

Journal of Integer Sequences, Vol. 17 (2014), Article 14.10.2

The Least Self-Shuffle of the Thue-Morse Sequence

James D. Currie¹ Department of Mathematics & Statistics University of Winnipeg Winnipeg, MB R3B 2E9 Canada j.currie@uwinnipeg.ca

Abstract

We show that the self-shuffle of Thue-Morse given by Charlier et al. is optimal/canonical in the sense that among self-shuffles of Thue-Morse, it has the lexicographically least directive sequence starting with 1.

1 Introduction

Henshall et al. [3] initiated the topic of self-shuffles of finite words. They considered, in particular, closure properties of languages under self-shuffles, proving several results as well as posing open problems.

No non-empty finite word can be equal to one of its self-shuffles, but for infinite words, the question of whether a word can be written as a self-shuffle is interesting. Charlier et al. [1] exhibited a self-shuffle of the Thue-Morse word. The Thue-Morse word is the fixed point of a morphism, so that we can immediately get other shuffles; the image of any selfshuffle under the morphism gives a different self-shuffle. Endrullis and Hendriks [2] proved that there are in fact other self-shuffles; in particular, they showed that a shuffle distinct from that of Charlier et al. is *optimal* — it switches back and forth between shuffled copies as quickly as possible. The Thue-Morse word thus allows at least two distinct families of self-shuffles.

¹The author is supported by an NSERC Discovery grant.

In this note, we show that the self-shuffle of Thue-Morse given by Charlier et al. is optimal/canonical in a different sense: among self-shuffles of Thue-Morse, it has the lexico-graphically least directive sequence starting with 1.

2 Notation

We follow Lothaire [4] as a standard notational reference for combinatorics on words. Thus |x| is the length of word x, $|x|_0$ the number of 0's in x, etc. If x is a non-empty word, let x' denote the word obtained by deleting the last letter of x. Thus, (12341234)' = 1234123, for example. Let u, v, w be finite words, and let d be a word over $\{0, 1\}$ such that |w| = |d| = |u| + |v|. We define recursively what it means for w to be the shuffle of u and v directed by d, written $w = u \oplus_d v$:

- 1. If $d = \epsilon$, then $w = u \oplus_d v$
- 2. If the last letter of d is 0 then $w = u \oplus_d v$ if
 - (a) $w' = u' \oplus_{d'} v$
 - (b) The last letter of w is the same as the last letter of u
- 3. If the last letter of d is 1 then $w = u \oplus_d v$ if
 - (a) $w' = u \oplus_{d'} v'$
 - (b) The last letter of w is the same as the last letter of v

In other words, each letter of w is read from either u or v, and d determines whether we read it from u (0) or from v (1). We call d the *directive word* of the shuffle.

By ω -word we mean a 1-sided infinite word. For ω -words \mathbf{u} , \mathbf{v} , \mathbf{w} , \mathbf{d} , we extend the definition above and write $\mathbf{w} = \mathbf{u} \oplus_{\mathbf{d}} \mathbf{v}$ if there are arbitrarily long prefixes \hat{u} , \hat{v} , \hat{w} , \hat{d} of \mathbf{u} , \mathbf{v} , \mathbf{w} , \mathbf{d} , respectively, such that $\hat{u} \oplus_{\hat{d}} \hat{v} = \hat{w}$.

Remark 1. Suppose that $d_0 \in \{0,1\}^*$ is a finite prefix of **d** and write $\mathbf{d} = d_0 \mathbf{d}_1$.

- Let w_0 be the prefix of **w** of length $|d_0|$ and write $\mathbf{w} = w_0 \mathbf{w_1}$.
- Let u_0 be the prefix of **u** of length $|d_0|_0$ and write $\mathbf{u} = u_0 \mathbf{u}_1$.
- Let v_0 be the prefix of **v** of length $|d_0|_1$ and write $\mathbf{v} = v_0 \mathbf{v_1}$.

Then

$$\mathbf{w} = \mathbf{u} \oplus_{\mathbf{d}} \mathbf{v} \Leftrightarrow (w_0 = u_0 \oplus_{d_0} v_0 \text{ and } \mathbf{w_1} = \mathbf{u_1} \oplus_{\mathbf{d_1}} \mathbf{v_1})$$

We say that an ω -word \mathbf{w} allows a non-trivial self-shuffle if we can write $\mathbf{w} = \mathbf{w} \oplus_{\mathbf{d}} \mathbf{w}$ for some non-constant ω -word \mathbf{d} . Evidently, for any ω -word \mathbf{w} , $\mathbf{w} = \mathbf{w} \oplus_{0^{\omega}} \mathbf{w} = \mathbf{w} \oplus_{1^{\omega}} \mathbf{w}$; we call these the trivial self-shuffles of \mathbf{w} . Write $x \leq y$ (resp., $x \prec y$) to say that word xis no greater than (resp., less than) y in the natural lexicographic order where 0 precedes 1. Because we have the trivial self-shuffles, the lexicographically least ω -word \mathbf{d} such that $\mathbf{w} = \mathbf{w} \oplus_{\mathbf{d}} \mathbf{w}$ is just $\mathbf{d} = 0^{\omega}$. Seeking the lexicographically least directive sequence starting with 1 is a reasonable attempt to force non-trivial shuffling. Thus, if ω -word \mathbf{w} allows a non-trivial self-shuffle, a natural question is

What is the lexicographically least ω -word **d** with prefix 1 such that $\mathbf{w} = \mathbf{w} \oplus_{\mathbf{d}} \mathbf{w}$?

3 Lexicographically least shuffles

In this section, $\mathbf{u}, \mathbf{v}, \mathbf{w}$ will be arbitrary but fixed effectively given ω -words.

Lemma 2. Let a word $d_0 \in \{0,1\}^*$ be specified. Let

$$D = \{ \mathbf{d} \in \{0, 1\}^{\omega} : \mathbf{w} = \mathbf{u} \oplus_{\mathbf{d}} \mathbf{v} \}.$$

If $D \cap d_0\{0,1\}^{\omega}$ is non-empty, then it has a lexicographically least element.

Proof. For a positive integer n, suppose that d_{n-1} has been defined and $D \cap d_{n-1}\{0,1\}^{\omega}$ is non-empty. It follows that at least one of $D \cap d_{n-1}0\{0,1\}^{\omega}$ and $D \cap d_{n-1}1\{0,1\}^{\omega}$ is nonempty. We can thus define an infinite sequence of words $\{d_n\}_{n=0}^{\infty}$, each d_n an extension of d_{n-1} , by

$$d_n = \begin{cases} d_{n-1}0, & \text{if } D \cap d_{n-1}0\{0,1\}^{\omega} \text{ is non-empty;} \\ d_{n-1}1, & \text{otherwise.} \end{cases}$$

Let $\mathbf{\bar{d}} = \lim_{n\to\infty} d_n$. We claim that $\mathbf{\bar{d}}$ is the lexicographically least element of $D \cap d_0\{0,1\}^{\omega}$. Each finite prefix d_n of $\mathbf{\bar{d}}$ has been chosen to be the prefix of a word of D, so that $\mathbf{w} = \mathbf{u} \oplus_{\mathbf{\bar{d}}} \mathbf{v}$. On the other hand, if for some $\mathbf{\hat{d}} \in D \cap d_0\{0,1\}^{\omega}$, $\mathbf{\hat{d}} \prec \mathbf{\bar{d}}$, consider the shortest prefix p of $\mathbf{\hat{d}}$ which is not a prefix of d. For some positive $n, p = d_{n-1}0$, while $d_n = d_{n-1}1$. However, this implies that $D \cap d_{n-1}0\{0,1\}^{\omega}$ is empty, and $\mathbf{\hat{d}} \notin D \cap d_0\{0,1\}^{\omega}$. This is a contradiction. \Box

Remark 3. Suppose that

$$\mathbf{w} = \mathbf{u} \oplus_{\mathbf{d}} \mathbf{v}$$

has solutions $\mathbf{d} \in 1\{0,1\}^*$. For a fixed prefix w_0 of \mathbf{w} , we can effectively determine the lexicographically least element d_0 of $1\{0,1\}^*$ such that there exist prefixes u_0 and v_0 of \mathbf{u} and \mathbf{v} , respectively, such that

$$w_0 = u_0 \oplus_{d_0} v_0.$$
 (1)

There are only $2^{|w_0|-1}$ candidates for d_0 . We can check for each candidate d_0 , and the corresponding prefixes u_0 , v_0 of \mathbf{u} , \mathbf{v} , with lengths $|d_0|_0$, $|d_0|_1$, whether (1) is satisfied. Note that the lengths of prefixes u_0 , v_0 are always at most $|w_0|$.

$$\mathbf{w} = \mathbf{u} \oplus_{\mathbf{d}} \mathbf{v}$$

Let w_0 be a fixed non-empty prefix of \mathbf{w} . Let d_0 be the lexicographically least element of $1\{0,1\}^*$ such that there exist prefixes u_0 and v_0 of \mathbf{u} and \mathbf{v} , respectively, such that

$$w_0 = u_0 \oplus_{d_0} v_0.$$

Suppose $d_0 \in \{0,1\}^*1$; write $\mathbf{w} = w'_0 \mathbf{W}$, $\mathbf{u} = u_0 \mathbf{U}$, $\mathbf{v} = v'_0 \mathbf{V}$ (so that $w'_0 = u_0 \oplus_{d'_0} v'_0$). Suppose that there exists an element $\delta \in 1\{0,1\}^{\omega}$ such that

$$\mathbf{W} = \mathbf{U} \oplus_{\delta} \mathbf{V}.$$

Then

$$\mathbf{d} = d_0' \mathbf{\Delta},$$

where Δ is the lexicographically least such δ . In particular, d_0 is a prefix of **d**.

Proof. Since $w'_0 = u_0 \oplus_{d'_0} v'_0$ and $\mathbf{W} = \mathbf{U} \oplus_{\delta} \mathbf{V}$, by Remark 1, we have

$$\mathbf{w} = \mathbf{u} \oplus_{d'_0 \Delta} \mathbf{v}.$$

Let d be the length $|w_0|$ prefix of **d**. By the minimality of **d**, $d \leq d'_0 1$. Since

$$\mathbf{w} = \mathbf{u} \oplus_{\mathbf{d}} \mathbf{v},$$

it follows from Remark 1 that

$$w_0 = \hat{u}_0 \oplus_d \hat{v}_0,$$

where \hat{u}_0 is the length $|d|_0$ prefix of **u**, and \hat{v}_0 is the length $|d|_1$ prefix of **v**. By the lexicographic minimality of d_0 , $d'_0 1 = d_0 \leq d$, so that $d_0 = d$.

Therefore, write $\mathbf{d} = d'_0 \hat{\Delta}$, where $\hat{\Delta} \in 1\{0,1\}^{\omega}$. By Remark 1,

$$\mathbf{W} = \mathbf{U} \oplus_{\hat{\Lambda}} \mathbf{V}.$$

By the minimality of Δ , $\Delta \leq \hat{\Delta}$. However, by the minimality of \mathbf{d} , $d'_0 \hat{\Delta} = \mathbf{d} \leq d'_0 \Delta$. Thus $\Delta = \hat{\Delta}$, so that $\mathbf{d} = d'_0 \Delta$.

Corollary 5. Let **d** be the lexicographically least element of $1\{0,1\}^{\omega}$ such that

$$\mathbf{w} = \mathbf{u} \oplus_{\mathbf{d}} \mathbf{v}$$

Suppose that for each positive integer *i* there are finite words W_i , U_i and V_i , and ω -words \mathbf{w}_i , \mathbf{u}_i and \mathbf{v}_i , where

- $\mathbf{w}_1 = \mathbf{w}, \mathbf{u}_1 = \mathbf{u} \text{ and } \mathbf{v}_1 = \mathbf{v},$
- W_i, U_i, V_i are prefixes of length 2 or more of $\mathbf{w}_i, \mathbf{u}_i, \mathbf{v}_i$, respectively,
- $\mathbf{w}_{i+1} = (W'_i)^{-1} \mathbf{w}_i, \mathbf{u}_{i+1} = (U'_i)^{-1} \mathbf{u}_i, \mathbf{v}_{i+1} = (V'_i)^{-1} \mathbf{v}_i.$

so that, for each i,

$$\mathbf{w}_i = \prod_{j=i}^{\infty} W'_j$$
$$\mathbf{u}_i = \prod_{j=i}^{\infty} U'_j$$
$$\mathbf{v}_i = \prod_{j=i}^{\infty} V'_j.$$

For each i, let D_i be the lexicographically least word starting with 1 such that

$$W_i = \hat{u}_i \oplus_{D_i} \hat{v}_i$$

for some prefixes \hat{u}_i of \mathbf{u}_i and \hat{v}_i of \mathbf{v}_i . Suppose that, for each i, D_i ends in a 1, $\hat{u}_i = U_i$ and $\hat{v}_i = V_i$. Then

$$\mathbf{d} = \prod_{i=1}^{\infty} D'_i.$$

Proof. This follows from the previous lemma by induction.

4 The Thue-Morse word

Consider the binary version of the Thue-Morse word (A001285), namely, $\mathbf{t} = \mu^{\omega}(0)$ where $\mu(0) = 01, \ \mu(1) = 10$. Thus

$$\mathbf{t} = 0110100110010110\cdots$$

The length 2 factors of the Thue-Morse word are 00, 01, 10, 11. If $\mathbf{t}[j..j+1] = ab$, a, $b \in \{0, 1\}$, then

$$\mathbf{t}[8j..8j+15] = \mu^3(ab)$$

and

$$\mathbf{t}[16j..16j+31] = \mu^4(ab).$$

It follows that

$$\langle \mathbf{t}[8j+1..8j+8], \mathbf{t}[8j+5..8j+13], \mathbf{t}[16j+6..16j+22] \rangle$$

takes on one of 4 possible values:

If t[j..j+1] = 00, then

$$\mathbf{t}[8j..8j + 15] = 0\underline{1101}\overline{0010}1101001 \\ \mathbf{t}[16j16j + 31] = 011010\underline{0110010110011000}110010110$$

so that

$$\langle \mathbf{t}[8j+1..8j+8], \mathbf{t}[8j+5..8j+13], \mathbf{t}[16j+6..16j+22] \rangle$$

= $\langle 11010010, 001011010, 011001011001100\rangle$.

Arguing similarly in the other three cases, we find that

$$\langle \mathbf{t}[8j+1..8j+8], \mathbf{t}[8j+5..8j+13], \mathbf{t}[16j+6..16j+22] \rangle \in \langle U_i, V_i, W_i \rangle$$

where the values of the U_i , V_i , W_i are as follows:

i	U_i	V_i	W_i
1	11010010	001011010	01100101100110100
2	11010011	001100101	01100101101001011
3	00101100	110011010	10011010010110100
4	00101101	110100101	10011010011001011

For each non-negative integer j, let $i_j \in \{1, 2, 3, 4\}$ be the unique value such that

$$\mathbf{t}[8j+1..8j+8] = U_{i_i}$$

Let $D_1 = 10001110100011101$, $D_2 = 10001001100111101$. One checks that

$$W_1 = U_1 \oplus_{D_1} V_1$$

$$W_2 = U_2 \oplus_{D_2} V_2$$

$$W_3 = U_3 \oplus_{D_2} V_3$$

$$W_4 = U_4 \oplus_{D_1} V_4.$$

For a given value of j, consider the ω -words $\mathbf{U} = \mathbf{t}[8j + 1..\infty]$, $\mathbf{V} = \mathbf{t}[8j + 5..\infty]$, $\mathbf{W} = \mathbf{t}[16j + 6..\infty]$. Let the length 17 prefix of \mathbf{W} be W_0 . Thus $W_0 \in \{W_1, W_2, W_3, W_4\}$. As per Remark 3, one can determine the lexicographically least D_0 with prefix 1 such that $W_0 = U_0 \oplus_{D_0} V_0$ for some prefixes U_0 of U and V_0 of V; we need only consider prefixes of \mathbf{U} and \mathbf{V} of lengths at most 17. It is therefore a finite computation to show that whenever $W_0 \in \{W_1, W_4\}$, then $D_0 = D_1$ and when $W_0 \in \{W_2, W_3\}$, then $D_0 = D_2$. For convenience, define $\delta : \{1, 2, 3, 4\} \rightarrow \{1, 2\}$ by $\delta(1) = \delta(4) = 1$, $\delta(2) = \delta(3) = 2$.

Let $T_0 = 0110100$, the length 7 prefix of the Thue-Morse word **t**. A short computation (feasible by hand) shows that the lexicographically least word Δ_0 with prefix 1 such that $T_0 = T_1 \oplus_{\Delta_0} T_2$ for prefixes T_1, T_2 of **t** is $\Delta_0 = 1111101$.

We remark that each of D_1 , D_2 and Δ_0 ends in a 1.

Theorem 6. The lexicographically least word d with prefix 1 such that $\mathbf{t} = \mathbf{t} \oplus_d \mathbf{t}$ is

$$d = 111110 \prod_{j=0}^{\infty} (D_{\delta(i_j)})'.$$

Proof. Note that

$$\mathbf{t} = 011010 \prod_{j=0}^{\infty} W'_{i_j} = 0 \prod_{j=0}^{\infty} U'_{i_j} = 01101 \prod_{j=0}^{\infty} V'_{i_j}.$$

The result thus follows from Corollary 5.

Remark 7. One verifies that this is the shuffle given by Charlier et al. in [1].

5 Acknowledgments

Thanks to the anonymous and thorough referee, and to Narad Rampersad, for their comments.

References

- E. Charlier, T. Kamae, S. Puzynina, and L. Q. Zamboni, Self-shuffling words, J. Combin. Theory Ser. A 128 (2014), 1–40.
- [2] J. Endrullis and D. Hendriks, The optimal self-shuffle of the Thue-Morse word, preprint available at http://www.cs.vu.nl/~diem/publication/pdf/self-shuffle.pdf, 2014.
- [3] D. Henshall, N. Rampersad, and J. Shallit, Shuffling and unshuffling, Bull. Europ. Assoc. Theoret. Comput. Sci. No. 107 (June 2012), 131–142.
- [4] M. Lothaire, Algebraic Combinatorics on Words, Cambridge University Press, 2002.
- [5] Axel Thue, Uber die gegenseitige Lage gleicher Teile gewisser Zeichenreihen, Norske Vid. Selsk. Skr. I. Mat. Nat. Kl. Christiana 1 (1912), 1–67. Reprinted in Selected Mathematical Papers of Axel Thue, T. Nagell, editor, Universitetsforlaget, Oslo, 1977, pp. 413–478.

2010 Mathematics Subject Classification: Primary 68R15. Keywords: Word shuffling, Thue-Morse word, lexicographical order.

(Concerned with sequence $\underline{A001285}$).

Received September 12 2014; revised versions received October 11 2014; October 12 2014. Published in *Journal of Integer Sequences*, November 2 2014.

Return to Journal of Integer Sequences home page.