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Abstract

For various positive integers k, the sums of kth powers of the first n positive integers,
Sk(n) := 1k+2k+ · · ·+nk, are some of the most popular sums in all of mathematics. In
this note we prove a congruence modulo n3 involving two consecutive sums S2k(n) and
S2k+1(n). This congruence allows us to establish an equivalent formulation of Giuga’s
conjecture. Moreover, if k is even and n ≥ 5 is a prime such that n− 1 ∤ 2k − 2, then
this congruence is satisfied modulo n4. This suggests a conjecture about when a prime
can be a Wolstenholme prime. We also propose several Giuga-Agoh-like conjectures.
Further, we establish two congruences modulo n3 for two binomial-type sums involving
sums of powers S2i(n) with i = 0, 1, . . . , k. Finally, we obtain an extension of a result
of Carlitz-von Staudt for odd power sums.

1 Introduction and basic results

The sum of powers of integers
∑n

i=1 i
k is a well-studied problem in mathematics (see, e.g.,

[9, 40]). Finding formulas for these sums has interested mathematicians for more than 300
years since the time of Jakob Bernoulli (1654–1705). Several methods were used to find the
sum Sk(n) (see, for example, Vakil [49]). These lead to numerous recurrence relations. For
a nice account of sums of powers, see Edwards [15]. For simplicity, here as always in the
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sequel, for all integers k ≥ 1 and n ≥ 2 we write

Sk(n) :=
n−1
∑

i=1

ik = 1k + 2k + 3k + · · ·+ (n− 1)k.

The study of these sums led Jakob Bernoulli to develop numbers later named in his honor.
Namely, the celebrated Bernoulli formula (sometimes called Faulhaber’s formula) gives the
sum Sk(n) explicitly as (see, e.g., Beardon [4])

Sk(n) =
1

k + 1

k
∑

i=0

(

k + 1

i

)

nk+1−iBi, (1)

where Bi (i = 0, 1, 2, . . .) are the Bernoulli numbers defined by the generating function

∞
∑

i=0

Bi
xi

i!
=

x

ex − 1
.

It is easy to find the values B0 = 1, B1 = −1
2
, B2 =

1
6
, B4 = − 1

30
, and Bi = 0 for odd i ≥ 3.

Furthermore, (−1)i−1B2i > 0 for all i ≥ 1. These and many other properties can be found,
for instance, in [23]. Several generalizations of the formula (1) were established by Z.-H. Sun
([46, Thm. 2.1] and [47]) and Z.-W. Sun [48].

By the well-known Pascal’s identity proven by Pascal in 1654 (see, e.g., [29]), we have

k−1
∑

i=0

(

k

i

)

Si(n+ 1) = (n+ 1)k − 1. (2)

Recall also that the formula (2) is also presented in Bernoulli’s Ars Conjectandi [6], (also see
[19, pp. 269–270]) published posthumously in 1713.

On the other hand, divisibility properties of the sums Sk(n) were investigated by many
authors [13, 27, 30, 42]. For example, in 2003 Damianou and Schumer [13, Thm. 1, p. 221
and Thm. 2, p. 222] proved, respectively:

(1) if k is odd, then n divides Sk(n) if and only if n is incogruent to 2 modulo 4;

(2) if k is even, then n divides Sk(n) if and only if n is not divisible by any prime p such
that p | Dk, where Dk is the denominator of the kth Bernoulli number Bk.

Denominators of Bernoulli numbers Bk (k = 0, 1, 2, . . .) are given as the sequence A027642
in [41] (cf. also its subsequence A002445 consisting of the terms with even indices k).

Motivated by the recurrence formula for Sk(n) recently obtained in [34, Corollary 1.7],
in this note we prove the following basic result.
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Theorem 1. Let k and n be positive integers. Then for each k ≥ 2

2S2k+1(n)− (2k + 1)nS2k(n) ≡











0 (mod n3), if k is even or n is odd

or n ≡ 0 (mod 4);
n3

2
(mod n3), if k is odd and n ≡ 2 (mod 4).

(3)

Furthermore,

2S3(n)− 3nS2(n) ≡
{

0 (mod n3), if n is odd;
n3

2
(mod n3), if n is even.

(4)

In particular, for all k ≥ 1 and n ≥ 1, we have

2S2k+1(n) ≡ (2k + 1)nS2k(n) (mod n2), (5)

and for all k ≥ 1 and n 6≡ 2 (mod 4)

2S2k+1(n) ≡ (2k + 1)nS2k(n) (mod n3). (6)

Combining the congruence (5) and the “even case” (2) of a result of Damianou and
Schumer [13, Thm. 1, p. 221 and Thm. 2, p. 222] mentioned above, we obtain the following
“odd” extension of their result.

Corollary 2. If k is an odd positive integer and n a positive integer such that n is not
divisible by any prime p such that p | Dk−1, where Dk−1 is the denominator of the (k − 1)th
Bernoulli number Bk−1, then n2 divides 2Sk(n).

Conversely, if k is an odd positive integer and n a positive integer relatively prime to k
such that n2 divides 2Sk(n), then n is not divisible by any prime p such that p | Dk−1, where
Dk−1 is the denominator of the (k − 1)th Bernoulli number Bk−1.

The paper is organized as follows. Some applications of Theorem 1 are presented in the
following section. In Subsection 2.1 we give three particular cases of the congruence (3) of
Theorem 1 (Corollary 3). One of these congruences immediately yields a reformulation of
Giuga’s conjecture in terms of the divisibility of 2Sn(n) + n2 by n3 (Proposition 4).

In the next subsection we establish the fact that the congruence (6) holds modulo n4

whenever n ≥ 5 is a prime such that n − 1 ∤ 2k − 2 ((14) of Proposition 7). Motivated
by some particular cases of this congruence and related computations in Mathematica 8,
we propose several Giuga-Agoh-like conjectures. In particular, Conjecture 12 characterizes
Wolstenholme primes as positive integers n such that Sn−2(n) ≡ 0 (mod n3).

In Subsection 2.3 we establish two congruences modulo n3 for two binomial sums involving
sums of powers S2i(n) with i = 0, 1, . . . , k (Proposition 17).

Combining the congruence (5) of Theorem 1 with the Carlitz-von Staudt result for de-
termining S2k(n) (mod n) (Theorem 20), in the last subsection of Section 2, we extend this
result modulo n2 for power sums S2k+1(n) (Theorem 23).
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Recall that Erdős-Moser Diophantine equation is the equation of the form

1k + 2k + · · ·+ (m− 2)k + (m− 1)k = mk (7)

where m ≥ 2 and k ≥ 2 are positive integers. Notice that (m, k) = (3, 1) is the only solution
for k = 1. In letter to Leo Moser around 1950, Paul Erdős conjectured that such solutions
of the above equation do not exist (see [39]). Using remarkably elementary methods, Moser
[39] showed in 1953 that if (m, k) is a solution of (7) with m ≥ 2 and k ≥ 2, then m > 1010

6

and k is even. We believe that Theorem 23 can be useful for study some Erdős-Moser-like
Diophantine equations with odd k (see Remark 26).

Proofs of all our results are given in Section 3.

2 Applications of Theorem 1

2.1 Variations of Giuga-Agoh’s conjecture

Taking k = (n− 1)/2 if n is odd, k = n/2 if n is even and k = (n− 2)/2 if n is even into (3)
of Theorem 1 we obtain respectively the following three congruences.

Corollary 3. If n is an odd positive integer, then

2Sn(n) ≡ n2Sn−1(n) (mod n3). (8)

If n is even, then

2Sn+1(n)− n(n+ 1)Sn(n) ≡
{

0 (mod n3), if n ≡ 0 (mod 4);
n3

2
(mod n3), if n ≡ 2 (mod 4)

(9)

and
2Sn−1(n) ≡ n(n− 1)Sn−2(n) (mod n3). (10)

In particular, for each even n we have

Sn−1(n) ≡
{

0 (mod n), if n ≡ 0 (mod 4);
n
2

(mod n), if n ≡ 2 (mod 4).
(11)

Notice that if n is any prime, then by Fermat’s little theorem we have Sn−1(n) ≡ −1
(mod n). In 1950 Giuga [18] conjectured that a positive integer n ≥ 2 is a prime if and only
if Sn−1(n) ≡ −1 (mod n). This conjecture is related to the sequences A029875, A007850,
A198391, A199767, A226365 and A029876 in [41]. The following proposition provides an
equivalent formulation of Giuga’s conjecture.

Proposition 4. The following conjectures are equivalent:
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(i) A positive integer n ≥ 3 is a prime if and only if

Sn−1(n) ≡ −1 (mod n). (12)

(ii) A positive integer n ≥ 3 is a prime if and only if

2Sn(n) ≡ −n2 (mod n3). (13)

The above conjecture (ii) is related to the sequence A219540 in [41]. Since by the con-
gruence (11), Sn−1(n) 6≡ −1 (mod n) for each even n ≥ 4, without loss of generality Giuga’s
conjecture may be restricted to the set of odd positive integers. In view of this fact and
the fact that by (8), n2 | Sn(n) for each odd n, Proposition 4 yields the following equivalent
formulation of Giuga’s conjecture.

Conjecture 5 (Giuga’s conjecture). An odd integer n ≥ 3 is a prime if and only if

2Sn(n)

n2
≡ −1 (mod n).

Remark 6. It is known that Sn−1(n) ≡ −1 (mod n) if and only if for each prime divisor p of
n, (p−1) | (n/p−1) and p | (n/p−1) (see [18], [7, Thm. 1]). Therefore, any counterexample
to Giuga’s conjecture must be squarefree. Giuga [18] showed that there are no exceptions
to the conjecture up to 101000. In 1985 Bedocchi [5] improved this bound to n > 101700.
Finally, in 1996 Borwein et. al. raised the bound to n > 1013887. Recently, Luca, Pomerance,
and Shparlinski [28] proved that for any real number x, the number of counterexamples to
Giuga’s conjecture G(x) := #{n < x : n is composite and Sn−1(n) ≡ −1 (mod n)} satisfies
the estimate G(x) = o(

√
x) as x → ∞.

Independently, in 1990 Agoh [1] (published in 1995; see also [8] and the sequence A046094
in [41]) conjectured that a positive integer n ≥ 2 is a prime if and only if nBn−1 ≡ −1 (mod
n). Note that the denominator of the number nBn−1 can be greater than 1, but since
by the von Staudt-Clausen theorem (1840) (see, e.g., [22, Thm. 118]; cf. the equality (25)
given below), the denominator of any Bernoulli number B2k is squarefree, it follows that the
denominator of nBn−1 is invertible modulo n. In 1996 it was reported by Agoh [7] that his
conjecture is equivalent to Giuga’s conjecture, and hence the name “Giuga-Agoh conjecture”
found in the literature. It was pointed out in [7] that this can be seen from the Bernoulli
formula (1) after some analysis involving the von Staudt-Clausen theorem. The equivalence
of both conjectures is proved in detail in 2002 by Kellner [24, Satz 3.1.3, Section 3.1, p. 97]
(also see [25, Thm. 2.3]).

Quite recently, Grau and Oller-Marcén [20, Corollary 4] proved that an integer n is a
counterexample to Giuga’s conjecture if and only if it is both a Carmichael and a Giuga
number (for definitions and more information on Carmichael numbers see Alford et al. [2]
and Banks and Pomerance [3], and for Giuga numbers see Borwein et al. [7], Borwein and
Wong [8], and Wong [50, Chapter 2]; also see the sequences A007850 and A002997 in [41]).
Furthermore, several open problems concerning Giuga’s conjecture can be found in [8, E
Open Problems].
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2.2 The congruence (3) holds modulo n4 for a prime n ≥ 5

The following result shows that for each prime n ≥ 5 the first congruence of (3) also holds
modulo n4.

Proposition 7. Let p ≥ 5 be a prime and let k ≥ 2 be a positive integer such that p − 1 ∤
2k − 2. Then

2S2k+1(p) ≡ (2k + 1)pS2k(p) (mod p4). (14)

Furthermore, if p− 1 ∤ 2k, then

S2k−1(p) ≡ 0 (mod p2). (15)

As a consequence of Proposition 7, we obtain the following “supercongruence” which
generalizes Lemma 2.4 in [32].

Corollary 8. Let p ≥ 5 be a prime and let k be a positive integer such that k ≤ (p4−p3−4)/2
and p− 1 ∤ 2k + 2. Then

2R2k−1(p) ≡ (1− 2k)pR2k(p) (mod p4) (16)

where

Rs(p) :=

p−1
∑

i=1

1

is
, s = 1, 2, . . . .

Remark 9. Z.-H. Sun [45, Section 5, Thm. 5.1] in terms of Bernoulli numbers explicitly
determined

∑p−1
i=1 (1/i

k) (mod p3) for each prime p ≥ 5 and k = 1, 2, . . . , p− 1. In particular,
substituting the second congruence of Theorem 5.1(a) in [45] (with 2k instead of even k)
into (14), we immediately obtain the following “supercongruence”:

R2k−1(p) ≡
k(1− 2k)

2

(

B2p−2−2k

p− 1− k
− 4

Bp−1−2k

p− 1− 2k

)

p2 (mod p4)

for all primes p ≥ 7 and k = 1, . . . , (p− 5)/2.
By [45, (5.1) on p. 206],

S2k(p) ≡
p

3
(3B2k + k(2k − 1)p2B2k−2) (mod p3), (17)

which, inserting into (14), gives

S2k+1(p) ≡
2k + 1

2
p2B2k (mod p4) (18)

for all primes p ≥ 5 and positive integers k ≥ 2 such that p− 1 ∤ 2k− 2. Moreover, (14) with
2k = p− 1 ≥ 4 (i.e., p ≥ 5) directly gives

Sp(p) ≡
p2

2
Sp−1(p) (mod p4).
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Taking 2k + 1 = p into (18), we find that

Sp(p) ≡
p3

2
Bp−1 (mod p4),

which reducing modulo p3, and using the congruence pBp−1 ≡ −1 (mod p), yields 2Sp(p) ≡
−p2 (mod p3). This is actually the congruence (13) of Proposition 4 with a prime n = p ≥ 5.

Comparing the above two congruences gives Sp−1(p) ≡ pBp−1 (mod p2) for each prime
p ≥ 5. However, the congruence (17) with 2k = p− 1 implies that for all primes p ≥ 5

Sp−1(p) ≡ pBp−1 (mod p3).

Remark 10. A computation shows that each of the congruences

Sn(n) ≡
n3

2
Bn−1 (mod n4)

and
Sn−1(n) ≡ nBn−1 (mod n3)

is also satisfied for numerous odd composite positive integers n. However, we propose the
following conjecture.

Conjecture 11. Each of the congruences

Sn(n) ≡
n3

2
Bn−1 (mod n5),

Sn−1(n) ≡ nBn−1 (mod n4)

is satisfied for none integer n ≥ 2.

Similarly, taking k = (p− 3)/2 into (18) for each prime p ≥ 5 we get

Sp−2(p) ≡
(p− 2)p2

2
Bp−3 (mod p4). (19)

Therefore, p3 | Sp−2(p) if and only if the numerator of the Bernoulli number Bp−3 is divisible
by p, and such a prime is said to be Wolstenholme prime (see, e.g., [33, Section 7]). Nu-
merators of Bernoulli numbers Bk (k = 0, 1, 2, . . .) are given as the sequence A027641 in [41]
(cf. also its subsequence A000367 consisting of the terms with even indices k). The only two
known such primes are 16843 and 2124679, and by a result of McIntosh and Roettger from
[31], these primes are the only two Wolstenholme primes less than 109. Wolstenholme primes
are given as the sequence A088164 which is a subsequence of irregular primes A000928 in
[41] (cf. the sequence A177783). In view of the above congruence, and our computation via
Mathematica 8 up to n = 20000 we have the following two conjectures.
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Conjecture 12. A positive integer n ≥ 2 is a Wolstenholme prime if and only if

Sn−2(n) ≡ 0 (mod n3).

Conjecture 13. The congruence

Sn−2(n) ≡ 0 (mod n4)

is satisfied for none integer n ≥ 2.

Remark 14. Quite recently, inspired by Giuga’s conjecture, Grau, Luca, and Oller-Marcén
[21] studied the odd positive integers n satisfying the congruence

S(n−1)/2(n) ≡ 0 (mod n).

Grau et al. [21, Section 2, Proposition 2.1] observed that this congruence is satisfied for each
odd prime n and for each odd positive integer n ≡ 3 (mod 4). Notice that if n = 4k+3 with
k ≥ 0, then the first part of the congruence (3) yields

2S(n−1)/2(n) ≡
(n− 1)n

2
S(n−3)/2(n) (mod n3)

which by the congruence (14) holds modulo n4 for each prime n ≥ 7 such that n ≡ 3 (mod
4). Multiplying the above congruence by 2 and reducing the modulus, immediately gives

4S(n−1)/2(n) ≡ −nS(n−3)/2(n) (mod n2).

The above congruence shows that S(n−1)/2(n) ≡ 0 (mod n2) for some n ≡ 3 (mod 4) if
and only if S(n−3)/2(n) ≡ 0 (mod n). Furthermore, reducing the congruence (18) with
k = (p− 3)/4 where p ≥ 7 is a prime such that p ≡ 3 (mod 4) gives

S(p−1)/2(p) ≡ −p2

4
B(p−3)/2 (mod p3), (20)

whence it follows that for such a prime p, S(p−1)/2(p) ≡ 0 (mod p2).
On the other hand, if n ≡ 1 (mod 4), that is n = 4k + 1 with k ≥ 1, the first part of the

congruence (3) yields

2S(n+1)/2(n) ≡
(n+ 1)n

2
S(n−1)/2(n) (mod n3)

which by the congruence (14) holds modulo n4 for each prime n ≡ 1 (mod 4). Multiplying
the above congruence by 2 and reducing the modulus, immediately gives

4S(n+1)/2(n) ≡ nS(n−1)/2(n) (mod n2).
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The above congruence shows that S(n−1)/2(n) ≡ 0 (mod n) for some n ≡ 1 (mod 4) if and
only if S(n+1)/2(n) ≡ 0 (mod n2). For example, by [21, Proposition 2.3] (cf. Corollary 24
given below) both previous congruences are satisfied for every odd prime power n = p2s+1

with any prime p ≡ 1 (mod 4) and a positive integer s. Moreover, reducing the congruence
(17) with k = (p− 1)/4 where p ≥ 5 is a prime such that p ≡ 1 (mod 4) gives

S(p−1)/2(p) ≡ pB(p−1)/2 (mod p2). (21)

The congruence (21) shows that S(p−1)/2(p) ≡ 0 (mod p2) whenever p ≡ 1 (mod 4) is an
irregular prime for which B(p−1)/2 ≡ 0 (mod p). To see that the converse is not true, consider
the composite number n = 3737 = 37 · 101 satisfying S(n−1)/2(n) ≡ 0 (mod n2) (this is the
only such a composite number less than 16000).

Nevertheless, in view of the congruences (20) and using arguments similar to those pre-
ceding Conjecture 12 (including a computation up to n = 20000), we have the following
conjecture.

Conjecture 15. An odd positive integer n ≥ 3 such that n ≡ 3 (mod 4) satisfies the
congruence

S(n−1)/2(n) ≡ 0 (mod n3)

if and only if n is an irregular prime for which B(n−3)/2 ≡ 0 (mod n).

We also propose the following conjecture.

Conjecture 16. The congruence

S(n−1)/2(n) ≡ 0 (mod n3)

is satisfied for none odd positive integer n ≥ 5 such that n ≡ 1 (mod 4).

2.3 Two congruences modulo n3 involving power sums Sk(n)

Combining the congruences of Theorem 1 with Pascal’s identity, we can arrive to the following
congruences.

Proposition 17. Let k and n be positive integers. Then

2
k

∑

i=0

(1 + n(k + 1− i))

(

2k + 2

2i

)

S2i(n) ≡ −2 (mod n3) (22)

and

2
k

∑

i=0

((

2k + 2

2i

)

+ n(k + 1)

(

2k + 1

2i

))

S2i(n) ≡ −2 (mod n3). (23)
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Remark 18. Clearly, if n is odd, then both congruences (22) and (23) remain also valid after
dividing by 2. However, a computation in Mathematica 8 for small values k and even n
suggests that this would be true for each k and even n, and so we have

Conjecture 19. The congruence

k
∑

i=0

(1 + n(k + 1− i))

(

2k + 2

2i

)

S2i(n) ≡ −1 (mod n3)

is satisfied for all k ≥ 1 and even n.

2.4 An extension of Carlitz-von Staudt result for odd power sums

The following congruence is known as a Carlitz-von Staudt’s result [10] in 1961 (for an easier
proof see [37, Thm. 3]).

Theorem 20. ([10], [37, Thm. 3]) Let k and n > 1 be positive integers. Then

Sk(n) ≡
{

0 (mod (n−1)n
2

), if k is odd;

−∑

(p−1)|k,p|n
n
p

(mod n), if k is even,
(24)

where the summation is taken over all primes p such that (p− 1) | k and p | n.
Remark 21. It is easy to show the first (“odd”) part of Theorem 20 (see, e.g., [37, Proof
of Theorem 3] or [30, Proposition 1]) whose proof is a modification of Lengyel’s arguments
in [27]. Recall also that the classical theorem of Faulhaber ([16]; also see [4, 14, 26]) states
that every sum S2k−1(n) (of odd power) can be expressed as a polynomial in the triangular
number Tn−1 := (n− 1)n/2 A000217 (cf. the sequences A079618 and A064538 in [41]). For
even powers, it has been shown that the sum S2k(n) is a polynomial in the triangular number
Tn−1 multiplied by a linear factor in n (see, e.g., [26]). Quite recently, Dzhumadil’daev and
Yeliussizov [14] established an analog of Faulhaber’s theorem for a power sum of binomial
coefficients.

Remark 22. The second part of the congruence (24) in Theorem 20 can be proved using
the famous von Staudt-Clausen theorem (given below) discovered without proof by Clausen
[12] in 1840, and independently by von Staudt in 1840 [43]; for alternative proofs, see, e.g.,
Carlitz [10], Moree [35] or Moree [37, Thm. 3]. This also follows from Chowla’s proof of the
von Staudt-Clausen theorem given in [11]. Namely, Chowla proved that the difference

S2k(n+ 1)

n
− B2k

is an integer for all positive integers k and n. This together with the facts that S2k(n+1) ≡
S2k(n) (mod n) and that by the von Staudt-Clausen theorem,

B2k = A2k −
∑

(p−1)|2k
p prime

1

p
, (25)
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where A2k is an integer, immediately gives the second part of the congruence (24). This
theorem is related to the sequences A000146 in [41] (cf. A165908 and A027762 in [41]).
Recall also that in many places, the von Staudt-Clausen theorem is stated in the following
equivalent statement (see, e.g., [44, page 153]):

pB2k ≡
{

0 (mod p), if p− 1 ∤ 2k;

−1 (mod p), if p− 1 | 2k,

where p is a prime and k a positive integer.

Combining the congruence (5) in Theorem 1 with the second (“even”) part of the con-
gruence (24), we immediately obtain an improvement of its first (“odd”) part as follows.

Theorem 23. Let Let k and n be positive integers. Then

2S2k+1(n) ≡ −(2k + 1)n
∑

(p−1)|2k,p|n

n

p
(mod n2), (26)

where the summation is taken over all primes p such that p− 1 | k and p | n.

In particular, taking n = ps and k = (ps − 1)/4 into (26) where p is an odd prime p and
s ≥ 1 such that ps ≡ 1 (mod 4), we immediately obtain an analogue of Proposition 2.3 in a
recent paper [21].

Corollary 24. Let p be an odd prime. Then

S(ps+1)/2(p
s) ≡

{

0 (mod p2s), if p ≡ 1 (mod 4) and s ≥ 1 is odd;

−p2s−1

4
(mod p2s), if s ≥ 2 is even.

Finally, comparing (24), (25) and (26), we immediately obtain an “odd” extension of a
result due to Kellner [25, Thm. 1.2] in 2004 (the congruence (27) given below).

Corollary 25. Let k and n be positive integers. Then

S2k(n) ≡ nB2k (mod n) (Kellner [20]) (27)

and
2S2k+1(n) ≡ (2k + 1)n2B2k (mod n2). (28)

Remark 26. Notice also that Theorem 20 plays a key role in a recent study ([17, 35, 37, 38])
of the Erdős-Moser Diophantine equation given by (7). As noticed in Introduction, in 1953
Moser [39] showed that if (m, k) is a solution of the equation (7) with m ≥ 2 and k ≥ 2,
then m > 1010

6
and k is even. Recently, using Theorem 20, Moree [37, Thm. 4] improved

the bound on m to 1.485 · 109321155. That Theorem 20 can be used to reprove Moser’s result
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was first observed in 1996 by Moree [36], where it played a key role in the study of the more
general equation

1k + 2k + · · ·+ (m− 2)k + (m− 1)k = amk (29)

where a is a given positive integer. Moree [36] generalized Erdős-Moser conjecture in the
sense that the only solution of the “generalized” Erdős-Moser Diophantine equation (29) is
the trivial solution 1 + 2 + · · · + 2a = a(2a + 1). Notice also that Moree [36, Proposition
9] proved that in any solution of the equation (29), m is odd. Nevertheless, motivated
by the Moser’s technique [37, proof of Theorem 3] previously mentioned, to study (7), we
believe that Theorem 23 would be applicable in investigations of some other Erdős-Moser
type Diophantine equations with odd k.

3 Proofs of Theorem 1, Corollaries 2, 8, Propositions

4, 7 and 17

Proof of Theorem 1. If k ≥ 1 then by the binomial formula, for each i = 1, 2, . . . , n − 1 we
have

2(i2k+1 + (n− i)2k+1)− (2k + 1)n(i2k + (n− i)2k)

≡2

(

i2k+1 − i2k+1) +

(

2k + 1

1

)

ni2k −
(

2k + 1

2

)

n2i2k−1

)

− (2k + 1)n

(

i2k + i2k −
(

2k

1

)

ni2k−1

)

(mod n3)

=2(2k + 1)ni2k − 2(2k + 1)kn2i2k−1 − 2(2k + 1)ni2k + 2(2k + 1)kn2i2k−1

=0 (mod n3).

(30)

If k ≥ 3 and n is odd then after summation of (30) over i = 1, 2, . . . , (n− 1)/2 we obtain

2
n−1
∑

i=1

i2k+1 − (2k + 1)n
n−1
∑

i=1

i2k ≡ 0 (mod n3). (31)

If k ≥ 2 and n is even then after summation of (30) over i = 1, 2, . . . , n/2 we get

2
n−1
∑

i=1

i2k+1 + 2
(n

2

)2k+1

− (2k + 1)n
n−1
∑

i=1

i2k − (2k + 1)n
(n

2

)2k

≡ 0 (mod n3),

or equivalently,

2S2k+1 − (2k + 1)nS2k ≡
kn2k+1

22k−1
=

n3

2
· k ·

(n

2

)2k−2

(mod n3). (32)
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Since for even n

n3

2
· k ·

(n

2

)2k−2

≡
{

0 (mod n3), if k is even or n ≡ 0 (mod 4);
n3

2
(mod n3), if k is odd and n ≡ 2 (mod 4),

this together with (32) and (31) yields both congruences of (3) in Theorem 1.
Finally, for k = 1 we have

2S3(n)− 3nS2(n) =
n3

2
· (1− n) ≡

{

0 (mod n3), if n is odd;
n3

2
(mod n3), if n is even.

This completes the proof.

Proof of Corollary 2. Both assertions follow immediately from the congruence (5) and a
result of Damianou and Schumer [13, Thm. 2, p. 222] which asserts that if k is even, then n
divides Sk(n) if and only if n is not divisible by any prime p such that p | Dk, where Dk is
the denominator of the kth Bernoulli number Bk.

Proof of Proposition 4. Proof of (i) ⇒ (ii). Suppose that Giuga’s conjecture is true. Then
if n is an odd positive integer satisfying the congruence (13) of Proposition 4, using this and
(8) of Corollary 3, we find that

n2Sn−1(n) ≡ 2Sn(n) ≡ −n2 (mod n3),

whence we have
Sn−1(n) ≡ −1 (mod n).

By Giuga’s conjecture, the above congruence implies that n is a prime.
If n ≥ 4 is an even positive integer, then the congruence (11) shows that Sn−1(n) 6≡ −1

(mod n). We will show that for such a n, 2Sn(n) 6≡ −n2 (mod n3). Take n = 2s(2l − 1),
where s and l are positive integers. Since for i = 1, 2, . . . we have (2i)n ≡ 0 (mod 2n), this
together with the inequality 22

s ≥ 2s+1 yields (2i)n ≡ 0 (mod 2s+1). Therefore, we obtain

2Sn(n) ≡ 2
∑

1≤j≤n−1
j odd

jn (mod 2s+1).

By Euler’s theorem, for each odd j we have

jn = j2
s(2l−1) =

(

j2
s)2l−1

=
(

jϕ(2
s+1)

)2l−1

≡ 1 (mod 2s+1) ≡ 1 (mod 2s),

where ϕ(m) is Euler’s totient function. Substituting this into the above congruence, we get

2Sn(n) ≡ n = 2s(2l − 1) 6≡ 0 (mod 2s+1).
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Now, if we suppose that 2Sn(n) ≡ −n2 (mod n3), then must be 2Sn(n) ≡ 0 (mod n2), and
so, 2Sn(n) ≡ 0 (mod 22s)≡ 0 (mod 2s+1). This contradicts the above congruence, and the
implication (i) ⇒ (ii) is proved.

Proof of (ii) ⇒ (i). Now suppose that Conjecture (ii) of Proposition 4 is true. Then if
n is an odd positive integer satisfying the congruence (12), multiplying this by n2 and using
(8) of Corollary 3, we find that

2Sn(n) ≡ n2Sn−1(n) ≡ −n2 (mod n3),

which implies that
2Sn(n) ≡ −n2 (mod n3).

By our Conjecture (ii), the above congruence implies that n is a prime.
If n ≥ 4 is an even positive integer, then we have previously shown that for such a n,

2Sn(n) 6≡ −n2 (mod n3) and Sn−1(n) 6≡ −1 (mod n). This completes the proof of implication
(ii) ⇒ (i).

Proof of Proposition 7. If we extend the congruence (30) modulo n4, then in the same man-
ner we obtain

2(i2k+1 + (n− i)2k+1)− (2k + 1)n(i2k + (n− i)2k)

≡ 2

(

2k + 1

3

)

n3i2k−2 − (2k + 1)

(

2k

2

)

n3i2k−2 (mod n4),

whence it follows that

2S2k+1(n)− (2k + 1)nS2k(n) ≡
k(1− 4k2)

3
n3S2k−2(n) (mod n4). (33)

If n = p is a prime such that p − 1 ∤ 2k − 2, then the well known congruence S2k−2(p) ≡ 0
(mod p) (see, e.g., [46, the congruence (6.3)] or [29, Thm. 1]) and (33) yield the congruence
(14). Finally, (15) immediately follows reducing (14) modulo p2 and using the previous fact
that S2k(p) ≡ 0 (mod p) whenever p− 1 ∤ 2k.

Remark 27. Applying a result of Damianou and Schumer [13, Thm. 2, p. 222] used in the
proof of Corollary 2 to the congruence (33), it follows that

2S2k+1(n) ≡ (2k + 1)nS2k(n) (mod n4)

whenever n is not divisible by any prime p such that p | D2k−2, where D2k−2 is the denomina-
tor of the (2k−2)th Bernoulli number B2k−2. The converse assertion is true if n is relatively
prime to the integer k(1− 4k2)/3.

Proof of Corollary 8. By Euler’s theorem [22], for all positive integers m and i such that
1 ≤ m < p4− p3 and 1 ≤ i ≤ p− 1 we have 1/im ≡ iϕ(p

4)−m (mod p4), where ϕ(p4) = p4− p3

is the Euler’s totient function. Therefore, Rm ≡ Sp4−p3−m (mod p4). Applying the last
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congruence for m = 2k−1 and m = 2k, and substituting this into (14) of Proposition 7 with
p4 − p3 − 2k ≥ 4 instead of 2k, we immediately obtain

2R2k−1(p) ≡ (p4 − p3 − 2k + 1)pR2k(p) ≡ (1− 2k)pR2k(p) (mod p4),

as desired.

Proof of Proposition 17. As S0(n) = n − 1 and S1(n) = (n − 1)n/2, Pascal’s identity (2)
yields

2(n2k+2 − 1) = 2
2k+1
∑

i=0

(

2k + 2

i

)

Si(n)

= 2(n− 1)(1 + (k + 1)n) +
k

∑

i=1

(

2

(

2k + 2

2i

)

S2i(n) + 2

(

2k + 2

2i+ 1

)

S2i+1(n)

)

.

(34)

If n is odd, then multiplying the congruence (6) of Theorem 1 by
(

2k+2
2i+1

)

and using the identity
(

2k+2
2i+1

)

= 2k+2−2i
2i+1

(

2k+2
2i

)

, we find that

(

2k + 2

2i+ 1

)

2S2i+1(n) ≡
2k + 2− 2i

2i+ 1

(

2k + 2

2i

)

(2i+ 1)nS2i(n) (mod n3)

= (2k + 2− 2i)

(

2k + 2

2i

)

nS2i(n) (mod n3)

(35)

for each i = 1, . . . , k. Now substituting (35) into (34), we obtain

2(n− 1)(1 + (k + 1)n) + 2
k

∑

i=1

(1 + n(k + 1− i))

(

2k + 2

2i

)

S2i(n) ≡ −2 (mod n3), (36)

which is obviously the same as (22).

If n is even, then since
(

2k+2
2i+1

)

is even (this is true by the identity
(

2k+2
2i+1

)

= 2(k+1)
2i+1

(

2k+1
2i

)

),

we have that
(

2k+2
2i+1

)

n3

2
≡ 0 (mod n3). This shows that (22) is satisfied for even n and each

i = 1, . . . , k, and hence, proceeding in the same manner as in the previous case, we obtain
(22).

Further, applying the identities 2i
(

2k+2
2i

)

= (2k + 2)
(

2k+1
2i−1

)

and
(

2k+2
2i

)

−
(

2k+1
2i−1

)

=
(

2k+1
2i

)

,
the left hand side of (23) is equal to
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2(1 + n(k + 1))
k

∑

i=0

(

2k + 2

2i

)

S2i(n)− n

k
∑

i=0

2i

(

2k + 2

2i

)

S2i(n)

=2
k

∑

i=0

(

2k + 2

2i

)

S2i(n) + 2n(k + 1)(n− 1) + 2n(k + 1)
k

∑

i=1

(

2k + 2

2i

)

S2i(n)

− 2n(k + 1)
k

∑

i=1

(

2k + 1

2i− 1

)

S2i(n)

=2
k

∑

i=0

(

2k + 2

2i

)

S2i(n) + 2n(k + 1)(n− 1)

+ 2n(k + 1)
k

∑

i=1

((

2k + 2

2i

)

−
(

2k + 1

2i− 1

))

S2i(n)

=2
k

∑

i=0

(

2k + 2

2i

)

S2i(n) + 2n(k + 1)(n− 1) + 2n(k + 1)
k

∑

i=1

(

2k + 1

2i

)

S2i(n)

=2
k

∑

i=0

(

2k + 2

2i

)

S2i(n) + 2n(k + 1)
k

∑

i=0

(

2k + 1

2i

)

S2i(n)

=2
k

∑

i=0

((

2k + 2

2i

)

+ n(k + 1)

(

2k + 1

2i

))

S2i(n).

Comparing the above equality with (22) immediately gives (23).
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(k + 1)n modulo k and k2, Integers 11 (2011), # A34, pages 8.

[43] K. G. C. von Staudt, Beweis eines Lehrsatzes die Bernoulli’schen Zahlen betreffend, J.
Reine Angew. Math. 21 (1840), 372–374.

[44] Z.-H. Sun, Congruences for Bernoulli numbers and Bernoulli polynomials, Discrete
Math. 163 (1997), 153–163.

[45] Z.-H. Sun, Congruences concerning Bernoulli numbers and Bernoulli polynomials, Dis-
crete Appl. Math. 105 (2000), 193–223.

[46] Z.-H. Sun, Congruences involving Bernoulli polynomials, Discrete Math. 308 (2008),
71–112.

[47] Z.-H. Sun, Congruences involving Bernoulli and Euler numbers, J. Number Theory
128 (2008), 280–312.

[48] Z.-W. Sun, General congruences for Bernoulli polynomials, Discrete Math. 262 (2003),
253–276.

[49] R. Vakil, A Mathematical Mosaic: Patterns and Problem Solving, Brendan Kelly Pub.,
1996.

[50] E. Wong, Computations on Normal Families of Primes, MSc Thesis, Simon Fraser
University, 1997. Available at
http://discerver.carma.newcastle.edu.au/view/year/1997.html.

2010 Mathematics Subject Classification: Primary 05A10; Secondary 11A07, 11A51, 11B50,
11B65, 11B68.
Keywords: sum of powers, Bernoulli number, Giuga’s conjecture, Carlitz-von Staudt result,
von Staudt-Clausen theorem.

19

http://oeis.org
http://discerver.carma.newcastle.edu.au/view/year/1997.html


(Concerned with sequences A000146, A000217, A000367, A000928, A002445, A002997, A007850,
A027641, A027642, A027762, A029875, A029876, A046094, A064538, A079618, A088164,
A165908, A177783, A198391, A199767, A219540, and A226365.)

Received July 25 2013; revised versions received October 14 2013; October 22 2013; August
5 2014. Published in Journal of Integer Sequences, August 5 2014.

Return to Journal of Integer Sequences home page.

20

http://oeis.org/A000146
http://oeis.org/A000217
http://oeis.org/A000367
http://oeis.org/A000928
http://oeis.org/A002445
http://oeis.org/A002997
http://oeis.org/A007850
http://oeis.org/A027641
http://oeis.org/A027642
http://oeis.org/A027762
http://oeis.org/A029875
http://oeis.org/A029876
http://oeis.org/A046094
http://oeis.org/A064538
http://oeis.org/A079618
http://oeis.org/A088164
http://oeis.org/A165908
http://oeis.org/A177783
http://oeis.org/A198391
http://oeis.org/A199767
http://oeis.org/A219540
http://oeis.org/A226365
http://www.cs.uwaterloo.ca/journals/JIS/

	Introduction and basic results
	Applications of Theorem 1
	Variations of Giuga-Agoh's conjecture
	The congruence (3) holds modulo n4 for a prime n5
	Two congruences modulo n3 involving power sums Sk(n)
	An extension of Carlitz-von Staudt result for odd power sums

	Proofs of Theorem 1, Corollaries 2, 8, Propositions 4, 7 and 17

