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Abstract

Cvetković, Rajković, and Ivković proved that the Hankel transform of the sequence

of sums of two successive Catalan numbers is the sequence of Fibonacci numbers with

odd indices. Later, Benjamin, Cameron, Quinn, and Yerger extended this result and

proved that if we remove one term from this sequence of sums, then the Hankel trans-

form is the sequence of Fibonacci numbers with even indices. In this paper, we prove

that the Catalan numbers are the unique nonnegative integer sequence satisfying this

property.

1 Introduction

The Hankel transform of a sequence {an}
∞
n=0 is the sequence H({an}

∞
n=0) = {hn}

∞
n=0 defined

as follows:
hn = det[ai+j]0≤i, j≤n−1. (1)

The Hankel transform was introduced and first studied by Layman [7], who showed that the
Hankel transform of a sequence is equal to the Hankel transform of the binomial transform
of this sequence and conjectured that the Hankel transform of the sequence of sums of two
adjacent Catalan numbers is a subsequence of Fibonacci number sequence.
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Recall that the Catalan number sequence {Cn}
∞
n=0 is defined as follows:

Cn =

(

2n

n

)

n+ 1
, n ≥ 0.

This sequence is the unique nonnegative integer sequence {an}
∞
n=0 fulfilling (see [8])

det[ai+j]0≤i, j≤n−1 = 1

and
det[ai+j]1≤i, j≤n = 1.

Cvetković, Rajković, and Ivković [6] proved the following formula, known as Layman’s con-
jecture,

det[Ci+j+1 + Ci+j+2]0≤i, j≤n−1 = F2n+2, n ≥ 1. (2)

where Fn, n ≥ 0 is the n-th Fibonacci number defined by the following recurrence:

F0 = 0, F1 = 1, Fn+2 = Fn+1 + Fn, n ≥ 0. (3)

The proof depends on special properties of the corresponding orthogonal polynomials. Ben-
jamin, Cameron, Quinn, and Yerger [1] used a combinatorial approach and proved that

det[Ci+j + Ci+j+1]0≤i, j≤n−1 = F2n+1, n ≥ 1. (4)

In view of (4) and (2), it should be mentioned here that (4) and (2) are special cases of the
more general determinant evaluation given in [3].

A natural question arises: Is the Catalan number sequence the unique nonnegative in-
teger sequence fulfilling (4) and (2)? More precisely, is there any other nonnegative integer
sequence {an}

∞
n=0 fulfilling

det[ai+j + ai+j+1]0≤i, j≤n−1 = F2n+1, n ≥ 1 (5)

and
det[ai+j+1 + ai+j+2]0≤i, j≤n−1 = F2n+2, n ≥ 1. (6)

The aim of this paper is to answer this question. Namely, we prove the main theorem of this
paper:

Theorem 1. The unique nonnegative integer sequence fulfilling (5) and (6) is the Catalan
number sequence.

Our paper is organized as follows: In Section 2, we state some basic results concerning
the theory of orthogonal polynomial. These results will be used in Section 3 to prove the
main theorem.
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2 Notation and preliminary results

Let P be the vector space of polynomials with complex coefficients and let P ′ be its algebraic
dual. We denote by 〈u, f〉 the action of u ∈ P ′ on f ∈ P . In particular, we denote by
un = 〈u, xn〉 , n ≥ 0 the moments of u. If u ∈ P ′ and Φ ∈ P , then the left multiplication
of the functional u by the polynomial Φ, denoted by Φu, is the functional in P ′ defined as
follows:

〈Φu, f〉 = 〈u,Φf〉 , f ∈ P . (7)

Definition 2. (see [5]) A sequence of polynomials {Pn}n≥0 is said to be a monic orthogonal
polynomial sequence (MOPS) with respect to a linear functional u if
i) degPn = n and the leading coefficient of Pn(x) is equal to 1.
ii) 〈u, PnPm〉 = rnδn,m, n,m ≥ 0, rn 6= 0, n ≥ 0.
A linear functional u is called regular if there exists a polynomial sequence {Pn}n≥0 orthog-
onal with respect to u. Throughout this paper, we will take all regular linear functionals u
normalized, i.e., u0 = 1.

According to Favard-Shohat theorem, a sequence of monic orthogonal polynomials satis-
fies a three-term recurrence relation (see [5]):

P0(x) = 1, P1(x) = x− β0,

Pn+2 = (x− βn+1)Pn+1(x)− γn+1Pn(x), n ≥ 0,
(8)

with
(βn, γn) ∈ C× (C \ {0}), n ≥ 0.

3 Proof of the main theorem

First of all, recall that a linear functional L is regular if and only if (see [5])

∆n(L) 6= 0, (9)

where ∆n(L) is the Hankel determinant of order n+ 1 of L defined as follows:

∆−1(L) = 1, ∆n(L) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

L0 L1 · · · Ln

L1 L2 · · · Ln+1

...
...

...
Ln Ln+1 · · · L2n

∣

∣

∣

∣

∣

∣

∣

∣

∣

, n ≥ 0. (10)

In this condition, the coefficient γn in (8) is given as follows (see [2, 5]):

γn+1 =
∆n+1(L)∆n−1(L)

∆2
n(L)

, n ≥ 0. (11)

Conversely, the Hankel determinant ∆n(L) can be written in terms of γn as follows (see [2]):

∆−1(L) = ∆0(L) = 1, ∆n(L) =
n
∏

k=1

τk, n ≥ 0, (12)
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where

τk =
k
∏

i=1

γi, k ≥ 1. (13)

Let us recall a result established in [4] concerning the so-called kernel polynomials. Given a
MOPS {Pn}n≥0

orthogonal with respect to a linear functional L. The linear functional L∗

defined as follows:
L∗ = λ(x− c)L, c ∈ C,

where λ is a normalization factor, is regular if and only if

Pn(c) 6= 0, n ≥ 0.

In this case the MOPS corresponding to L∗, denoted by {P ∗
n(c, x)}n≥0

, satisfies

P ∗
n(c, x) =

1

x− c
(Pn+1(x)−

Pn+1(c)

Pn(c)
Pn+1(x)).

The sequence {P ∗
n(c, x)}n≥0

is called the sequence of kernel polynomials of K-parameter c

corresponding to {Pn}n≥0
. The recurrence coefficients of {P ∗

n(c, x)}n≥0
denoted by β∗

n and
γ∗
n+1 are expressed in terms of those of {Pn}n≥0

as follows:

β∗
n = βn+1 +

Pn+2(c)

Pn+1(c)
−

Pn+1(c)

Pn(c)
, (14)

γ∗
n+1 = γn+1

Pn+2(c)Pn(c)

P 2
n+1(c)

, n ≥ 0. (15)

Let {an}
∞
n=0 be a non-negative integer sequence fulfilling (5) and (6). Then for n = 1, we get

a0 + a1 = F3 = 2 6= 0 and a1 + a2 = F4 = 3 6= 0. Define the linear functionals u, v and v∗ by

un =
Cn + Cn+1

C0 + C1

, n ≥ 0, (16)

vn =
an + an+1

a0 + a1
, n ≥ 0, (17)

v∗n =
an+1 + an+2

a1 + a2
, n ≥ 0. (18)

From (10), (16) and (4), we have

∆n(u) =
F2n+3

(C0 + C1)n+1
, n ≥ 0. (19)

Using the recurrence (3), we can easily see that Fn 6= 0, n ≥ 0. Therefore, the condition (9)
is satisfied by u. Hence, u is regular. Similarly, from (10), (5), (6), (17) and the relation
(18), we get

∆n(v) =
F2n+3

(a0 + a1)n+1
, n ≥ 0 (20)
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and

∆n(v
∗) =

F2n+4

(a1 + a2)n+1
, n ≥ 0. (21)

For the same reason, v and v∗ are regular. We will denote by {Pn}n≥0
and {P ∗

n(c, x)}n≥0
the

MOPS corresponding to v and v∗ respectively. From (17) and (18), we have

v∗ =
a0 + a1

a1 + a2
xv.

So, the sequence {P ∗
n(c, x)}n≥0

is the sequence of kernel polynomials of K-parameter 0 cor-
responding to {Pn}n≥0

. Hence, using (12), (13) and (15), with c = 0, we get

∆n(v
∗) =

Pn+1(0)

(P1(0))n+1
∆n(v), n ≥ 0.

Taking into account (20) and (21), we obtain

F2n+4 = (
a1 + a2

a0 + a1
)n+1

Pn+1(0)

(P1(0))n+1
F2n+3, n ≥ 0. (22)

Suppose that {Pn}n≥0
satisfies the recurrence (8). We have

P1(0) = −β0.

But, from Definition 2 and the relation (8), we have

0 =< v, P1P0 >=< v, P1 >=< v, x > −β0 < v, 1 >= v1 − β0.

Thus

β0 = v1 =
a1 + a2

a0 + a1
.

Therefore

P1(0) = −
a1 + a2

a0 + a1
. (23)

Substitution of (23) in (22) gives

F2n+4 = (−1)n+1Pn+1(0)F2n+3, n ≥ 0

or equivalently

Pn+1(0) = (−1)n+1
F2n+4

F2n+3

, n ≥ 0. (24)

From (11) and (20), we get

γn+1 =
F2n+5F2n+1

F 2
2n+3

, n ≥ 0. (25)

Taking x = 0 in (8) and using (24) and (25), we get

βn+1 =
F2n+3F2n+6

F2n+4F2n+5

+
F2n+2F2n+5

F2n+3F2n+4

, n ≥ 0.
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On account of the recurrence relation (3), we get

βn+1 =
F2n+4

F2n+3

+
F2n+3

F2n+5

, n ≥ 0. (26)

We have proved that the recurrence coefficients of the MOPS corresponding to any sequence
{an}

∞
n=0 satisfying (5) and (6) are given by (25) and (26). Since the sequence {Cn}

∞
n=0 itself

satisfies (5) and (6) then the recurrence coefficients of its MOPS are also given by (25) and
(26). Consequently, by the uniqueness of the linear functional corresponding to a MOPS,
we have

u = v

or, equivalently,
un = vn, n ≥ 0.

Therefore, owing to (16) and (17), we obtain

an + an+1 = Cn + Cn+1, n ≥ 0. (27)

On the other hand, we have
a0 + a1 = F3 = 2.

Taking into account the fact that {an}
∞
n=0 is a nonnegative sequence, we get a0 = 1 = C0

and a1 = 1 = C1. By induction and using (27), we can easily prove that,

an = Cn, n ≥ 0.

Which completes the proof.
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