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Abstract

We describe an algorithmic reduction of the search for integral points on a curve
y2 = ax4 + bx2 + c with ac(b2 − 4ac) 6= 0 to solving a finite number of Thue equations.
While the existence of such a reduction is anticipated from arguments of algebraic
number theory, our algorithm is elementary and is, to the best of our knowledge, the
first published algorithm of this kind. In combination with other methods and powered
by existing Thue equation solvers, it allows one to efficiently compute integral points
on biquadratic curves.
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We illustrate this approach with a particular application of finding near-multiples
of squares in Lucas sequences. As an example, we establish that among Fibonacci
numbers only 2 and 34 are of the form 2m2 + 2; only 1, 13, and 1597 are of the form
m2 − 3; and so on.

As an auxiliary result, we also give an algorithm for solving a Diophantine equation
k2 = f(m,n)

g(m,n) in integers m,n, k, where f and g are homogeneous quadratic polynomials.

1 Introduction

Siegel [26] proved that any equation y2 = f(x) with irreducible polynomial f ∈ Z[x] of
degree at least 3 has finitely many integral points. With the method of Baker [2, 3, 4], it
became possible to bound the solutions and perform an exhaustive search. For third-degree
curves, Baker’s method was a subject to many practical improvements, and now there exists a
number of software implementations for finding integral points on elliptic curves [6, 15, 27].
These procedures are based on a method developed by Stroeker and Tzanakis [29] and
independently by Gebel, Pethő, and Zimmer [14].

Thue equations of the form g(x, y) = d, where g ∈ Z[x, y] is a homogeneous irreducible
polynomial of degree at least 3 and d ∈ Z, were first studied by Thue [32], who proved that
they have only a finite number of integer solutions. In computer era, Thue equations became
a subject to developments of computational methods, resulting in at least two implemen-
tations: in computer algebra systems MAGMA [6] and PARI/GP [31]. For our practical
computations, we chose SAGE [27], which adopts PARI/GP Thue equations solver based on
Bilu and Hanrot’s improvement [5] of Tzanakis and de Weger’s method [33].

In the current work, we show how to reduce a search for integral points on a biquadratic
curve

y2 = ax4 + bx2 + c

with integer (or, more generally, rational) coefficients a, b, c with ac(b2 − 4ac) 6= 0 firstly to

a Diophantine equation k2 = f(m,n)
g(m,n)

in coprime integers m, n with homogeneous quadratic

polynomials f and g (Theorem 7), and then to a finite number of quartic Thue equations
(Theorem 5).1 While possibility of reduction to Thue equations was described by Mordell [18]
based on arguments from algebraic number theory, to the best of our knowledge, there is no
published algorithm applicable for the general case. Furthermore, in contrast to traditional
treatment of this kind of problems with algebraic number theory [18, 28, 11, 21], our reduction
method is elementary. It may be viewed as a generalization of the one of Steiner and
Tzanakis [28] who reduced Ljunggren equation y2 = 2x4 − 1 to two Thue equations (in
particular, we obtain the same Thue equations).

There are other methods which can be used in certain cases to determine all integral
solutions of the equation y2 = ax4+ bx2+ c. Poulakis [22] provided an elementary algorithm

1In the course of this reduction, we may also encounter Thue-like equations g(x, y) = d with g being a
reducible homogeneous polynomial of degree 4. Such equations however are easily solvable [1, Theorem 3].
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to solve Diophantine equations of the form y2 = f(x), where f(x) is quartic monic polynomial
with integer coefficients, based on Runge’s method [24, 25, 34]. Here it is crucial that the
leading coefficient of f(x) is 1 (the idea also works if the leading coefficient is a perfect
square). Using the theory of Pell equations, Kedlaya [16] described a method to solve the
system of equations

{

x2 − a1y
2 = b1,

P (x, y) = z2,

where P is a given integer polynomial, and implemented his algorithm in Mathematica.2

If we set P (x, y) = c1x + d1, then we obtain a quartic equation of the form (a1c1y)
2 =

a1z
4 − 2a1d1z

2 − a1b1c
2
1. There is also a simple reduction of the equation y2 = ax4 + bx2 + c

to an elliptic equation: after multiplying the equation by a2x2, one obtains

(axy)2 = (ax2)3 + b(ax2)2 + ac(ax2),

which can be further written as

Y 2 = X3 + bX2 + acX.

As we noted earlier to determine all integral points on a given elliptic curve one can follow
a method developed by Stroeker and Tzanakis [29] and independently by Gebel, Pethő
and Zimmer [14]. The disadvantage of this approach is that there is no known algorithm to
determine the rank of the so-called Mordell-Weil group of an elliptic curve, which is necessary
to determine all integral points on the curve.

For efficient computation of integral points on biquadratic curves, we implemented in
SAGE a combination of the elliptic curve and reduction to Thue equations methods.3 By
default we employ the elliptic curve method and if it fails, we fall back to our reduction to
Thue equations.

Our approach also allows one to efficiently compute solutions to a system of Diophantine
equations (Theorem 8):

{

a1x
2 + c1z = d1,

b2y
2 + c2z

2 = d2.

From this perspective, it continues earlier work [1], where the first author described an
algorithm for computing solutions to a system of Diophantine equations:

{

a1x
2 + b1y

2 + c1z
2 = d1,

a2x
2 + b2y

2 + c2z
2 = d2,

and demonstrated applications for finding common terms of distinct Lucas sequences of
the form U(P,±1) or V (P,±1), which include the Fibonacci, Lucas, Pell, and Lucas-Pell

2Kedlaya’s implementation is available from http://math.ucsd.edu/~kedlaya/papers/pell.tar.
3Our implementation is available from http://www.math.unideb.hu/~tengely/biquadratic.sage.
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numbers. The current method also has applications for such Lucas sequences, allowing one
to find all terms of the form a · m2 + b for any fixed integers a, b. While the question of
finding multiples of squares (i.e., with b = 0) in Lucas sequences has been widely studied,
starting with the works of Cohn [9] and Wyler [36] (we refer to Bremner and Tzanakis [7]
for an extensive review of the literature), finding near multiples of squares (i.e., with b 6= 0)
has got so far only a limited attention [12, 13, 23, 35]. In the current work, we present an
unified computational approach for solving this problem. As an example, we establish that
among Fibonacci numbers only 2 and 34 are of the form 2m2 + 2; only 1, 13, and 1597 are
of the form m2 − 3; and so on.

The paper is organized as follows. In Section 2, we develop our machinery for homoge-
neous quadratic polynomials with integer coefficients. In Section 3, we prove our method
for finding integral points on biquadratic curves and illustrate its workflow on Ljunggren
equation. In Section 4, we further demonstrate how our method can be used for finding
near-multiples of squares in Lucas sequences and list some results of this kind.

2 Homogeneous quadratic polynomials

We start with studying properties of quadratic homogeneous polynomials with integer coeffi-
cients in two and three variables. We do not distinguish between homogeneous polynomials
in two variables from their univariate counterparts (i.e., f(x, y) = ax2 + bxy + cy2 and
f̃(z) = az2 + bz + c) that allows us to define resultant (Res) and discriminant (Disc) on
them.

Theorem 1 (Theorem 5 in [1]4). Let A,B,C be non-zero integers and let (x0, y0, z0) with
z0 6= 0 be a particular non-trivial integer solution to the Diophantine equation Ax2 +By2 +
Cz2 = 0. Then its general integer solution is given by

(x, y, z) =
p

q
(Px(m,n), Py(m,n), Pz(m,n)) (1)

where m,n as well as p, q are coprime integers with q > 0 dividing 2 lcm(A,B)Cz20, and

Px(m,n) = x0Am
2 + 2y0Bmn− x0Bn2,

Py(m,n) = −y0Am
2 + 2x0Amn+ y0Bn2,

Pz(m,n) = z0Am
2 + z0Bn2.

(2)

We refer to [8, 10] for general methods of finding a particular solution to a quadratic
homogeneous equation in three variables.5

Theorem 2. Let P1(x, y) and P2(x, y) be homogeneous quadratic polynomials with inte-
ger coefficients and R = Res(P1, P2) 6= 0. Let G be the largest element in the Smith

4This theorem corrects an error in [8, Corollary 6.3.8].
5In PARI/GP, a particular solution can be computed with the function bnfisnorm.
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normal form of the resultant matrix of P1 and P2.
6 Then for any coprime integers m,n,

gcd(P1(m,n), P2(m,n)) divides G.

Proof. Let P1(x, y) = a1x
2+b1xy+c1y

2 and P2(x, y) = a2x
2+b2xy+c2y

2 where a1, b1, c1, a2, b2, c2
are integer. Consider polynomials x · P1(x, y), y · P1(x, y), x · P2(x, y), y · P2(x, y) as linear
combinations with integer coefficients of the basis terms x3, x2y, xy2, y3. Our goal is to find
two linear combinations of these polynomials: one equal an integer multiple of x3 and the
other equal an integer multiple of y3. This corresponds to the following two systems of linear
equations with the same resultant matrix:

x3 :
x2y :
xy2 :
y3 :









a1 0 a2 0
b1 a1 b2 a2
c1 b1 c2 b2
0 c1 0 c2









·









t1
t2
t3
t4









=









1
0
0
0









or









0
0
0
1









(3)

with respect to rational numbers t1, t2, t3, t4. Since the matrix determinant equals the resul-
tant R 6= 0, the systems have unique solutions of the form:

(t1, t2, t3, t4) =
1

R
(∆1,∆2,∆3,∆4) =

1

G

(

∆1

d3
,
∆2

d3
,
∆3

d3
,
∆4

d3

)

where each ∆i is the determinant of a certain 3× 3 minor of the resultant matrix and d3 is
its third determinant divisor. Here we used the fact that R

d3
= G is the fourth elementary

divisor of the resultant matrix (and the largest element of its Smith normal form). It is
important to notice that all vector components ∆i

d3
are integer.

So we have two linear combinations of x·P1(x, y), y·P1(x, y), x·P2(x, y), y·P2(x, y) with in-
teger coefficients ∆1

d3
, ∆2

d3
, ∆3

d3
, ∆4

d3
equal G·x3 and G·y3, respectively. For (x, y) = (m,n) where

m,n are coprime integers, these linear combinations imply that gcd(P1(m,n), P2(m,n)) di-
vides both G ·m3 and G ·n3. Therefore, gcd(P1(m,n), P2(m,n)) divides gcd(G ·m3, G ·n3) =
G · gcd(m3, n3) = G.

Remark 3. To compute G in practice, we do not need to compute Smith normal form of the
resultant matrix. Instead, we simply solve the two linear systems (3) and define G as the
least common multiple of all denominators in both solutions (t1, t2, t3, t4).

Theorem 4. Any homogeneous quadratic polynomial with integer coefficients and non-zero
discriminant can be represented as a linear combination with non-zero rational coefficients
of squares of two homogeneous linear polynomials. Moreover, these polynomials are linearly
independent.

Proof. Let ax2 + bxy+ cy2 be a homogeneous quadratic polynomial with integer coefficients
and non-zero discriminant, i.e., b2 − 4ac 6= 0. If b = 0 then ac 6= 0 and the statement is
trivial.

6While G = R would also satisfy the theorem statement, we want G as small as possible. The resultant
R is often much larger than G defined in the theorem.
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Suppose that b 6= 0. If a 6= 0, then we have

ax2 + bxy + cy2 =
1

4a
· (2ax+ by)2 +

4ac− b2

4a
· y2.

Similarly, if c 6= 0, then we have

ax2 + bxy + cy2 =
4ac− b2

4c
· x2 +

1

4c
· (bx+ 2cy)2.

Finally, if a = c = 0, then

bxy =
b

4
· (x+ y)2 −

b

4
· (x− y)2.

It is easy to see that in all cases, the linear polynomials are linearly independent.

Theorem 5. Let P1(x, y) and P2(x, y) be homogeneous quadratic polynomials with integer
coefficients such that Disc(P1) 6= 0, Disc(P2) 6= 0, and Res(P1, P2) 6= 0. Then the equation

z2 =
P1(x, y)

P2(x, y)
(4)

has a finite number of integer solutions (x, y, z) = (m,n, k) with gcd(m,n) = 1.

Proof. Suppose that (x, y, z) = (m,n, k) with gcd(m,n) = 1 satisfies the equation (4). Since
P2(m,n) divides P1(m,n), we have gcd(P1(m,n), P2(m,n)) = P2(m,n), which by Theorem 2
must divide a certain integer G. Then for some divisor7 g of G, we have P2(m,n) = g and
P1(m,n) = gk2. So (x, y, z) = (m,n, k) represents a solution to the following system of
equations:

{

P1(x, y) = g · z2,

P2(x, y) = g.
(5)

Therefore, to find all solutions to (4), we need to solve the systems (5) for g ranging over
the divisors of G. Each such system is solved as follows.

We start with using Theorem 4 to represent P1(x, y) as a linear combination with rational
coefficients of squares of two linearly independent polynomials, say, P1(x, y) = a·Q1(x, y)

2+b·
Q2(x, y)

2. Substituting this representation into the first equation of (5), we get the following
equation:

a ·Q1(x, y)
2 + b ·Q2(x, y)

2 − g · z2 = 0. (6)

We solve this equation using Theorem 1 to obtain Q1(x, y) =
p

q
· R1(m,n) and Q2(x, y) =

p

q
· R2(m,n), where q ranges over the positive divisors of a certain integer and integer p is

coprime to q. We solve this system of linear equations with respect to x, y to obtain

(x, y) =
p

q
· (Sx(m,n), Sy(m,n)) ,

7Unless specified otherwise, the divisors of an integer include both positive and negative divisors.
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where Sx(m,n) and Sy(m,n) are linear homogeneous polynomials with rational coefficients
(which depend only on g but not p, q). Plugging this into the second equation of (5), we get
the following quartic equations with integer coefficients w.r.t. m,n:

ℓg · P2(Sx(m,n), Sy(m,n)) = q2 ·
g · ℓg
p2

. (7)

where ℓg is the least common multiple of the coefficients denominators of P2(Sx(m,n), Sy(m,n))
(notice that ℓg depends only on g but not p, q). Here p2 must divide gℓg and thus there is a
finite number of such equations. By [1, Theorem 3], each such equation has a finite number
of solutions, unless P2(Sx(m,n), Sy(m,n)) = c ·T (m,n)2 for some polynomial T (x, y), which
is not the case since Disc(P2) 6= 0.

Remark 6. Different choices of values for g, p, q may result in the same equation (7). In
particular, if g′ = g · d2 for some integer d, then we can represent equation (6) for g′ in the
form a · Q1(x, y)

2 + b · Q2(x, y)
2 − g · (d · z)2 = 0 so that it has the same solutions w.r.t.

Q1(x, y) and Q2(x, y). Then the equation (7) for g′ has the same left hand side as the one for
g (with ℓg′ = ℓg), while the former has an extra factor d2 in the right hand side. Therefore,
to reduce the number of equations in practice, we can restrict g to the square-free divisors of
G: for each such g, we compute the left hand side of (7) and iterate over all distinct integer

right hand sides of the form q2 · g·ℓg ·d
2

p2
, where d2 divides G

g
.

3 Finding integral points on biquadratic curves

Now we are ready to prove our main result:

Theorem 7. Finding integral points on a biquadratic curve

y2 = a · x4 + b · x2 + c (8)

with integer coefficients a, b, c and ac(b2 − 4ac) 6= 0, reduces to solving a finite number of
quartic Thue equations.

Proof. Multiplying the equation (8) by 4c, we can rewrite it as a linear combination of three
squares with non-zero integer coefficients:8

(b2 − 4ac)(x2)2 + 4cy2 − (bx2 + 2c)2 = 0.

Denoting X = x2, Y = y, Z = bx2+2c, A = b2−4ac, B = 4c, C = −1, we get a Diophantine
equation:

A ·X2 + B · Y 2 + C · Z2 = 0. (9)

8Alternatively, we can multiply (8) by 4a and obtain another linear combination of three squares: (2ax2+
b)2 + (4ac− b2) · 12 − 4ay2 = 0, which has smaller coefficients and thus may be preferable when c ≫ a.
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If this equation is solvable with a particular solution (X, Y, Z) = (X0, Y0, Z0), Z0 6= 0, then
by Theorem 1 its general solution is given by

(X, Y, Z) = r · (Px(m,n), Py(m,n), Pz(m,n)) ,

where Pi(m,n) are polynomials defined by (2), m,n are coprime integers, and r is a rational
number. In our case, this solution should additionally satisfy the relation:

2c = Z − bX = r · (Pz(m,n)− b · Px(m,n)) ,

implying that

r =
2c

Pz(m,n)− b · Px(m,n)
.

So we get a constraining Diophantine equation:

x2 =
2c · Px(m,n)

Pz(m,n)− b · Px(m,n)
, (10)

which reduces to a finite number of Thue equations by Theorem 5, unless Res(Px, Pz−b·Px) =
0 or Disc(Pz − b · Px) = 0.

The case of Res(Px, Pz−b·Px) = Res(Px, Pz) = 0 is impossible since by direct computation
we have Res(Px, Pz) = −4AB2CZ4

0 6= 0.
In the case of Disc(Pz − b · Px) = 0, we have Disc(Pz − b · Px) = 4b2B2Y 2

0 − 4AB(Z2
0 −

b2X2
0 ) = 0 and thus b2BY 2

0 = A(Z2
0 − b2X2

0 ). Since BY 2
0 = −AX2

0 − CZ2
0 , we further get

b2(−AX2
0 −CZ2

0 ) = A(Z2
0 −b2X2

0 ), which reduces to A+b2C = 0. However this is impossible
since A+ b2C = −4ac 6= 0.

Therefore, Theorem 5 is applicable.

As a corollary we get

Theorem 8. The system of Diophantine equations:

{

z = ax2 + d1,

z2 = by2 + d2,

where a, b, d1, d2 are rational numbers with abd2(d
2
1 − d2) 6= 0, reduces to a finite number of

quartic Thue equations.

Proof. The system implies that (ax2+d1)
2 = by2+d2 or (by)

2 = a2bx4+2abd1x
2+b(d21−d2).

Since (2d1ab)
2 − 4a2b2(d21 − d2) = 4a2b2d2 6= 0, Theorem 7 applies.
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3.1 Example: Ljunggren equation

We illustrate our method on Ljunggren equation y2 = 2x4 − 1 whose reduction to Thue
equations was first obtained in [28]. Here we have (a, b, c) = (2, 0,−1). First we compute
A = b2 − 4ac = 8, B = 4c = −4, and C = −1 and consider equation (9). Its particular
solution is (1, 1, 2), which yields by Theorem 1 a general solution:

(X, Y, Z) =
p

q
(Px(m,n), Py(m,n), Pz(m,n))

with

Px(m,n) = 8m2 − 8mn+ 4n2,

Py(m,n) = −8m2 + 16mn− 4n2,

Pz(m,n) = 16m2 − 8n2.

Now we consider equation (10):

x2 =
2cPx(m,n)

Pz(m,n)− b · Px(m,n)
=

−2(8m2 − 8mn+ 4n2)

16m2 − 8n2
=

−2m2 + 2mn− n2

2m2 − n2

and use Theorem 5 to solve it. We take the resultant matrix of P1(x, y) = −2x2 + 2xy − y2

and P2(x, y) = 2x2 − y2 and solve the two linear systems (3) to obtain (t1, t2, t3, t4) =
1
4
(−2,−1, 0, 1) and (t1, t2, t3, t4) = (−1,−1,−1, 0). So we get G = 4. Let g range over the

divisors of G, i.e., g ∈ {−4,−2,−1, 1, 2, 4}.
We use Theorem 4 to represent P1(x, y) as a linear combination of squares:

P1(x, y) = −2x2 + 2xy − y2 = −
1

8
· (−4x+ 2y)2 −

1

2
· y2 = −

1

2
· (−2x+ y)2 −

1

2
· y2

and obtain the equation (6) (multiplied by −2):

(−2x+ y)2 + y2 + 2gz2 = 0.

Clearly, it may have non-trivial solutions only for g < 0 and only when −1 is a quadratic
residue modulo 2g, which leaves us the only suitable value g = −1. The corresponding
equation has a particular solution (1, 1, 1) and by Theorem 1 its general solution is

(−2x+ y, y, z) =
p

q
·
(

m2 + 2mn− n2,−m2 + 2mn+ n2,m2 + n2
)

where (p, q) = 1 and q > 0 divides 4.
From this solution we express x = p

q
· (−m2+n2) and y = p

q
· (−m2+2mn+n2) and plug

them into the equation P2(x, y) = g to obtain the following quartic equations:

m4 + 4m3n− 6m2n2 − 4mn3 + n4 = q2 ·
−1

p2

9



and conclude that p2 = 1. Since the polynomial in the left hand side is irreducible, these are
Thue equations.

We used PARI/GP to solve the resulting three Thue equations (for q = 1, 2, 4) and found
that only the one with q = 2 has solutions, which are (m,n) = ±(5,−1), ±(1, 5), (±1,±1)
(the same solutions were earlier obtained by Lettl and Pethő [17]). The corresponding

solutions to P1(m,n)
P2(m,n)

= x2 are (m,n) = ±(12, 17) and ±(0, 1), giving respectively x = ±13

and ±1. Thus the solutions to Ljunggren equation are (±13,±239) and (±1,±1).

4 Near-multiples of squares in Lucas sequences

The pair of Lucas sequences U(P,Q) and V (P,Q) are defined by the same linear recurrent
relation with the coefficient P,Q ∈ Z but different initial terms:

U0(P,Q) = 0, U1(P,Q) = 1, Un+1(P,Q) = P · Un(P,Q)−Q · Un−1(P,Q), n ≥ 1;
V0(P,Q) = 2, V1(P,Q) = P, Vn+1(P,Q) = P · Vn(P,Q)−Q · Vn−1(P,Q), n ≥ 1.

Some Lucas sequences have their own names:

Sequence Name Initial terms Index in [30]

U(1,−1) Fibonacci numbers 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, . . . A000045
V (1,−1) Lucas numbers 2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, . . . A000032
U(2,−1) Pell numbers 0, 1, 2, 5, 12, 29, 70, 169, 408, 985, . . . A000129
V (2,−1) Pell-Lucas numbers 2, 2, 6, 14, 34, 82, 198, 478, 1154, . . . A002203

Other examples include the Jacobsthal numbers U(1,−2), Mersenne numbers U(3, 2) etc.
The characteristic polynomial of Lucas sequences U(P,Q) and V (P,Q) is λ2 − Pλ + Q

with the discriminant D = P 2 − 4Q. For non-degenerate sequences, the discriminant D is a
positive non-square integer.

Terms of Lucas sequences satisfy the following identity:

Vn(P,Q)2 −D · Un(P,Q)2 = 4Qn. (11)

In the current paper, we focus on the case of Q = 1 or Q = −1, implying that the pairs
(Vn(P,Q), Un(P,Q)) satisfy the equation:9

x2 −Dy2 = ±4. (12)

The converse statement can be used to prove that given positive integers belong to V (P,Q)
or U(P,Q) respectively:

9Here and everywhere below ± in the r.h.s. of an equation means that we accept both signs as solutions.
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Theorem 9 (Theorem 1 in [1]). Let P , Q be integers such that P > 0, |Q| = 1, (P,Q) 6=
(3, 1), and D = P 2 − 4Q > 0. If positive integers u and v are such that

v2 −Du2 = ±4,

then u = Un(P,Q) and v = Vn(P,Q) for some integer n ≥ 0.

Theorem 10. For fixed integers a 6= 0 and b, finding terms of the form am2 + b in non-
degenerate Lucas sequence U(P,Q) or V (P,Q) with Q = ±1 reduces to a finite number of
Thue equations, unless this sequence is V (P,Q) and b = ±2.

Proof. Let ax2 + b be a term of U(P,±1). By Theorem 9 we have y2 = D(ax2 + b)2 ± 4 =
Da2x4 + 2Dabx2 + (Db2 ± 4). Theorem 7 applies, since Db2 ± 4 6= 0 (notice that D 6= ±1)
and (2Dab)2 − 4Da2(Db2 ± 4) = ∓16Da2 6= 0.

Now let ax2+b be a term of V (P,±1). By Theorem 9 we have (Dy)2 = D((ax2+b)2∓4) =
Da2x4+2Dabx2+D(b2∓ 4). We have (2Dab)2− 4D2a2(b2∓ 4) = ±16D2a2 6= 0. Theorem 7
applies here as soon as b2 ∓ 4 6= 0 (i.e., b 6= ±2).

Remark 11. For b = ±2, the sequence V (P,Q) may have an infinite number of terms of the
form am2 + b. In particular, Lucas sequence V (1,−1) (Lucas numbers) has infinitely many
terms of the forms m2 +2 and m2 − 2 since V4n(1,−1) = V2n(1,−1)2 − 2 and V4n+2(1,−1) =
V2n+1(1,−1)2 + 2.

The following theorem allows to find all terms solutions of the form am2±2 in V (P,±1).

Theorem 12. For fixed integers a 6= 0 and b = ±2, finding terms of the form am2 + b

in nondegenerate Lucas sequence V (P,Q) with Q = ±1 reduces to a finite number of Thue
equations and a Pell-Fermat equation.

Proof. Let ax2+ b with b = ±2 be a term of V (P,±1). By Theorem 9, we have the following
equations:

(Dy)2 = D((ax2 + b)2 + 4) = Da2x4 + 2Dabx2 + 8D

and
(Dy)2 = D((ax2 + b)2 − 4) = Da2x4 + 2Dabx2.

The former equation is addressed by Theorem 7, while the latter equation always has solution
x = 0 (corresponding to the term V0 = 2) and for x 6= 0 is equivalent to the Pell-Fermat
equation:

(

Dy

x

)2
−Da2x2 = 2Dab.

For solution of this equation, we refer to [8, Section 6.3.5].

Theorem 10 implies finiteness of the terms of the form am2 + b in a Lucas sequence
U(P,Q) or V (P,Q) with Q = ±1, unless this sequence is V (P,Q) and b = ±2. The latter
case is addressed by Theorem 12 and may sometimes result in infinitely many terms. While
this characterization represents a special case of the results by Nemes and Pethő [19] and by
Pethő [20], our proofs rely on the simple transformation method developed in this paper.

In Table 1 we list all the terms of the form am2 + b for 1 ≤ a ≤ 3 and −3 ≤ b ≤ 3 in
Fibonacci, Lucas, Pell, and Pell-Lucas numbers.
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Fibonacci numbers Lucas numbers Pell numbers Pell-Lucas numbers
Form U(1,−1) V (1,−1) U(2,−1) V (2,−1)

m2 0, 1, 144 1, 4 0, 1, 169 none
m2 + 1 1, 2, 5 1, 2 1, 2, 5 2, 82
m2 − 1 0, 3, 8 3 0 none
m2 + 2 2, 3 2, 11, and V4n+2 2 2 and V4n+2

m2 − 2 2, 34 V4n 2 14 and V4n

m2 + 3 3 3, 4, 7, 199 12 none
m2 − 3 1, 13, 1597 1 1 6
2m2 0, 2, 8 2, 18 0, 2 2
2m2 + 1 1, 3 1, 3 1 none
2m2 − 1 1 1, 7, 199 1 none
2m2 + 2 2, 34 2, 4 2 2 and V4n

2m2 − 2 0 none 0, 70 V4n+2

2m2 + 3 3, 5, 21 3, 11 5 none
2m2 − 3 5 29, 47, 64079 5, 29 none
3m2 0, 3 3 0, 12 none
3m2 + 1 1, 13 1, 4, 76 1 none
3m2 − 1 2 2, 11, 47 2 2
3m2 + 2 2, 5 2, 29 2, 5, 29 2, 14
3m2 − 2 1 1 1 none
3m2 + 3 3 3 none 6
3m2 − 3 0, 144 none 0 none

Table 1: Terms of the form am2 + b for 1 ≤ a ≤ 3 and −3 ≤ b ≤ 3 in Fibonacci, Lucas, Pell,
and Pell-Lucas numbers.
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