︷

00 · · · 0 22

j
︷ ︸︸ ︷

00 · · · 0 11.

There are obviously infinitely many such bases b.
For any base b of the form b = 4k − 1,

(2k)× (2k) = 4k2 = (k × b) + k = kk (4)

in base b. More generally, in the said base, one can easily verify, by using Eq. (4), that

((2k)

j+1
︷ ︸︸ ︷

00 · · · 0(2k))2 = ((2k × bj+2) + 2k)2 = (4k2 × b2j+4) + (2× 4k2 × bj+2) + 4k2

= kk

j
︷ ︸︸ ︷

00 · · · 0(2k)(2k)

j
︷ ︸︸ ︷

00 · · · 0 kk.

When the base b is of the form b = 4k + 1, we can write

(2k)× (2k + 1) = k × (4k + 1) + k = (k × b) + k = kk. (5)

Using Eq. (5), one gets

[(2k)(2k)00(2k + 1)(2k + 1)]× [(2k + 1)(2k + 1)00(2k)(2k)]

= [b4 × 2k × (b+ 1) + (2k + 1)× (b+ 1)]× [b4 × (2k + 1)× (b+ 1) + 2k × (b+ 1)]

= kk + [(2k)(2k)× b] + [kk × b2] + [(2k)(2k + 1)× b4] + [101× b5] + [(2k)(2k + 1)× b6]

+ [kk × b8] + [(2k)(2k)× b9] + [kk × b10]

= k(3k)(3k)k(2k + 1)(2k + 1)(2k + 1)(2k + 1)k(3k)(3k)k.

In fact, one can obtain a slightly more general result since, for any non-negative integer j,

(2k)(2k)

j+2
︷ ︸︸ ︷

00 · · · 0(2k + 1)(2k + 1)× (2k + 1)(2k + 1)

j+2
︷ ︸︸ ︷

00 · · · 0(2k)(2k)

= k(3k)(3k)k

j
︷ ︸︸ ︷

00 · · · 0(2k + 1)(2k + 1)(2k + 1)(2k + 1)

j
︷ ︸︸ ︷

00 · · · 0 k(3k)(3k)k.
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Thus, a necessary but insufficient condition for the analogue of Conjecture 11 in base b
to hold is for b to be even and for b+ 1 to be square-free.

Remark 13. Let (A,B) be a palindromic pair. If either A or B is itself a palindrome, then
we cannot conclude immediately that (A,B) is a polynomial pair. Indeed, in many cases,
for example, when A = 121 and B = A∗ = A, the pair (A,B) is both palindromic and
polynomial. Yet, as shown by the pairs listed in Table 1, a palindromic pair may fail to be
polynomial when either A or B is a palindrome.

Conjecture 11 posits that, regardless of whether A itself is a palindrome, so long as
A × A∗ is a palindrome, then (A,A∗) is polynomial. Thus, this conjecture does not follow
from Conjecture 4. If, however, we add the condition that A 6= A∗, then a positive answer to
Conjecture 4 settles this modified version of Conjecture 11 since, if A×A∗ is a palindrome,
then (A,A∗) is of course a palindromic pair.

Note that Proposition 12 still holds if we use the base b analogue for the modified version
of Conjecture 11 using only bases b = 4k + 1 in the proof. In this case, removing all entries
in Table 3 having A = A∗ provides analogous examples.

To end this section we prove a special case of Conjecture 11.

Proposition 14. If A is an n−digit number and A×A∗ is a (2n− 1)-digit palindrome then
(A,A∗) is a polynomial pair.

Proof. Let A be an n-digit number such that A×A∗ is a (2n−1)-digits palindrome, with the
notation P (A, x) =

∑n−1
i=0 aix

i. Let c0, c1, . . . , c2n−2 be the digits of A × A∗. We now make
completely explicit how the digits are manipulated when the multiplication is performed.

Let γi be the carry that is propagated on the i-th digits and σi be the sum of the products
of digits that appear in the i-th position. Hence,

γ0 = 0

and, for all 0 ≤ i ≤ 2n− 1,

σi = γi +

min(n−1,i)
∑

k=max(0,i+1−n)

ak an−1−i+k,

ci = σi (mod 10),

γi+1 = (σi − ci)/10.

Note that (A,A∗) is a polynomial pair if and only if γi = 0 for all i ≤ 2n− 1. We prove
this fact by induction.

Since A × A∗ has only 2n − 1 digits, we have c2n−1 = 0, and thus γ2n−1 = 0. Suppose
that for a certain integer ℓ we have proven that γℓ = 0 and γ2n−ℓ−1 = 0. Since γ2n−ℓ−1 = 0,
we must have

σ2n−ℓ−2 = c2n−ℓ−2 ≤ 9.
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Now,
σℓ = σ2n−2−ℓ − γ2n−ℓ−2 + γℓ = σ2n−ℓ−2 − γ2n−ℓ−2

must be ≤ 9 too. So γℓ+1 = 0 and cℓ = σℓ. Since A×A∗ is a palindrome, we have cℓ = c2n−ℓ−2.
So we also have σ2n−ℓ−2 = σℓ. Now we can compute that

γ2n−ℓ−2 = σ2n−ℓ−2 − σℓ + γℓ = 0,

which concludes the induction step.

6 Squares and palindromes

In this short section we show that some results established above shed light on several
connections between palindromes and squares.

There are two sequences in the OEIS [3] concerning palindromes and squares. Sequence
A002779 lists palindromic perfect squares, while sequence A002778 contains integers whose
squares are palindromes. The next result, which is a direct consequence of Proposition 9,
gives a sufficient but not a necessary condition for an integer A to belong to sequence
A002778.

Proposition 15. If (A,A) is a polynomial pair with A a palindrome, then A2 is a palindrome.

Each entry of sequence A156317 in the OEIS [3] is a perfect square that forms either an
equal or a larger perfect square when reversed. Here is a technique to produce examples of
such integers.

Proposition 16. If (A,A) is a polynomial pair then so is (A∗, A∗). Moreover, (A2)∗ = (A∗)2.

Proof. It suffices to verify that P ((A2)∗, x) = P ∗(A2, x) = (P ∗(A, x))2 = (P (A∗, x))2.

7 Additive pairs

It is natural to consider as well the additive analogue of polynomial pairs. The pair (A,B)
of positive integers is said to be an additive pair if

P (A, x) + P (B, x) = P (A+ B, x).

The counterpart of Proposition 1 can then be established.

Proposition 17. The following assertions are equivalent.

1) The pair (A,B) is an additive pair.

2) The addition of A by B can be performed without carry.
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3) The coefficients of the polynomial P (A, x) + P (B, x) are bounded above by 9.

Proof. We use the same representation of P (A, x) and P (B, x) as in the proof of Proposi-
tion 6. Let j be the smallest integer such that cj = aj + bj > 9. Then cj is the coefficient of
xj in P (A, x) + P (B, x) while cj (mod 10) 6= cj is the coefficient of xj in P (A + B, x). By
contrapositive argument, 1) implies 2).

It is clear by definition of polynomial addition that 2) implies 3). To verify that 3) implies
1) note that for 0 ≤ j ≤ max(a, b) we have cj = aj + bj ≤ 9, which leads immediately to
the desired conclusion since cj is the coefficient of xj in both P (A + B, x) and P (A, x) +
P (B, x).

A sufficient condition for (A,B) to be an additive pair is A∞ + B∞ ≤ 9. Additive pairs
can be used to generates palindromes.

Proposition 18. If (A,A∗) is an additive pair, then A+ A∗ is a palindrome.

Proof. It is straightforward to verify that P (A∗, x) = P ∗(A, x) and that P (A + A∗, x) =
P (A, x) + P ∗(A, x) is a self-reciprocal polynomial.

There are, however, integers A such that A + A∗ is a palindrome yet (A,A∗) is not an
additive pair. The numbers 56 and 506 are some easy examples of such A.

8 Summary

In this note we have shown how to use polynomial pairs to study the properties of palin-
dromic pairs. Furthermore, a large number of palindromic pairs can be constructed by using
polynomial pairs. Connections to well-known numbers and integer sequences in the OEIS
have also been explicated.

It is of interest to either find counterexamples to or to prove the validity of the conjectures
mentioned here for future investigations. As an added incentive, we offer a ripe durian for a
correct proof of, or a valid counterexample to, any of the conjectures.
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