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Abstract

We show that the self-shuffle of Thue-Morse given by Charlier et al. is optimal/canonical
in the sense that among self-shuffles of Thue-Morse, it has the lexicographically least
directive sequence starting with 1.

1 Introduction

Henshall et al. [3] initiated the topic of self-shuffles of finite words. They considered, in
particular, closure properties of languages under self-shuffles, proving several results as well
as posing open problems.

No non-empty finite word can be equal to one of its self-shuffles, but for infinite words,
the question of whether a word can be written as a self-shuffle is interesting. Charlier et
al. [1] exhibited a self-shuffle of the Thue-Morse word. The Thue-Morse word is the fixed
point of a morphism, so that we can immediately get other shuffles; the image of any self-
shuffle under the morphism gives a different self-shuffle. Endrullis and Hendriks [2] proved
that there are in fact other self-shuffles; in particular, they showed that a shuffle distinct
from that of Charlier et al. is optimal — it switches back and forth between shuffled copies
as quickly as possible. The Thue-Morse word thus allows at least two distinct families of
self-shuffles.

1The author is supported by an NSERC Discovery grant.
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In this note, we show that the self-shuffle of Thue-Morse given by Charlier et al. is
optimal/canonical in a different sense: among self-shuffles of Thue-Morse, it has the lexico-
graphically least directive sequence starting with 1.

2 Notation

We follow Lothaire [4] as a standard notational reference for combinatorics on words. Thus |x|
is the length of word x, |x|0 the number of 0’s in x, etc. If x is a non-empty word, let x′ denote
the word obtained by deleting the last letter of x. Thus, (12341234)′ = 1234123, for example.
Let u, v, w be finite words, and let d be a word over {0, 1} such that |w| = |d| = |u| + |v|.
We define recursively what it means for w to be the shuffle of u and v directed by d, written
w = u⊕d v:

1. If d = ǫ, then w = u⊕d v

2. If the last letter of d is 0 then w = u⊕d v if

(a) w′ = u′ ⊕d′ v

(b) The last letter of w is the same as the last letter of u

3. If the last letter of d is 1 then w = u⊕d v if

(a) w′ = u⊕d′ v
′

(b) The last letter of w is the same as the last letter of v

In other words, each letter of w is read from either u or v, and d determines whether we read
it from u (0) or from v (1). We call d the directive word of the shuffle.

By ω-word we mean a 1-sided infinite word. For ω-words u, v, w, d, we extend the
definition above and write w = u⊕d v if there are arbitrarily long prefixes û, v̂, ŵ, d̂ of u,
v, w, d, respectively, such that û⊕d̂ v̂ = ŵ.

Remark 1. Suppose that d0 ∈ {0, 1}∗ is a finite prefix of d and write d = d0d1.

• Let w0 be the prefix of w of length |d0| and write w = w0w1.

• Let u0 be the prefix of u of length |d0|0 and write u = u0u1.

• Let v0 be the prefix of v of length |d0|1 and write v = v0v1.

Then
w = u⊕d v ⇔ (w0 = u0 ⊕d0 v0 and w1 = u1 ⊕d1

v1)
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We say that an ω-word w allows a non-trivial self-shuffle if we can write w = w ⊕d w

for some non-constant ω-word d. Evidently, for any ω-word w, w = w ⊕0ω w = w ⊕1ω w;
we call these the trivial self-shuffles of w. Write x � y (resp., x ≺ y) to say that word x
is no greater than (resp., less than) y in the natural lexicographic order where 0 precedes
1. Because we have the trivial self-shuffles, the lexicographically least ω-word d such that
w = w ⊕d w is just d = 0ω. Seeking the lexicographically least directive sequence starting
with 1 is a reasonable attempt to force non-trivial shuffling. Thus, if ω-word w allows a
non-trivial self-shuffle, a natural question is

What is the lexicographically least ω-word d with prefix 1 such that w = w⊕dw?

3 Lexicographically least shuffles

In this section, u, v, w will be arbitrary but fixed effectively given ω-words.

Lemma 2. Let a word d0 ∈ {0, 1}∗ be specified. Let

D = {d ∈ {0, 1}ω : w = u⊕d v}.

If D ∩ d0{0, 1}
ω is non-empty, then it has a lexicographically least element.

Proof. For a positive integer n, suppose that dn−1 has been defined and D ∩ dn−1{0, 1}
ω is

non-empty. It follows that at least one of D ∩ dn−10{0, 1}
ω and D ∩ dn−11{0, 1}

ω is non-
empty. We can thus define an infinite sequence of words {dn}

∞
n=0, each dn an extension of

dn−1, by

dn =

{

dn−10, if D ∩ dn−10{0, 1}
ω is non-empty;

dn−11, otherwise.

Let d̄ = limn→∞ dn. We claim that d̄ is the lexicographically least element of D ∩ d0{0, 1}
ω.

Each finite prefix dn of d̄ has been chosen to be the prefix of a word of D, so that w = u⊕d̄v.
On the other hand, if for some d̂ ∈ D ∩ d0{0, 1}

ω, d̂ ≺ d̄, consider the shortest prefix p of d̂
which is not a prefix of d̄. For some positive n, p = dn−10, while dn = dn−11. However, this
implies that D ∩ dn−10{0, 1}

ω is empty, and d̂ /∈ D ∩ d0{0, 1}
ω. This is a contradiction.

Remark 3. Suppose that
w = u⊕d v

has solutions d ∈ 1{0, 1}∗. For a fixed prefix w0 of w, we can effectively determine the
lexicographically least element d0 of 1{0, 1}∗ such that there exist prefixes u0 and v0 of u
and v, respectively, such that

w0 = u0 ⊕d0 v0. (1)

There are only 2|w0|−1 candidates for d0. We can check for each candidate d0, and the
corresponding prefixes u0, v0 of u, v, with lengths |d0|0, |d0|1, whether (1) is satisfied. Note
that the lengths of prefixes u0, v0 are always at most |w0|.
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Lemma 4. Suppose that d is the lexicographically least element of 1{0, 1}ω such that

w = u⊕d v.

Let w0 be a fixed non-empty prefix of w. Let d0 be the lexicographically least element of
1{0, 1}∗ such that there exist prefixes u0 and v0 of u and v, respectively, such that

w0 = u0 ⊕d0 v0.

Suppose d0 ∈ {0, 1}∗1; write w = w′
0W, u = u0U, v = v′0V (so that w′

0 = u0 ⊕d′
0
v′0).

Suppose that there exists an element δ ∈ 1{0, 1}ω such that

W = U⊕δ V.

Then

d = d′0∆,

where ∆ is the lexicographically least such δ. In particular, d0 is a prefix of d.

Proof. Since w′
0 = u0 ⊕d′

0
v′0 and W = U⊕δ V, by Remark 1, we have

w = u⊕d′
0
∆ v.

Let d be the length |w0| prefix of d. By the minimality of d, d � d′01.
Since

w = u⊕d v,

it follows from Remark 1 that
w0 = û0 ⊕d v̂0,

where û0 is the length |d|0 prefix of u, and v̂0 is the length |d|1 prefix of v. By the lexicographic
minimality of d0, d

′
01 = d0 � d, so that d0 = d.

Therefore, write d = d′0∆̂, where ∆̂ ∈ 1{0, 1}ω. By Remark 1,

W = U⊕∆̂ V.

By the minimality of ∆, ∆ � ∆̂. However, by the minimality of d, d′0∆̂ = d � d′0∆. Thus
∆ = ∆̂, so that d = d′0∆.

Corollary 5. Let d be the lexicographically least element of 1{0, 1}ω such that

w = u⊕d v.

Suppose that for each positive integer i there are finite words Wi, Ui and Vi, and ω-words
wi, ui and vi, where
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• w1 = w,u1 = u and v1 = v,

• Wi, Ui, Vi are prefixes of length 2 or more of wi,ui,vi, respectively,

• wi+1 = (W ′
i )

−1wi,ui+1 = (U ′
i)

−1ui,vi+1 = (V ′
i )

−1vi.

so that, for each i,

wi =
∞
∏

j=i

W ′
j

ui =
∞
∏

j=i

U ′
j

vi =
∞
∏

j=i

V ′
j .

For each i, let Di be the lexicographically least word starting with 1 such that

Wi = ûi ⊕Di
v̂i

for some prefixes ûi of ui and v̂i of vi. Suppose that, for each i, Di ends in a 1, ûi = Ui and
v̂i = Vi. Then

d =
∞
∏

i=1

D′
i.

Proof. This follows from the previous lemma by induction.

4 The Thue-Morse word

Consider the binary version of the Thue-Morse word (A001285), namely, t = µω(0) where
µ(0) = 01, µ(1) = 10. Thus

t = 0110100110010110 · · ·

The length 2 factors of the Thue-Morse word are 00, 01, 10, 11. If t[j..j + 1] = ab, a,
b ∈ {0, 1}, then

t[8j..8j + 15] = µ3(ab)

and
t[16j..16j + 31] = µ4(ab).

It follows that

〈t[8j + 1..8j + 8], t[8j + 5..8j + 13], t[16j + 6..16j + 22]〉

takes on one of 4 possible values:
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If t[j..j + 1] = 00, then

t[8j..8j + 15] = 0110100101101001

t[16j16j + 31] = 01101001100101100110100110010110

so that
〈t[8j + 1..8j + 8], t[8j + 5..8j + 13], t[16j + 6..16j + 22]〉

= 〈11010010, 001011010, 01100101100110100〉.

Arguing similarly in the other three cases, we find that

〈t[8j + 1..8j + 8], t[8j + 5..8j + 13], t[16j + 6..16j + 22]〉 ∈ 〈Ui, Vi,Wi〉

where the values of the Ui, Vi, Wi are as follows:

i Ui Vi Wi

1 11010010 001011010 01100101100110100
2 11010011 001100101 01100101101001011
3 00101100 110011010 10011010010110100
4 00101101 110100101 10011010011001011

For each non-negative integer j, let ij ∈ {1, 2, 3, 4} be the unique value such that

t[8j + 1..8j + 8] = Uij .

Let D1 = 10001110100011101, D2 = 10001001100111101.
One checks that

W1 = U1 ⊕D1
V1

W2 = U2 ⊕D2
V2

W3 = U3 ⊕D2
V3

W4 = U4 ⊕D1
V4.

For a given value of j, consider the ω-words U = t[8j + 1..∞], V = t[8j + 5..∞],
W = t[16j + 6..∞]. Let the length 17 prefix of W be W0. Thus W0 ∈ {W1,W2,W3,W4}.
As per Remark 3, one can determine the lexicographically least D0 with prefix 1 such that
W0 = U0 ⊕D0

V0 for some prefixes U0 of U and V0 of V ; we need only consider prefixes of
U and V of lengths at most 17. It is therefore a finite computation to show that whenever
W0 ∈ {W1,W4}, then D0 = D1 and when W0 ∈ {W2,W3}, then D0 = D2. For convenience,
define δ : {1, 2, 3, 4} → {1, 2} by δ(1) = δ(4) = 1, δ(2) = δ(3) = 2.

Let T0 = 0110100, the length 7 prefix of the Thue-Morse word t. A short computation
(feasible by hand) shows that the lexicographically least word ∆0 with prefix 1 such that
T0 = T1 ⊕∆0

T2 for prefixes T1, T2 of t is ∆0 = 1111101.
We remark that each of D1, D2 and ∆0 ends in a 1.
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Theorem 6. The lexicographically least word d with prefix 1 such that t = t⊕d t is

d = 111110
∞
∏

j=0

(Dδ(ij))
′.

Proof. Note that

t = 011010
∞
∏

j=0

W ′
ij
= 0

∞
∏

j=0

U ′
ij
= 01101

∞
∏

j=0

V ′
ij
.

The result thus follows from Corollary 5.

Remark 7. One verifies that this is the shuffle given by Charlier et al. in [1].
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