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Abstract

In this paper we find closed forms, in terms of rational numbers, for certain finite

sums. The denominator of each summand is a finite product of terms drawn from two

sequences that are generalizations of the Fibonacci and Lucas numbers.

1 Introduction

In [1, 2] we considered certain types of finite reciprocal sums involving generalized Fibonacci
numbers. Indeed we gave closed forms, in terms of rational numbers, for these sums. Our
purpose here is to give closed forms for finite reciprocal sums that are of a different type
than those considered in [1, 2], thereby extending the work in [1, 2]. As in [1, 2], our results
can be used to produce finite reciprocal sums that involve the Fibonacci and Lucas numbers.

We begin by introducing the three pairs of integer sequences that feature in this paper.
Let a ≥ 0 and b ≥ 0 be integers with (a, b) 6= (0, 0). For p a positive integer we define, for
all integers n, the sequences {Wn} and

{

W n

}

by

Wn = pWn−1 +Wn−2, W0 = a, W1 = b,

and
W n = Wn−1 +Wn+1.
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For (a, b, p) = (0, 1, 1) we have {Wn}={Fn}, and
{

W n

}

={Ln}, which are the Fibonacci
and Lucas numbers, respectively. Retaining the parameter p, and taking (a, b) = (0, 1),
we write {Wn}={Un}, and

{

W n

}

={Vn}, which are integer sequences that generalize the
Fibonacci and Lucas numbers, respectively.

Let α and β denote the two distinct real roots of x2 − px − 1 = 0. Set A = b − aβ and
B = b− aα. Then the closed forms (the Binet forms) for {Wn} and

{

W n

}

are, respectively,

Wn =
Aαn −Bβn

α− β
,

and
W n = Aαn +Bβn.

We require also the constants eW = AB = b2 − pab− a2, and ∆ = p2 + 4.
Throughout this paper we take k ≥ 1, m ≥ 0, and n ≥ 2 to be integers. Let m1 < m2

and m3 < m4 be non-negative integers with m1 + m2 = m3 + m4. We begin by giving a
closed form for the finite sum

S4(k,m, n,m1, . . . ,m4) =
n−1
∑

i=1

1

Wk(i+m1)+mWk(i+m2)+mW k(i+m3)+mW k(i+m4)+m

.

Because of the conditions on the mi we consider S4 to be the most intriguing sum that we
present in this paper. We also give closed forms for similar sums that have longer products
in the denominator, and to this end we introduce some notation. For integers 0 < m1 < m2

write

P6(W,W, k,m, i, 0,m1,m2)

= Wki+mWk(i+m1)+mWk(i+m2)+mW ki+mW k(i+m1)+mW k(i+m2)+m.

Likewise, for integers 0 < m1 < m2 < m3 write

P8(W,W, k,m, i, 0,m1,m2,m3)

= Wki+mWk(i+m1)+m · · ·Wk(i+m3)+mW ki+mW k(i+m1)+m · · ·W k(i+m3)+m.

We say that P8 consists of a balanced product of eight terms that are drawn from
the sequences {Wn} and

{

W n

}

. We also consider such products where the terms are
drawn from the sequences {Un} and {Vn}, and where the product Uki+mVki+m is not in-
cluded. For instance P4 (U, V, k,m, i,m1,m2) denotes the product of Uk(i+m1)+mUk(i+m2)+m

and Vk(i+m1)+mVk(i+m2)+m. Since UnVn = U2n, P4 can be shortened to a product of two
terms from the sequence {Un}. However, we choose to retain the longer form for P4 (and for
expressions analogous P4) in order to highlight the relationship between the numerator and
the denominator of the summand. Later, however, when giving examples of our results that
involve Fn and Ln, we present these examples in simplified form.
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Using the notation that we have just introduced, we now define three finite sums whose
closed forms we give in this paper. Let 0 < m1 < m2 be integers. Define

S0
6(k,m, n,m1,m2) =

n−1
∑

i=1

P2(U, V, k,m, i, 0)

P6(W,W, k,m, i, 0,m1,m2)
,

S1
6(k,m, n,m1,m2) =

n−1
∑

i=1

P2(U, V, k,m, i,m1)

P6(W,W, k,m, i, 0,m1,m2)
,

and

S2
6(k,m, n,m1,m2) =

n−1
∑

i=1

P2(U, V, k,m, i,m2)

P6(W,W, k,m, i, 0,m1,m2)
.

In each of these three cases the numerator of the summand consists of a product of two
terms, and the denominator of the summand consists of a product of six terms.

We evaluate each of the finite sums that we consider in this paper in terms of rational
numbers. In addition to the four finite sums defined above, we consider analogous finite
sums where the denominator of the summand consists of a product of eight, or ten, or twelve
terms. In each case the numerator of the summand is either unity, or is a product of terms
drawn from the sequences {Un} and {Vn} and is defined in terms of the P notation that we
have introduced. Furthermore, we consider only finite sums where the number of terms that

constitute the product in the denominator of the summand exceeds the number of terms that

constitute the product in the numerator of the summand by a multiple of four. Indeed these
are the only types of sums, with the structure described earlier in this paragraph, for which
we have been able to find closed forms.

In Section 2 we present one result, namely the closed form for S4, and give a proof. In
Section 3 we present the closed forms for S0

6 , S
1
6 , and S2

6 . In subsequent sections we present
a selection of the results that we have found that involve longer products in the denominator
of the summand. Indeed, we limit the scope of this paper to finite sums that have four, or
six, or eight, or ten, or twelve products in the denominator of the summand.

There are two finite sums that feature throughout. For integers 0 ≤ l1 < l2 these finite
sums are

ΩW (k,m, n, l1, l2) =

l2−1
∑

i=l1

(−1)ki

Wk(i+2)+mWk(i+n)+m

,

and

ΩW (k,m, n, l1, l2) =

l2−1
∑

i=l1

(−1)ki

W k(i+2)+mW k(i+n)+m

.

To prevent the presentation from becoming too unwieldy, we suppress certain argu-
ments from quantities when there is no danger of confusion. For instance S4(n) will denote
S4(k,m, n,m1,m2,m3,m4) when we want n to vary and the other parameters to remain
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fixed. Likewise ΩW (k,m, n, l1, l2) will be denoted by ΩW (l1, l2) when l1 and l2 vary and the
other parameters remain fixed.

We now give two identities involving ΩW and ΩW that are required for the proofs of all
the theorems in this paper. We state these identities as lemmas.

Lemma 1. With ΩW as defined above, we have

Uk(n−1)ΩW (n+ 1)− Uk(n−2)ΩW (n) =
(−1)k(n+l1)Uk(l2−l1)

Wk(n+l1)+mWk(n+l2)+m

.

Lemma 2. With ΩW as defined above, we have

Uk(n−1)ΩW (n+ 1)− Uk(n−2)ΩW (n) =
(−1)k(n+l1)Uk(l2−l1)

W k(n+l1)+mW k(n+l2)+m

.

The proof of Lemma 1 was given in [2], and since the proof of Lemma 2 is similar we
refrain from giving it here.

2 A closed form for S4

Let k, m, n, m1, m2, m3, and m4 satisfy the constraints given earlier in the definition of S4.
Set

a0 = a0(k,m1,m2,m3,m4) = eWU(m4−m3)kU(m2−m1)kV(m4−m1)kV(m4−m2)k.

Then

Theorem 3. With S4 as defined in Section 1,

a0 (S4(n)− S4(2)) = (−1)mUk(n−2)

(

(−1)k(m1+m3)U(m4−m3)kΩW (m1,m2)

−∆U(m2−m1)kΩW (m3,m4)
)

.

Proof. In [2] we demonstrated two methods of proof, and both methods apply here. The first
method required quite a lot to set up, relying heavily upon generalized Fibonacci identities.
The second method was more direct, and mechanical, relying upon the closed forms of the
relevant sequences. We use the second method here since it is transparent and can be used

to effectively prove all the theorems in this paper. To this end, with α =
(

p+
√
∆
)

/2, it is

advantageous to write the closed forms of the sequences in question as

Un =
(

αn + (−1)n+1α−n
)

/
√
∆,

Vn = αn + (−1)nα−n,

Wn =
((

b+ aα−1
)

αn + (−1)n+1 (b− aα)α−n
)

/
√
∆,

W n =
(

b+ aα−1
)

αn + (−1)n (b− aα)α−n,
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where these closed forms are valid for all integers n. Furthermore we set p = α − α−1, and
eW = b2 − pab− a2.

We remind the reader that all the finite sums in this paper are defined for n ≥ 2, and so
it is for these values of n that the following argument holds. In the statement of Theorem
3, denote the quantity on the left side by L (n) and the quantity on the right side by R (n).
We first prove that

L(n+ 1)− L(n) = R(n+ 1)−R(n). (1)

With the previously stated restrictions on the relevant parameters, we have

L(n+ 1)− L(n) =
eWU(m4−m3)kU(m2−m1)kV(m4−m1)kV(m4−m2)k

Wk(n+m1)+mWk(n+m2)+mW k(n+m3)+mW k(n+m4)+m

. (2)

With the use of Lemma 1 and Lemma 2 we can write down, after some straightforward
algebra, the expression for the numerator of R(n+ 1)−R(n). This expression is

(−1)k(n+m3)+mU(m4−m3)kU(m2−m1)k

(

W k(n+m3)+mW k(n+m4)+m

−∆Wk(n+m1)+mWk(n+m2)+m

)

. (3)

Furthermore, L(n+1)−L(n) and R(n+1)−R(n) have identical denominators, so to prove
(1) it is enough to prove that

eWV(m4−m1)kV(m4−m2)k = (−1)k(n+m3)+m
(

W k(n+m3)+mW k(n+m4)+m

−∆Wk(n+m1)+mWk(n+m2)+m

)

. (4)

To this end we consider the difference of the expressions on the left and right sides of (4),
replace m4 by m1 + m2 − m3, and express everything in terms of the closed forms. With
the use of the computer algebra system Mathematica 8 we find that a factor of the resulting
expression is (−1)2(k(n+m3)+m) − 1, and this proves (4). This, together with the fact that
L(2) = R(2) = 0, establishes Theorem 3.

In the proof above the key identity is (4). Likewise, the proof of each theorem in this
paper hinges around the proof of a key identity that is analogous to (4), and each such
identity follows immediately by substitution of the appropriate closed forms. The method is
mechanical and is not dependent upon and special identities. However, the use of a computer
algebra system (in our caseMathematica 8) is essential. The proof above serves as a template
for the proof of each theorem in this paper, and so we state the theorems in the sections
that follow without proof.

We pause to give two examples. Let k = 1, m = 0, and (m1,m2,m3,m4) = (0, 3, 1, 2).
Then for Wn = Fn the result in Theorem 3 becomes

36
n−1
∑

i=1

1

FiFi+3Li+1Li+2

= 1 + Fn−2

(

6

Fn

− 3

Fn+1

+
2

Fn+2

− 15

Ln+1

)

.
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Next let k = 2, m = 0, and (m1,m2,m3,m4) = (2, 3, 1, 4). Then for Wn = Fn the result
in Theorem 3 becomes

40790736
n−1
∑

i=1

1

F2(i+2)F2(i+3)L2(i+1)L2(i+4)

= 282 + F2(n−2)

(

92496

F2(n+2)

− 67445

L2(n+1)

− 25830

L2(n+2)

− 9870

L2(n+3)

)

.

3 Closed forms for S0
6, S

1
6, and S2

6

As stated in the introduction, here, and in the sequel we take k ≥ 1, m ≥ 0, and n ≥ 2 to
be integers. In this section we take 0 < m1 < m2 to be integers.

For 0 ≤ i ≤ 2 define ai = ai(k,m,m1,m2) as

a0 = 2(−1)m+1e3WU2m1kU2m2kU2(m2−m1)k,

a1 = U2(m2−m1)kW0W 0,

a2 = −U2m1kWm2kWm2k.

We then have

Theorem 4. With S0
6 as defined in Section 1,

a0
(

S0
6(n)− S0

6(2)
)

= Uk(n−2) (a1ΩW (0,m1) + a2ΩW (m1,m2)

−∆a1ΩW (0,m1)−∆a2ΩW (m1,m2)) .

Next, for 1 ≤ i ≤ 2 define bi = bi(k,m1,m2) by

b1 = U2(m2−m1)kW−m1kW−m1k,

b2 = −U2m1kW(m2−m1)kW (m2−m1)k.

With a0 as for Theorem 4, we have

Theorem 5. Let S1
6 be as defined in Section 1. Then

a0
(

S1
6(n)− S1

6(2)
)

= Uk(n−2) (b1ΩW (0,m1) + b2ΩW (m1,m2)

−∆b1ΩW (0,m1)−∆b2ΩW (m1,m2)) .

For 1 ≤ i ≤ 2 define ci = ci(k,m1,m2) as

c1 = U2(m2−m1)kW−m2kW−m2k,

c2 = −U2m1kW0W 0.

Then, with a0 as for Theorem 4, we have
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Theorem 6. Let S2
6 be as defined in Section 1. Then

a0
(

S2
6(n)− S2

6(2)
)

= Uk(n−2) (c1ΩW (0,m1) + c2ΩW (m1,m2)

−∆c1ΩW (0,m1)−∆c2ΩW (m1,m2)) .

Let k = 1, m = 0, and (m1,m2) = (1, 2). Take Wn = Fn+2. Then with the use of the
identity FnLn = F2n to simplify the summand, and also the right side, the result in Theorem
5 becomes

27720
n−1
∑

i=1

F2(i+1)

F2(i+2)F2(i+3)F2(i+4)

= 9 + 8F2(n−2)

( −55

F2(n+2)

+
168

F2(n+3)

)

.

4 The summand has eight factors in the denominator

In this section we take 0 < m1 < m2 < m3 to be integers.
Define the finite sum

S8(k,m, n,m1,m2,m3) =
n−1
∑

i=1

1

P8(W,W, k,m, i, 0,m1,m2,m3)
.

For 0 ≤ i ≤ 3 define ai = ai(k,m,m1,m2,m3) by

a0 = 2e3WU2m1kU2m2kU2m3kU2(m3−m2)kU2(m3−m1)kU2(m2−m1)k,

a1 = (−1)mU2(m3−m2)kU2(m3−m1)kU2(m2−m1)k,

a2 = (−1)m+1U2m1kU2(m3−m2)kU2(m3+m2−m1)k,

a3 = (−1)mU2m1kU2m2kU2(m2−m1)k.

Then

Theorem 7. We have

a0 (S8(n)− S8(2)) = Uk(n−2) (a1ΩW (0,m1) + a2ΩW (m1,m2)

+ a3ΩW (m2,m3)−∆a1ΩW (0,m1)

−∆a2ΩW (m1,m2)−∆a3ΩW (m2,m3)) .

We have found that as the number of products in the denominator of the summand
increases it becomes more difficult to write down the closed form of the corresponding finite
sum. The same is true as the number of products in the numerator of the summand increases.
Indeed, to find the closed form for the finite sum T8, defined below, we needed to specialize
the values of m1, m2, and m3 in a manner that we soon make clear.

Define the sum

T8(k,m, n,m1,m2,m3) =
n−1
∑

i=1

P4 (U, V, k,m, i,m1,m2)

P8(W,W, k,m, i, 0,m1,m2,m3)
.
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Here, and in the sequel, we take g ≥ 1 to be an integer. For 0 ≤ i ≤ 3 define the quantities
bi = bi(g, k,m) as follows:

b0 = 2e5WU2gkU4gkU6gk,

b1 = (−1)mW
−2gkW−gkW−2gkW−gk,

b2 = (−1)m+1V2gkW−gkWgkW−gkW gk,

b3 = (−1)mWgkW2gkW gkW 2gk.

We now state our next theorem.

Theorem 8. Let (m1,m2,m3) = (g, 2g, 3g), so that 0, m1, m2, and m3 form an arithmetic

progression. Then

b0 (T8(n)− T8(2)) = Uk(n−2) (b1ΩW (0, g) + b2ΩW (g, 2g)

+ b3ΩW (2g, 3g)−∆b1ΩW (0, g)

−∆b2ΩW (g, 2g)−∆b3ΩW (2g, 3g)) .

Let k = 1, m = 0, and g = 1. Then for Wn = Fn+3 the result in Theorem 8 becomes

167207040
n−1
∑

i=1

F2(i+1)F2(i+2)

F2(i+3)F2(i+4)F2(i+5)F2(i+6)

= 64 + 63F2(n−2)

(

6032

F2(n+3)

− 145145

F2(n+4)

+
338800

F2(n+5)

)

.

We attempted to find the closed forms for certain finite sums analogous to T8, but with-
out success. Firstly, we considered T8 as defined above but with the mi defined as differ-
ent multiples of g, such as (m1,m2,m3) = (2g, 3g, 5g). Secondly, in the definition of T8,
we replaced P4 (U, V, k,m,m1,m2) by P4 (U, V, k,m, 0,m2), and by P4 (U, V, k,m,m1,m3).
In attempting to find the corresponding closed forms in each of these two cases we set
(m1,m2,m3) = (g, 2g, 3g). Put simply, there seems to be a fine line between success and
failure.

5 The summand has ten factors in the denominator

In this section we take 0 < m1 < m2 < m3 < m4 to be integers.
Define the sum

S10(k,m, n,m1,m2,m3,m4) =
n−1
∑

i=1

P6 (U, V, k,m, i,m1,m2,m3)

P10(W,W, k,m, i, 0,m1,m2,m3,m4)
.
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For 0 ≤ i ≤ 4 define the quantities ai = ai(g, k,m) as follows:

a0 = 2e7WU2gkU4gkU6gkU8gk,

a1 = (−1)m+1W
−3gkW−2gkW−gkW−3gkW−2gkW−gk,

a2 = (−1)m (V4gk + 1)W
−2gkW−gkWgkW−2gkW−gkW gk,

a3 = (−1)m+1 (V4gk + 1)W
−gkWgkW2gkW−gkW gkW 2gk,

a4 = (−1)mWgkW2gkW3gkW gkW 2gkW 3gk.

Once again, to discover our next result we needed the mi to take on special values.

Theorem 9. Let (m1,m2,m3,m4) = (g, 2g, 3g, 4g), so that 0, m1, m2, m3, and m4 form an

arithmetic progression. Then

a0 (S10(n)− S10(2)) = Uk(n−2) (a1ΩW (0, g) + a2ΩW (g, 2g)

+ a3ΩW (2g, 3g) + a4ΩW (3g, 4g)

−∆a1ΩW (0, g)−∆a2ΩW (g, 2g)

−∆a3ΩW (2g, 3g)−∆a4ΩW (3g, 4g)) .

We have found that the most interesting examples of our results occur when we take
Wn = Fn+c for some non-negative integer c. Accordingly, as an instance of Theorem 9 let
k = 1, m = 0, and g = 1. Then for Wn = Fn+5 Theorem 9 yields

b0

n−1
∑

i=1

F2(i+1)F2(i+2)F2(i+3)

F2(i+5)F2(i+6)F2(i+7)F2(i+8)F2(i+9)

= 7 + 144F2(n−2)

(

b1
F2(n+5)

+
b2

F2(n+6)

+
b3

F2(n+7)

+
b4

F2(n+8)

)

,

where

b0 = 13009146630480,

b1 = −239632085,

b2 = 35147981440,

b3 = −632668766730,

b4 = 1419740509642.

We also considered variants of S10 that we obtained in ways similar to those described
in the paragraph at the end of Section 4. However, in each case we were unable to find the
closed form of the corresponding finite sum. Furthermore, we considered summands with
only two factors in the numerator. Once again, in each case, we were unable to find the
closed form of the corresponding finite sum. Theorem 9 is the only result of its kind (i.e.,
where the summand has ten factors in the denominator, and where the mi are multiples of a
positive integer parameter g) that we could find. We have discovered closed forms for such
sums where the mi are specific integers, but we refrain from giving these sums.
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6 The summand has twelve factors in the denominator

In this section we take 0 < m1 < m2 < m3 < m4 < m5 to be integers.
Define the sum

S12(k,m, n,m1,m2,m3,m4,m5) =
n−1
∑

i=1

1

P12(W,W, k,m, i, 0,m1,m2,m3,m4,m5)
.

For 0 ≤ i ≤ 5 we define the quantities ai = ai(g, k,m) as

a0 = 2e5WU2gkU4gkU8gkU10gkU12gk,

a1 = a5 = (−1)m,

a2 = a4 = (−1)m+1 (V8gk + V4gk − 1) ,

a3 = (−1)m (V12gk − V8gk + 2) .

In our next theorem 0, m1, m2, m3, m4, and m5 are not required to form an arithmetic
progression.

Theorem 10. Setting (m1,m2,m3,m4,m5) = (g, 2g, 4g, 5g, 6g) we have

a0 (S12(n)− S12(2)) = Uk(n−2) (a1ΩW (0, g) + a2ΩW (g, 2g)

+ a3ΩW (2g, 4g) + a4ΩW (4g, 5g)

+ a5ΩW (5g, 6g)−∆a1ΩW (0, g)

−∆a2ΩW (g, 2g)−∆a3ΩW (2g, 4g)

−∆a4ΩW (4g, 5g)−∆a5ΩW (5g, 6g)) .

We also managed to find a closed form for S12 if (m1,m2,m3,m4,m5) = (g, 2g, 3g, 4g, 5g),
but we refrain from giving this result here.

To indicate other types of results that are possible, define the sum

T12(k,m, n,m1,m2,m3,m4,m5) =
n−1
∑

i=1

P8 (U, V, k,m, i,m1,m2,m3,m4)

P12(W,W, k,m, i, 0,m1,m2,m3,m4,m5)
.

We managed to find a closed form for T12 under the assumption that the mi are certain
multiples of g. One such instance is for (m1,m2,m3,m4,m5)=(g, 2g, 3g, 4g, 5g). Another
instance is for (m1,m2,m3,m4,m5)=(2g, 3g, 4g, 5g, 7g). We have also discovered other results
of a similar nature that we do not present here.

7 Concluding comments

Earlier we stated that we chose to limit the scope of this paper to finite sums that have four,
or six, or eight, or ten, or twelve products in the denominator of the summand. We have,
however, discovered closed forms for finite sums (with the structure described in the intro-
duction) that have fourteen, or sixteen, or eighteen, or twenty products in the denominator
of the summand. The possibilities seem limitless.
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