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Abstract

Infinitely many Smith numbers can be constructed using sequences which involve

repunits. We provide an alternate method of construction by introducing a generaliza-

tion of repunits, resulting in new Smith numbers whose decimal digits are composed

of zeros and nines.

1 Introduction

We work with natural numbers in their decimal representation.
Let S(N) denote the “digital sum” (the sum of the base-10 digits) of the number N

and let Sp(N) denote the sum of all the digital sums of the prime factors of N , counting
multiplicity. For instance, S(2013) = 2 + 0 + 1 + 3 = 6 and, since 2013 = 3 × 11 × 61, we
have Sp(2013) = 3 + 1 + 1 + 6 + 1 = 12. The quantity Sp(N) does not seem to have a name
in the literature, so let us just call Sp(N) the p-digit sum of N .

The natural numberN is called a Smith number whenN is composite and S(N) = Sp(N).
For example, since 22 = 2 × 11, we have both S(22) = 4 and Sp(22) = 4. Hence, 22 is a
Smith number—thus named by Wilansky [4] in 1982.

Several different ways of constructing Smith numbers are already known. (See our 2010
article [5], for instance, which contains a brief historical account on the subject as well as a
list of references.

The first method of construction that actually produces infinitely many Smith numbers
was given in 1987 by McDaniel [2], and later another by Costello and Lewis [1]. The key
idea that makes these methods successful is based on a pair of simple identities which first
appeared in an article by Oltikar and Wayland [3], applying for all natural numbers N :
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1. S(10N) = S(N),

2. Sp(10N) = Sp(N) + 7.

With these two identities in mind, suppose that we have found a number N such that
S(N) − Sp(N) is a nonnegative multiple of 7, say S(N) − Sp(N) = 7c. Then, we will have
S(N×10c) = S(N) and Sp(N×10c) = Sp(N)+7c. In other words, S(N×10c) = Sp(N×10c)
and hence, N × 10c is a Smith number.

Therefore, if we can find a sequence which contains infinitely many numbers N such
that S(N)− Sp(N) is a nonnegative multiple of 7, then we will have infinitely many Smith
numbers of the form N × 10c, for a suitable value of c that varies with N .

Since the quantity S(N)−Sp(N) will occur quite frequently in our discussion, let us give
this expression a convenient notation.

Definition 1. With the domain of all numbers N ≥ 2, we define the function ∆(N) by

∆(N) = S(N)− Sp(N).

Using this definition, we want to find infinitely many N where ∆(N) is nonnegative and a
multiple of 7. It seems proper for us to reintroduce McDaniel’s construction of such numbers
N first, before we proceed with our own version.

McDaniel’s sequence is given in the form 9Rntn, where Rn = (10n − 1)/9—also known
as the n-th repunit—and where tn is to be selected from the set M = {2, 3, 4, 5, 7, 8, 15}.
These seven elements of M have been cleverly chosen so that they have distinct p-digit sums
modulo 7.

A previously known fact concerning repunits [2, Theorem 2] is that S(9Rnt) = 9n for all
n ≥ 1 and for any natural number t < 10n. In particular, S(9Rnt) = 9n for any t ∈ M with
n ≥ 2 and, by inspection, with n = 1 as well.

Based on this fact, the number tn in the sequence 9Rntn is defined to be the unique
element of M for which Sp(tn) ≡ 9n− Sp(9Rn) (mod 7), for then

∆(9Rntn) = S(9Rntn)− Sp(9Rntn)

= 9n− Sp(9Rn)− Sp(tn)

≡ 0 (mod 7).

And in order to see that ∆(9Rntn) ≥ 0 for every n ≥ 1, we state the next theorem, also by
McDaniel [2, Theorem 1], right after the following definition.

Definition 2. For any number N ≥ 2, the function Ω(N) equals the number of prime factors
of N , counting multiplicity.

Theorem 3. Let D(N) denote the number of digits in N . Then Sp(N) < 9D(N)−0.54Ω(N).

Applying the theorem, plus the fact that Sp(t) ≤ 8 for all t ∈ M and the fact that
Ω(9Rn) ≥ 3, we get

Sp(9Rntn) = Sp(9Rn) + Sp(tn) < 9n− 0.54× 3 + 8 ≤ 9n+ 6.
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This last inequality implies that ∆(9Rntn) ≥ −6 and therefore, since ∆(9Rntn) is constructed
to be a multiple of 7, we have ∆(9Rntn) ≥ 0 as desired. Finally then, for each n ≥ 1, the
Smith number that can be created is 9Rntn×10c, with the value of c for which 7c = ∆(9Rntn).

In a similar way, Costello and Lewis constructed Smith numbers using another sequence in
the form 9Rn11

xn for some computed value of xn between 0 and 6 that will make ∆(9Rn11
xn)

a nonnegative multiple of 7. Although techniquely new, the sequence 9Rn11
xn is essentially

the same as that of McDaniel, with only the set M now replaced by {11x | 0 ≤ x ≤ 6}, but
which plays the same role as does M , i.e., to contain 7 elements with distinct p-digit sums
modulo 7.

In this article, we shall demonstrate how to construct Smith numbers using new sequences
which still resemble that of McDaniel. However, this time we will modify the repunits Rn

by allowing zero digits in them in a certain way, and then adjust the set M of the seven
multipliers accordingly.

2 New Constructions

Definition 4. For every pair (k, n) of natural numbers, we define the number Pk,n by

Pk,n =
n−1
∑

i=0

10ki.

For example, P3,5 = 1, 001, 001, 001, 001. Note that, in general, we have S(Pk,n) = n for
any pair (k, n) and that, in particular, P1,n = Rn.

For a fixed k ≥ 2, we shall build a sequence in the form 9Pk,ntk,n, where tk,n is to be
determined in such a way that ∆(9Pk,ntk,n) will be a nonnegative multiple of 7 for infinitely
many values of n. We will achieve this goal through a series of results, involving the numbers
Pk,n, in what follows.

Theorem 5. Let k and n be two given natural numbers. If n is a multiple of d, then we

have the identity Pk,d × Pkd,n/d = Pk,n. Thus, if d divides n, then Pk,d divides Pk,n.

Proof. We set x = 10k in the following series of identities.

Pk,d × Pkd,n/d =

(

d−1
∑

i=0

xi

) (

n/d−1
∑

j=0

xdj

)

= (1 + x+ x2 + · · ·+ xd−1) (1 + xd + x2d + · · ·+ xn−d)

=
n−1
∑

h=0

xh = Pk,n.

Theorem 6. For any values of k ≥ 1 and n ≥ 2, we have Ω(Pk,n) ≥ Ω(n).

Proof. Let p1, p2, . . . , pr be prime numbers, not assumed distinct, such that n =
∏r

i=1
pi.

Let us set nj =
∏r

i=j pi, where 1 ≤ j ≤ r. In particular, n1 = n. By Theorem 5, we state
that Pk,nj

is a factor of Pk,nj−1
for all j in the range 2 ≤ j ≤ r. It follows that Pk,n1

must
have at least r prime factors, i.e., Ω(Pk,n) ≥ r = Ω(n).
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Theorem 7. Fix a natural number k ≥ 2. Suppose that t is the sum of k powers of 10,

written t =
∑k

j=1
10ej , such that the set {ej | 1 ≤ j ≤ k} serves as a complete residue system

modulo k. Then S(9Pk,nt) = 9kn for every n ≥ 1.

Proof. Observe that for n ≥ 1,

Pk,n × t =

(

n−1
∑

i=0

10ki

) (

k
∑

j=1

10ej

)

=
k
∑

j=1

n−1
∑

i=0

10ki+ej .

So we see that Pk,nt is the sum of kn powers of 10, necessarily all of which are distinct since
the exponents ej are distinct modulo k. This means that the digits in the number Pk,nt are
composed of only zeros and ones—with exactly kn ones. We then have S(9Pk,nt) = 9kn as
claimed.

Remark 8. Incidentally, Theorem 7 remains valid with k = 1, giving the result S(9Rnt) =
9n, where t is just any power of 10. Secondly, in general, the number t given in the theorem
is always divisible by Rk. To see why, we use the fact that 10k ≡ 1 (mod Rk) to obtain

t ≡
k
∑

j=1

10ej mod k = Rk ≡ 0 (mod Rk).

Theorem 9. For a fixed k ≥ 2, suppose that Mk is a set of 7 natural numbers t with the

following two conditions.

1. Every element t ∈ Mk can be expressed as t =
∑k

j=1
10ej , where {ej | 1 ≤ j ≤ k} is a

complete residue system modulo k.

2. The set {Sp(t) | t ∈ Mk} is a complete residue system modulo 7.

Then, for each n ≥ 1, there exists a unique tk,n ∈ Mk such that ∆(9Pk,ntk,n) is a multiple of

7. Furthermore, there exist infinitely many values of n ≥ 1 for which ∆(9Pk,nt) ≥ 0 for all

t ∈ Mk.

Proof. Let t ∈ Mk. We have S(9Pk,nt) = 9kn according to Theorem 7, so

∆(9Pk,nt) = 9kn− Sp(9Pk,n)− Sp(t).

Hence, for a fixed n ≥ 1, there is exactly one element tk,n ∈ Mk for which ∆(9Pk,ntk,n) is a
multiple of 7, i.e., the element tk,n with Sp(tk,n) ≡ 9kn− Sp(9Pk,n) (mod 7).

Next, it is not hard to see that D(9Pk,n) = D(Pk,n) = k(n − 1) + 1, recalling that the
function D(N) counts the number of digits in N . We then use Theorem 3 to obtain

Sp(9Pk,nt) = Sp(9Pk,n) + Sp(t)

< 9(kn− k + 1)− 0.54Ω(Pk,n) + Sp(t)

= S(9Pk,nt)− 9k + 9− 0.54Ω(Pk,n) + Sp(t).
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With the assumption that k ≥ 2, we have that

∆(9Pk,nt) > 9 + 0.54Ω(Pk,n)− Sp(t).

Therefore, we will have ∆(9Pk,nt) ≥ 0 for all t ∈ Mk given that, say, Ω(Pk,n) ≥ 2Sp(t
′), for

some t′ ∈ Mk with Sp(t
′) ≥ Sp(t) for all t ∈ Mk. The claim is now clear since Theorem 6

implies that Ω(Pk,n) can be made arbitrarily large for infinitely many values of n, in particular
when n has sufficiently many prime divisors.

Thus according to Theorem 9, we have infinitely many n where ∆(9Pk,ntk,n) = 7c with
c ≥ 0, each of which is associated with the Smith number 9Pk,ntk,n × 10c—provided that
a set Mk such as described in the theorem has been found. For k = 2, to begin with, we
propose the following set as a valid M2 example.

M2 = {11, 1001, 100001, 1015 + 1, 1021 + 1, 1023 + 1, 1035 + 1}.

To help see that the hypothesis of Theorem 9 is satisfied, we provide in Table 1 the prime
factorization for each t ∈ M2, in order to evaluate Sp(t).

Table 1: The elements t ∈ M2 and their p-digit sums.
t Factorization of t into primes Sp(t) Sp(t) mod 7
11 11 2 2
1001 7× 11× 13 13 6
100001 11× 9091 21 0
1015 + 1 7× 11× 13× 211× 241× 53 4

2161× 9091
1021 + 1 7× 7× 11× 13× 127× 2689× 117 5

459691× 909091
1023 + 1 11× 47× 139× 2531× 122 3

549797184491917
1035 + 1 11× 9091× 909091× 4147571× 155 1

265212793249617641

Moreover, to illustrate the construction of the Smith numbers, let us consider P2,7, which
factors into three primes:

P2,7 = 1010101010101 = 239× 4649× 909091.

Here we have S(9P2,7t2,7) = 9× 2× 7 = 126, Sp(P2,7) = 65, and

∆(9P2,7t2,7) = 126− (6 + 65 + Sp(t2,7)) = 55− Sp(t2,7).

We are led to t2,7 = 1001, where Sp(1001) = 13 ≡ 55 (mod 7). In the end we have
∆(9P2,7 × 1001) = 55− 13 = 7× 6, generating the Smith number

9× 1010101010101× 1001× 106 = 9, 099, 999, 999, 999, 909, 000, 000.
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Further computational results show that Mk can be produced for at least seven more
values of k:

M3 ={111, 10101, 100011, 110001, 10100001, 100000011, 110000000001},

M4 ={1111, 101101, 1001011, 1101001, 10000111, 11100001, 10000000001101},

M5 ={11111, 1011101, 10011011, 11011001, 100010111, 111010001, 100000011101},

M6 ={111111, 10111101, 100111011, 110111001, 1000110111, 1110110001, 100100011011},

M7 ={1111111, 101111101, 1001111011, 1101111001, 10001110111, 11101110001,

1001001011011},

M8 ={11111111, 1011111101, 10011111011, 11011111001, 100011110111, 111011110001,

10010011011011},

M9 ={111111111, 10111111101, 100111111011, 110111111001, 1000111110111,

1110111110001, 100100111011011}.

We leave it to the reader to verify that each set Mk given above, where 3 ≤ k ≤ 9, indeed
meets the hypothesis of Theorem 9 and therefore can be used to generate Smith numbers in
conjunction with the sequence Pk,n.

An apparent future research problem, as we conclude, is to investigate whether or not
a suitable Mk exists for every k > 9, or perhaps for infinitely many values of k, without
resorting to brute force computation.
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