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Abstract

We consider the problem of enumerating the different ways in which the classic
Miura map fold crease pattern can be folded flat. Specifically, we aim to count the
number M(n,m) of ways to assign mountains and valleys to the creases so that each
vertex in a m by n Miura map fold will be able to fold flat. Recurrence relations and
closed formulas are found for small n and arbitrary m. We also prove that the array
of numbers generated by M(n,m) is equivalent to the number of ways to properly
3-vertex-color a m× n grid graph with one vertex pre-colored.
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Figure 1: A 4× 4 Miura-ori with the standard MV assignment. Bold creases are mountains
and non-bold creases are valleys.

1 Introduction

In the mathematics of origami (paper folding), enumerating the number of ways in which
a crease pattern can fold up is often difficult. Even the seemingly simple postage-stamp
folding problem, where the crease pattern is a grid of orthogonal lines, is unsolved [7, 9, 11].
Furthermore, origami enumeration problems emerge naturally from the study of crumpling
polymer membranes, where asymptotic results are obtained for restricted families of crease
patterns [1]. Also, in the growing field of self-folding structures knowing the possible folded
configurations of a given crease pattern is essential for ensuring that a structure folds into
the desired shape.

To be more specific, there are different ways one can count origami foldings of a given
crease pattern. To use the postage-stamp folding problem as an example, we may try to
count the number of different ways we can assign the creases between vertices in the grid to
be mountains (convex) or valleys (concave) while being able to fold into a flat square without
the paper self-intersecting. This problem is unsolved [7]. Alternatively, we can also count
the number of ways the layers of paper can be re-arranged in the final, folded state. This
version of the question had been explored more; e.g., Koehler [9] wrote an early paper while
Jensen and Guttmann [5] improved algorithms for the one-dimensional stamp folding with
layers problem from the point of view of meanders. Lunnon (among others) found algorithms
for two-dimensional stamp folding with layers counted [11, 12]. In this paper we focus on
the former version of the counting foldings problem and ignore variable layer orders of the
origami model.

A general theory for enumerating mountain-valley foldings remains elusive except in the
single-vertex case [3]. Therefore finding families of crease patterns for which these problems
are tractable is of value. One family that has attracted considerable interest among origami
applications in engineering and nature is the Miura map fold, also known as the Miura-ori
[13, 14, 16, 19]. Its crease pattern is made of an m × n array of congruent parallelograms
in a herringbone pattern. Figure 1 shows this crease pattern; each vertex consists of two
congruent acute angles α and two congruent obtuse angles π − α, where 0 < α < π/2.
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We can determine how a crease pattern folds up from its mountain-valley (MV) assign-
ment. If we think of our crease pattern C as a connected, embedded graph in the plane, with
vertex set V (C) and edge set E(C), where each edge is a line segment of our crease pattern,
then a MV assignment is a function µ : E(C) → {−1, 1}, where −1 indicates a valley and
+1 a mountain crease. In order for the crease pattern to fold, the function µ must obey
certain rules, as will be described in Section 2.

The MV assignment shown in Figure 1 is the standard way in which the Miura-ori is folded
flat since it allows the paper to fold and unfold smoothly and rigidly [14]. Many other MV
assignments are possible, however, that guarantee each vertex will fold flat. Unfortunately,
as we will discuss in Section 5, not every Miura-ori MV assignment that locally folds flat will
globally fold flat.

In this paper we discuss enumerating the number of MV assignments for an m×n Miura-
ori crease pattern that locally fold flat. Specifically, we obtain closed formulas for small values
of m and prove a bijection between the general case and the problem of counting the number
of ways to 3-vertex color a m× n grid graph with one vertex pre-colored.

2 Local flat folding conditions

In order for a vertex in an origami crease pattern to fold flat (i.e., can be pressed in a book
without crumpling or adding new creases), certain geometric and combinatorial rules must
be followed [2].

Kawasaki’s theorem states that a vertex v in C will fold flat if and only if the alternating
sum of the angles around v, in order, equals zero. In the Miura-ori, we have that this
alternating sum about each vertex is

α− α + (π − α)− (π − α) = 0,

and therefore each vertex will fold flat.
Maekawa’s theorem states that if vertex v in C folds flat, then the difference between the

number of mountain and the number of valley creases adjacent to v must be two. Note that
this holds at every vertex of the example in Figure 1.

Maekawa’s theorem implies that the degree four vertices in the Miura-ori must have
three mountain creases and one valley, or vice versa, emanating from them. But not all
combinations of three mountains and one valley will work. Using the labeling shown in
Figure 2, we cannot have µ(e4) = V and µ(ei) = M for i = 1, 2, 3. Readers are encouraged
to try this for themselves and discover how the two acute angles α cannot contain the obtuse
angles if e1, e2, and e3 creases are all mountains. We refer to this phenomenon as the bird’s
foot forcing, since these Miura-ori vertices look like a bird’s foot. The same thing happens
if we reverse all the creases (so that µ(e4) = M and the others are V ), and so there are only
six different MV assignments that can be assigned to a Miura-ori vertex. These are shown
in Figure 2.
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Figure 2: A Miura-ori vertex and the six MV assignments it can have, following the bird’s
foot forcing.

We say that a MV assignment µ : E(C) → {±1} is locally flat foldable if µ matches one
of the MV assignments shown in Figure 2 for every vertex of C. In other words, each vertex
will fold flat on its own. We then let M(m,n) denote the number of different locally flat
foldable MV assignments µ that can be made for a m × n Miura-ori (with m rows and n
columns of parallelograms). Figure 2 shows that M(2, 2) = 6. In the next section we develop
some closed formulas for cases of M(m,n).

3 Recursions and formulas

First let us calculate M(2, n). This is easily done, since we know that there are six ways to
fold a single vertex, so let this vertex be one of our end vertices. Then the vertex adjacent
to it has one line already assigned as a mountain or valley, so this vertex is restricted to only
having three possible assignments. We then continue on to each adjacent vertex until we get
to the (n− 1)-th vertex. The recursion is M(2, n) = 3M(2, n− 1), M(2, 2) = 6. Therefore

M(2, n) = 2 · 3n−1.

Notice that this same argument works to show that M(m, 2) = 2 · 3m−1. In fact, M(m,n) =
M(n,m) always holds, but we will delay a proof of this until Section 5.

Looking at a larger case than m×2 presents new problems. For this, a Lemma will prove
useful. We say that a Miura-ori vertex points left if the “heel” of the bird’s foot points left,
as they do in Figure 2. Points right is defined similarly.

Lemma 1. Let C be the crease pattern for a 2 × n Miura-ori with all the vertices pointing
left, and let µ be a MV assignment for C. Let c be the left-most crease in C and let γ be a
simple closed curve around all the vertices in C (i.e., crossing all the non-internal creases).
Let Mγ (resp., Vγ) be the number of mountain (resp., valley) creases that γ crosses. Then
we have: If µ is locally flat-foldable then µ(c) = (Mγ − Vγ)/2.

As will be seen in the proof, what Lemma 1 is really saying is that Mγ − Vγ will always
equal ±2, just as in Maekawa’s theorem, and that the MV parity of the crease c will control

4



c

γ
c1

c2 c3 c4

c2n c2n−1 c2n−2

cn

cn+1

cn+2

dγ
′

γ

v

Figure 3: As per Lemma 1, a 2× 5 Miura-ori with Mγ = 6, Vγ = 4, and µ(c) = 1 (left) and
a 2× n Miura-ori as used in the proof (right).
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Figure 4: The last row of vertices in an m× 3 Miura-ori crease pattern.

the plus/minus parity of Mγ − Vγ . See Figure 3 for an example. (Note that these properties
are not typically present in multiple-vertex flat origami crease patterns. See [4, Activity 23]
for examples.)

Proof. We proceed by induction on n. When n = 2 we have only one vertex. If the vertex
folds flat, then Maekawa’s theorem gives us that Mγ − Vγ = ±2 and consulting the six
possible MV assignments in Figure 2 confirms the result.

Now let C be a 2×n Miura-ori with MV assignment µ as in the statement of the lemma
and label the external creases c1, . . . , c2n going clockwise around the crease pattern, with c1
the left-most crease. Then the right-most crease is cn+1. Let d be the remaining unlabeled
crease of the right-most vertex v, so that v has creases d, cn, cn+1 and cn+2 going clockwise,
as seen in Figure 3.

Suppose that µ is locally flat-foldable in C. Then µ is also locally flat-foldable on the
crease pattern C − v, which is a 2× (n− 1) Miura-ori. Using the induction hypotheses, we
may assume without loss of generality that Mγ′ − Vγ′ = 2 for γ′ surrounding this 2× (n− 1)
Miura-ori, so that c1 is a M. (The Mγ′ − Vγ′ = −2 case is attained by simply switching all
the Ms to Vs and vice-versa.) We now look at the crease d.

If d is a M then cn, cn+1 and cn+2 must have 2 Ms and 1 V in order for v to be flat
foldable. So if we extend γ′ to γ which includes v then we still have Mγ − Vγ = 2 since γ no
longer crosses d but now crosses cn, cn+1, and cn+2 (we subtract an M add 2 Ms and a V).
The case where d is a V is similar, and in both cases, we conclude that µ(c1) = (Mγ −Vγ)/2.
This completes the proof of the lemma.

We will now develop recursive equations for M(m, 3) by looking at cases. For an m× 3
crease pattern C, denote the creases adjacent to the bottom-most row of two vertices as in
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Figure 4. Then let

Am = the number of m× 3 MV assignments with µ(e4) = µ(e5), and

Bm = the number of m× 3 MV assignments with µ(e4) 6= µ(e5).

We start with the initial conditions A1 = 2 and B1 = 2, which makes sense if we think
of the 1 × 3 case as having two parallel creases and zero vertices. Then consider Am where
we have e4 and e5 are both Ms and e6 is also a M. Then drawing a curve γ as in Figure 4,
Lemma 1 tells us that Mγ−Vγ = 2 and thus exactly one of e1, e2, e3 is a M. All three of these
cases give us flat-foldable vertices for the bottom row. Two of them have µ(e1) 6= µ(e2) and
thus have Bm−1 ways to assign Ms and Vs to the remaining creases, while one case has e1
and e2 being both V, and so has Am−1 ways to finish the rest of the crease pattern.

However, if e6 is a V, then we have Mγ − Vγ = −2 and then all three of e1, e2, e3 are
valleys. This gives us Am−1 ways to assign Ms and Vs to the remaining creases. Furthermore,
the same division of cases would happen if we had chosen e4 and e5 to both be Vs. Thus,

Am = 2Am−1 + 2Bm−1.

For Bm, let e4 be a V and e5 be a M. Then if e6 is a M we have Mγ − Vγ = 2, implying
that exactly one of e1, e2, e3 is a V. All of these cases are locally flat-foldable for these two
vertices, giving is two Bm−1 cases and one Am−1 case. If e6 is a valley, then, interestingly,
e1 is forced to be a V by the bird’s foot forcing. Since Mγ − Vγ = −2, we have that exactly
one of e2 and e3 is a M, giving us one Bm−1 and one Am−1 case. Thus

Bm = 2Am−1 + 3Bm−1.

Then M(m, 3) = Am +Bm. Using the standard techniques of solving a system of first-order
linear recurrences (e.g., [18, Sec. 7.5]), we obtain the generating function (1−x)/(1−5x+2x2)
for M(m, 3). The zeros of the denominator are α± = (5±

√
17)/4, giving us the closed form

M(m, 3) = c+(1/α+)
m + c−(1/α−)

m

where c± = (17± 3
√
17)/34.

The m× 4 and m× 5 cases are handled similarly, but with many more cases and details
to check, which we skip here for brevity. For m× 4 we let the bottom-most creases be e1 e2,
and e3 (playing the same role as e4 and e5 in the previous case) and let

Am = the number of MV assignments with µ(e1) = µ(e2) = µ(e3),

Bm = the number of MV assignments with µ(e1) = µ(e2) 6= µ(e3),

Cm = the number of MV assignments with µ(e1) = µ(e3) 6= µ(e2), and

Dm = the number of MV assignments with µe1 6= µ(e2) = µ(e3).

Examining these cases carefully results in the following first-order recurrences:
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Am = 2Am−1 + Bm−1 + Cm−1 +Dm−1

Bm = Am−1 + 2Bm−1 + 2Cm−1 + 2Dm−1

Cm = Am−1 + 3Bm−1 + 3Cm−1 +Dm−1

Dm = Am−1 + 2Bm−1 + 2Cm−1 + 2Dm−1, and A1 = B1 = C1 = D1 = 2.
Once again, we obtain a generating function for M(m, 4) = Am + Bm + Cm +Dm:

4− 12x+ 6x2

3− 27x+ 45x2 − 18x3
.

The denominator of this has zeros α1 ≈ 1.65406, α2 ≈ 0.702511, and α3 ≈ 0.143432, but
their expression using radicals is quite messy. The approximate formula is

M(m, 4) = c1(1/α1)
m + c2(1/α2)

m + c3(1/α3)
m

where c1 ≈ 0.0132428, c2 ≈ 0.21837, and c3 ≈ 1.10172.
The recurrence equations obtained for the m× 5 case using these same methods are:
Am = 2Am−1 + Bm−1 + Cm−1 +Dm−1 + Em−1

Bm = Am−1 + 2Bm−1 + Cm−1 +Dm−1 + Em−1 + Fm−1 +Gm−1 +Hm−1

Cm = Am−1 + Bm−1 + 2Cm−1 +Dm−1 + Em−1 + Fm−1 + 2Gm−1 + 2Hm−1

Dm = Am−1 + Bm−1 + Cm−1 + 2Dm−1 + Em−1 + Fm−1 + 2Gm−1 + 2Hm−1

Em = Am−1 + Bm−1 + Cm−1 +Dm−1 + 2Em−1 + Fm−1 +Gm−1 +Hm−1

Fm = Bm−1 + Cm−1 +Dm−1 + Em−1 + 2Fm−1 + 2Gm−1 + 2Hm−1

Gm = Bm−1 + 2Cm−1 + 2Dm−1 + Em−1 + 2Fm−1 + 2Gm−1 + 2Hm−1

Hm = Bm−1 + 2Cm−1 + 2Dm−1 + Em−1 + 2Fm−1 + 2Gm−1 + 3Hm−1.
Here the initial m = 1 terms are all 2 and M(m, 5) = Am +Bm + · · ·+Hm. Once again

we obtain a generating function:

2− 16x+ 36x2 − 30x3 + 8x4

1− 16x+ 65x2 − 92x3 + 48x4 − 8x5
.

An approximate closed formula can be created from this, although note that the denominator
is an irreducible quintic. A closed formula for this system evaded the authors.

4 Coloring bijection

The formulas and recurrences generated thus far can be used to produce the following table
of data for M(m,n):

n\m 2 3 4 5 6 7 8
2 6 18 54 162 486 1458 4374
3 18 82 374 1706 7782 35498 161926
4 54 374 2604 18150 126534 882180 6150510
5 162 1706 18150 193662 2068146 22091514 235994086
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Figure 5: A 3× 5 grid graph with proper 3-vertex coloring and arrows showing the order of
constructing the coloring sequence sk.

This table of numbers fits exactly the sequence A078099 in the On-Line Encyclopedia
of Integer Sequences [20], which encodes T (m,n) = the number of ways of 3-coloring the
vertices of a grid graph (with m rows and n columns of vertices) with one vertex pre-colored.
This cannot be a mere coincidence.

Our aim in this section is to construct a bijection between Miura-ori locally flat-foldable
MV assignments and such grid graph colorings, i.e., that M(m,n) = T (m,n).

Define an m × n grid graph to be a planar grid graph with m rows and n columns of
vertices. We will establish a bijection between the number of proper 3-vertex colorings of
m×n grid graphs with one vertex pre-colored and the number of locally flat-foldable m×n
Miura-ori crease patterns by defining a finite sequence sk for both of them.

Given a properly 3-vertex colored m× n grid graph, let the colors be the elements of Z3

and let the first element of our sequence, s0 be the color of the upper-left vertex, which we
assume to be zero (our pre-colored vertex). Then proceed to the right along the first row of
vertices, assigning the colors to the sequence terms s1 thru sn. Then let sn+1 be the color of
the right-most vertex in the second row of vertices (directly under the vertex with sn’s color)
and proceed to the left. Continue in this way, snaking back-and-forth across the rows of
the grid graph to generate the grid graph coloring sequence sk. For example, the grid graph
coloring shown in Figure 5 is

sk : 0, 1, 0, 1, 2, 0, 2, 1, 0, 2, 0, 1, 2, 0, 1

Let v(si) denote the vertex whose color was assigned to si. Note that v(si) is adjacent to
v(si+1) for i = 1 to mn − 1, so therefore si 6= si+1. Also, vertices directly above and below
each other must have different colors. This can be captured in the following relation:

v(si) is adjacent to v(sj) if j − i = 2n− 1− (2i mod 2n)

where j > i.
We now describe a way to generate a sequence sk from an m × n locally flat-foldable

Miura-ori crease pattern with MV assignment µ : C → {−1, 1}. We will call such a sequence
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Figure 6: A 3× 5 Miura-ori crease pattern with MV assignment generates a sequence. Bold
creases are mountains and non-bold creases are valleys. This crease pattern generates the
Miura-ori sequence sk : 0, 1, 0, 1, 2, 0, 2, 1, 0, 2, 0, 1, 2, 0, 1.

a Miura-ori sequence. First orient our crease pattern so that the top row of vertices all
point left. Then imagine an m × n grid graph overlaid on our crease pattern so that every
parallelogram of our crease pattern has a vertex of the grid graph inside of it, as in a planar
dual graph. We then use the same ordering of the vertices as if we were making a coloring
sequence for the grid graph. The vertex v(s0) will be in the upper-left face of the crease
pattern, and we set s0 = 0. Let us denote ci to be the crease between vertices v(si−1) and
v(si). We then assign the remaining terms of the sequence recursively as follows:

si ≡ si−1 + µ(ci) (mod 3).

See Figure 6 for an example of creating a Miura-ori sequence.
In the following Lemma we prove that our recursion rule for generating the Miura-ori

sequence holds for horizontal creases as well.

Lemma 2. Given a Miura-ori sequence sk generated by an m× n Miura-ori crease pattern,
consider non-negative integers i, j with j− i = 2n− 1− (2i mod 2n) and let di be the crease
between v(si) and v(sj). Then sj ≡ si + µ(di) (mod 3).

Proof. If j − i = 2n − 1 − (2i mod 2n) then j > i and v(si) is directly above v(sj) in the
grid graph that is superimposed on our crease pattern. Telescoping the recursion for sj, we
obtain

sj ≡ si +

j
∑

k=i+1

µ(ck) (mod 3).

Therefore we want to show that µ(di) =
∑j

k=i+1
µ(ck). For this, we apply Lemma 1. Let γ

be a simple closed curve through the creases, in order, ci+1, . . . , cj, di. Then, by Lemma 1
we have

2µ(di) = Mγ − Vγ = µ(di) +

j
∑

k=i+1

µ(ck),
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cj+1 cj
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Figure 7: Two Miura-ori vertices that point left with the creases labeled and superimposed
grid graph section.

where the second equality is obtained by simply adding all the values of µ along γ. Thus
µ(di) =

∑j
k=i+1

µ(ck) and we are done.

Lemma 2 shows that every m × n Miura-ori sequence also gives an m × n grid graph
coloring sequence with s0 = 0, and this correspondence is injective; a given Miura-ori crease
pattern with MV assignment will generate a grid graph sequence with a well-defined, proper
coloring.

Conversely, given a proper 3-vertex coloring of an m × n grid graph whose upper-left
vertex is colored 0 and its coloring sequence sk (where s0 = 0), we can overlay the grid onto
an m × n Miura-ori crease pattern (with the top row vertices pointing left) and generate a
MV assignment from the recurrence si ≡ si−1 + µ(ci) (mod 3). That is,

µ(ci) =

{

1, if si − si−1 ≡ 1 (mod 3);

−1, if si − si−1 ≡ 2 (mod 3).

Note, however, that this does not define µ for all the creases in the Miura-ori, but only creases
ci between vertices v(si−1) and v(si). Nonetheless, the MV assignment µ defined thus far
will generate the same sequence sk that the grid graph coloring generated. Therefore we can
use the result of Lemma 2 to assign µ for the remaining creases as follows: If crease di is
the crease directly below vertex v(si) and directly above v(sj) (so that v(si) and v(sj) are
adjacent), then let

µ(di) =

{

1, if sj − si ≡ 1 (mod 3);

−1, if sj − si ≡ 2 (mod 3).

Lemma 3. The m× n Miura-ori MV assignment µ created by the above procedure is locally
flat-foldable.

Proof. All that needs to be shown is that at each bird’s foot vertex we have that the “heel”
crease has the same MV parity as the majority of the creases around the vertex.

Take an arbitrary vertex in the crease pattern, and suppose it points left. Label the
creases and consider the section of the superimposed grid graph around the vertex, as in
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Figure 7. From the construction of µ, we have

si ≡ si−1 + µ(ci) (mod 3)

sj ≡ si + µ(di) (mod 3)

sj+1 ≡ sj + µ(cj+1) (mod 3)

sj+1 ≡ si−1 + µ(di−1) (mod 3)

Substituting the first three equations into one another, we obtain sj+1 ≡ si−1+µ(ci)+µ(di)+
µ(cj+1) (mod 3), and since each of the µ values are only ±1, we have

µ(di−1) = µ(ci) + µ(di) + µ(cj+1).

Therefore, crease di−1, which is the bird’s foot heel, must have the same MV parity as the
majority of the creases at this vertex. The case where the vertex points right is similar.

Therefore we have that the m × n Miura-ori MV assignment generated by a coloring
sequence sk is locally flat foldable, and this generated MV assignment is well-defined. That
is, this correspondence between proper 3-vertex colorings of an m× n grid graph where the
upper-left vertex is colored 0 and m × n Miura-ori locally flat-foldable MV assignments is
injective.

We conclude that the correspondence between grid graph colorings with one vertex pre-
colored and Miura-ori locally flat-foldable crease pattern MV assignments is a bijection.
Therefore, if we let T (m,n) = the number of proper 3-vertex colorings of an m × n grid
graph (m rows and n columns of squares) with the upper-left vertex pre-colored, then we
have proven the following:

Theorem 4. T (m,n) = M(m,n) for all m,n ≥ 1.

Unfortunately, there are no known formulas for 3-coloring grid graphs, e.g. the problem
of finding the chromatic polynomial of an n × m grid graph is unsolved [6, Problem 14.7].
However, in the OEIS listing for A078099 a recursive transfer matrix for T (m,n) is given.
Specifically, define matrices M(1) = [1],

M(m+ 1) =

[

M(m) M(m)T

0 M(m)

]

,

and W (m) = M(m)+M(m)T (where AT denotes the transpose of A). Then T (m,n) equals
the sum of the entries of W (m)n−1. One way to see this is to first note that

W (m+ 1) =

[

W (m) M(m)T

M(m) W (m)

]

. (1)

Then think of the rows and columns ofW (m) as representing the different equivalence classes
Ci of ways to vertex-color an m × 1 grid graph with colors in Z3, where two such colorings

11
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~x, ~y ∈ Z
m
3 are equivalent if either ~x + (1)m or ~x + (2)m is equivalent to ~y (mod 3) (where

(i)m denotes the m-dimensional vector with i in every coordinate). Then each equivalence
class Ci contains three vectors from Z

m
3 and W (m) is the adjacency matrix for the graph

whose vertices are the classes Ci where we connect Ci and Cj by an edge for every pair of
vectors ~x ∈ Ci and ~y ∈ Cj that are different in every coordinate. Then finding T (m,n) is
a matter of counting the walks of length n − 1 on this graph, i.e., summing the entries of
W (m)n−1. Examining the entries of the classes Ci reveals a recursive structure in m that
explains equation (1).

5 Further observations and questions

One immediate consequence of Theorem 4 is the following:

Corollary 5. M(m,n) = M(n,m) for all m,n ≥ 1.

This simply follows from the symmetry of the grid graph colorings, giving us T (n,m) =
T (m,n). Corollary 5 is surprising because the Miura-ori crease pattern itself does not follow
this symmetry; an m× n Miura-ori does not look the same as an n×m Miura-ori.

We are fortunate that statistical mechanics results exist for enumerating our m× n grid
graph coloring problem for very large m and n. The problem is the same as counting the
number of Eulerian orientations on an m × n grid graph on a torus, which is exactly the
antiferroelectric model for two-dimensional ice lattices, called the square ice model [10, 15].
In 1967, Lieb used a transfer matrix method to show that a grid graph with N vertices
(where N is very large, say 1023) will have

(4/3)3N/2

ways to be properly vertex colored using three colors with one vertex pre-colored. Therefore
this gives the number of locally flat-foldable MV assignments for a Miura-ori crease pattern
with N parallelograms, where N is very large.

The transfer matrix in equation (1) can be used to find more generating functions for
M(m,n) than were shown in Section 3. That is, following Stanley [17, Sec. 14.7], the
generating function Gm(x) for M(m,n) for a fixed m will be

Gm(x) = x
∑

i,j

(−1)i+jdet(I − xW (m) : j, i)

det(I − xW (m))
,

where (A : j, i) denotes the matrix A with the j-th row and i-th column removed, and
the sum ranges over all rows and columns of W (m), which is a 2m−1 × 2m−1 matrix. Thus
calculating Gm(x) is computationally expensive. We used Mathematica to find Gm(x) up
to m = 7 and record the approximate constant and exponential terms (that do not tend to
zero) of the generating function sum in Table 1.
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constant term exponential term
m = 2 2/3 3
m = 3 0.8638 4.56155
m = 4 0.21837 1.42347

1.10172 6.97196
m = 5 0.0308918 1.32083

0.323552 3.11838
1.39119 10.6829

m = 6 0.0405757 1.20258
0.359996 1.3816
0.00056118 1.68048
0.0523544 2.68963
0.454567 5.94907
1.74463 16.392

constant term exponential term
m = 7 0.0409272 1.42028

0.00119768 1.75517
0.0751216 2.48635
0.00137438 3.12982
0.526551 3.47859
0.0792136 5.14803
0.617056 10.6046
2.17679 25.1741

Table 1: The approximate terms of Gm(x) =
∑

(constant)(exponent)n, the generating func-
tion for M(m,n), up to m = 7.

As mentioned previously, not all of the locally flat-foldable Miura-ori MV assignments are
globally flat-foldable. An example is shown in Figure 8. It is simply one of the non-foldable
counterexamples to the postage-stamp folding problem reported by Justin [7] modified to be
a Miura-ori. To see why it is impossible to fold, note that the vertices labeled v1 and v2 are
Miura-ori vertices with the standard MV assignment, as we saw in Figure 1. On one hand,
the mountain creases along the line l1 will force the parallelogram faces labeled A and B to
be folded inside the Miura-ori vertex v1. On the other hand, the mountain creases along the
line l2 will force the faces A and B to be folded inside the Miura-ori vertex v2. A and B
cannot be folded into both of these two vertices, and thus this MV assignment is impossible
to globally fold flat, even though each vertex is flat-foldable.

Such counterexamples are the result of layers of the paper being forced in incompatible
orders by the MV assignment across multiple vertices. As in the postage-stamp folding
problem, keeping track of such impossible layer orderings is notoriously difficult. One would
need to use completely different (and as yet, undiscovered) techniques to modify ourM(m,n)
formulas to guarantee global as well as local flat-foldability.

Nonetheless, the fact that enumerating locally flat-foldable MV assignments is be equiv-
alent to a graph coloring problem seems natural. Perhaps the methods presented in this
paper can be generalized to other families or even to arbitrary flat-foldable crease patterns.
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