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Abstract

We study the parallel properties of the Ramanujan primes and a symmetric counter-
part, the Labos primes. Further, we study all primes with these properties (generalized
Ramanujan and Labos primes) and construct two kinds of sieves for them. Finally, we
give a further natural generalization of these constructions and pose some conjectures
and open problems.

1 Introduction

The very well-known Bertrand postulate (1845) states that, for every x > 1, there exists a
prime in the interval (x, 2x). This postulate quickly became a theorem when, in 1851, it was
unexpectedly proved by Chebyshev (for a very elegant version of his proof, see Theorem 9.2
in [8]). In 1919, Ramanujan ([6]; [7, pp. 208–209]) gave a quite new and very simple proof of
Bertrand’s postulate. Moreover, in his proof of a generalization of Bertrand’s, the following
sequence of primes appeared ([11], A104272)

2, 11, 17, 29, 41, 47, 59, 67, 71, 97, 101, 107, 127, 149, 151, 167, . . . (1)

Definition 1. For n ≥ 1, the n-th Ramanujan prime is the largest prime (Rn) for which
π(Rn) − π(Rn/2) = n.

Let us show that, equivalently, Rn is the smallest positive integer g(n) with the property
that, if x ≥ g(n), then π(x) − π(x/2) ≥ n.
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Proof. Indeed, evidently, g(n) is prime. Note that, if for x > Rn, we have π(x) − π(x/2) ≤
n − 1, then, evidently, there exists a prime q > x for which π(q) − π(q/2) = n. This
contradicts the maximality of Rn. Thus g(n) ≤ Rn. On the other hand, if g(n) < Rn, then
for all x ∈ [g(n), Rn] we have π(x) − π(x/2) ≥ n. Let p ≥ g(n) be the nearest prime less
than Rn. Then, for k ≥ 0, π(p) − π(p/2) = n + k. Since π(Rn) − π(Rn/2) = n, there exists
exactly k + 1 primes ν1 < · · · < νk+1 in interval [p+1

2
, q−1

2
]. For x = 2νk+1 ∈ [p + 1, q − 1], we

have
π(x) − π(x/2) = π(2νk+1) − π(νk+1) ≤ π(p) − π(p/2) − k − 1 = n − 1.

The contradiction shows that g(n) = Rn.

In [12], Sondow obtained some estimates for Rn and, in particular, proved that Rn > p2n

for every n > 1. Laishram [3] proved that Rn < p3n (a short proof of this result follows
from the more general Theorem 30 in this paper, see Remark 29). Further, Sondow proved
that Rn ∼ p2n as n → ∞. From this, denoting the counting function of the Ramanujan
primes by πR, we have RπR(x) ∼ 2πR(x) ln πR(x). Since RπR(x) ≤ x < RπR(x)+1, we have
x ∼ p2πR(x) ∼ 2πR(x) ln πR(x) as x → ∞, and may conclude that

πR(x) ∼
x

2 ln x
∼

π(x)

2
. (2)

Below we prove several other properties of the Ramanujan primes. Everywhere below pn

denotes the n-th prime. An important role is played by the following property.

Theorem 2. If p is an odd Ramanujan prime such that pm < p/2 < pm+1, then the interval
(p, 2pm+1) contains a prime.

In 2003, Labos introduced the following sequence of primes (cf. [11], sequence A080359).
We call them Labos primes, denoting the n-th Labos prime by Ln.

Definition 3. For n ≥ 1, the n-th Labos prime is the smallest positive integer (Ln) for
which π(Ln) − π(Ln/2) = n.

The first Labos primes are (see sequence A080359 in [11]):

2, 3, 13, 19, 31, 43, 53, 61, 71, 73, 101, 103, 109, 113, 139, 157, 173, . . . (3)

Note that, since (see [11])
π(Rn) − π(Rn/2) = n, (4)

by Definition 3 we have
Ln ≤ Rn. (5)

Note also that, obviously, Ln ∼ p2n as n → ∞.
For the Labos primes we prove a symmetric statement to Theorem 2.

Theorem 4. If p is an odd Labos prime, such that pm < p/2 < pm+1, then the interval
(2pm, p) contains a prime.
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It is clear that Theorems 2-4 are connected with some left-right symmetry in the dis-
tribution of primes. Unfortunately, we do not lave a precise left-right symmetry since the
inequalities of type R1 ≤ L1 ≤ R2 ≤ L2 ≤ · · · are broken from the very outset. In Theorem
17 we show that this deficiency could be removed by the consideration some additional primes
with the close properties. Based on this theorem, we give a natural simple classification of
the primes.

2 Proof of Theorems 2,4

We start with four conditions on an odd prime p.

Condition 5. Let p = pn, with n > 1. All integers (p + 1)/2, (p + 3)/2, . . . , (pn+1 − 1)/2 are
composite numbers.

Condition 6. Let p ≥ 5 and pm < p/2 < pm+1. The interval (p, 2pm+1) contains a prime.

Condition 7. Let p = pn with n ≥ 3. All integers (p− 1)/2, (p− 3)/2, . . . , (pn−1 + 1)/2 are
composite numbers.

Condition 8. Let pm < p/2 < pm+1. The interval (2pm, p) contains a prime.

Lemma 9. Conditions 5 and 6 are equivalent.

Proof. If Condition 5 is valid, and pm < p/2 < pm+1, then pm+1 > (pn+1 − 1)/2, i.e.,
pm+1 ≥ (pn+1 + 1)/2. Thus 2pm+1 > pn+1 > pn = p, and Condition 6 is valid. Conversely,
let Condition 6 be satisfied and p = pn. Then from the condition pm+1 > p/2 > pm we have
2pm < pn < pn+1 < 2pm+1, or pm < pn/2 < pn+1/2 < pm+1. Since the interval (pm, pm+1)
contains no primes, the interval (pn/2, pn+1/2) ⊂ (pm, pm+1) also contains no primes, and
Condition 5 follows.

Analogously, we obtain the equivalence of the second pair of conditions.

Lemma 10. Conditions 7 and 8 are equivalent.

Now we are able to prove Theorems 2-4.

Proof. In view of Lemma 9, to prove of Theorem 1 it is sufficient to prove that, for Ramanujan
primes, Condition 5 is satisfied. If Condition 5 is not satisfied, then suppose that pm = Rn <
pm+1 and k is the least positive integer such that q = (pm + k)/2 is a prime not exceeding
(pm+1 − 1)/2. Thus

Rn = pm < 2q < pm+1 − 1. (6)

From Definition 1 it follows that Rn − 1 is the maximum integer for which the equality

π(Rn − 1) − π((Rn − 1)/2) = n − 1 (7)

holds. However, according to (6), π(2q) = π(Rn − 1) + 1, and in view of the minimality of
the prime q, in the interval ((Rn − 1)/2, q) there is no prime. Thus π(q) = π((Rn − 1)/2)+1
and

π(2q) − π(q) = π(Rn − 1) − π((Rn − 1)/2) = n − 1.

Since, by (6), 2q > Rn, this contradicts the property of maximality of Rn in (7). Thus
Theorem 2 follows. Theorem 4 is proved quite analogously, using Lemma 10.
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3 Pseudo-Ramanujan primes, over-Ramanujan primes

and their Pseudo-Labos and over-Labos analogues

Definition 11. Non-Ramanujan primes satisfying Condition 6 (or, equivalently, Condition
5) are pseudo-Ramanujan primes.

Denote the sequence of pseudo-Ramanujan primes by {R∗
n} (see sequence (1.7)). The first

pseudo-Ramanujan primes are (see sequence A164288 in [11]):

109, 137, 191, 197, 283, 521, 617, 683, 907, 991, 1033, 1117, 1319, . . .

Definition 12. An over-Ramanujan prime is a prime satisfying Condition 6 (or, equiva-
lently, Condition 5).

Denote the sequence of over-Ramanujan primes by {R′
n} (see sequence A164368 in [11]).

Note that all Ramanujan primes greater than 2 are also over-Ramanujan primes. It is easy
to see that R′

1 = 11. Furthermore, let us prove the following simple criterion.

Proposition 13. pn ≥ 5 is an over-Ramanujan prime if and only if π(pn

2
) = π(pn+1

2
).

Proof. 1) Let π(pn

2
) = π(pn+1

2
). From this it follows that, if pk < pn/2 < pk+1, then there

are no primes between pn/2 and pn+1/2. Thus pn+1/2 < pk+1 as well. Therefore, we have
2pk < pn < pn+1 < 2pk+1, i.e., pn is an over-Ramanujan prime. Conversely, if pn is an
over-Ramanujan prime, then 2pk < pn < pn+1 < 2pk+1, and π(pn

2
) = π(pn+1

2
).

Definition 14. Non-Labos primes satisfying Condition 8 (or, equivalently, Condition 7) are
pseudo-Labos primes.

Denote the sequence of pseudo-Labos primes by {L∗
n}. The first pseudo-Labos primes are

(A164294 in [11]):

131, 151, 229, 233, 311, 571, 643, 727, 941, 1013, 1051, 1153, 1373, . . .

Definition 15. An over-Labos prime is a prime satisfying Condition 8 (or, equivalently,
Condition 7).

Denote the sequence of over-Labos primes by {L′
n} (see sequence A194598 in [11]). Note

that all Labos primes grater than 3 are also over-Labos primes. It is easy to verify that
L′

1 = 13. Analogously to Proposition 13 we obtain the following criterion for over-Labos
primes.

Proposition 16. pn ≥ 5 is an over-Labos prime if and only if π(pn−1

2
) = π(pn

2
).

Theorem 17. Consider ALL primes {R′
n} and {L′

n} for which Theorems 2-4 are corre-
spondingly true, then

R′
1 ≤ L′

1 ≤ R′
2 ≤ L′

2 ≤ · · · (8)
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Proof. Note that intervals of the form (2pm, 2pm+1) containing not more than one prime,
contain neither over-Ramanujan nor over-Labos primes. If an interval contains only two
primes, then the first prime is an over-Ramanujan prime (R′), while the second one is an
over-Labos prime (L′), and we see that R′ < L′; on the other hand, if it contains k primes,
then beginning with the second one and up to the (k − 1)-st we have primes which are
simultaneously over-Ramanujan and over-Labos primes. Thus, taking into account that the
last prime is only an over-Labos prime we have for this interval

R′
1 < L′

1 = R′
2 < L′

2 = R′
3 < · · · < L′

k−1 = R′
k−1 < L′

k.

The following interval containing at least two primes begins with an over-Ramanujan prime
and the process repeats.

4 On difference Rn − Ln

Consider positive records of the difference Rn − Ln. They are (A182366 in [11])

8, 10, 24, 36, 60, 64, 84, 114, 124, 144, 202, 226, 228, . . . (9)

at
n = 2, 4, 10, 14, 43, 95, 145, 167, 287, 415, 560, 635, 982, . . . .

However, we do not know a proof that lim supn→∞(Rn − Ln) = ∞. We prove a weaker
statement.

Proposition 18. lim supn→∞(Rn+1 − Ln) = ∞.

Proof. If there exists a constant C, such that Rn+1 − Ln ≤ C, then for every n ≥ 1, there
exist not more than C intervals (2, 4), (3, 6), . . . containing exactly n primes. Therefore, we
have ≤ C of the first intervals containing one prime, ≤ 2C of the first intervals containing
one or two primes,. . . , ≤ nC of the first intervals containing not more than n primes. Hence
interval ((n + 1)C, 2(n + 1)C contains more than n primes. However, for large n it is
impossible, since the number of primes in the interval (1, N) for N = 2(n+1)C is equivalent
to N/ ln N = o(n).

Now consider the following problem. Let us call a prime p compatible with another prime
q, if the intervals (p/2, q/2) and (p, q], if q > p, (or intervals (q/2, p/2) and (q, p ], if q < p)
contain the same number of primes. It is clear that, if p compatible with q, then q compatible
with p. If p is compatible with no other prime, we call it a peculiar prime. It is required to
describe the peculiar primes. We give a solution of this problem in the following form.

Proposition 19. A prime p is peculiar if and only if it is simultaneously Ramanujan and
Labos prime.

Proof. Let p = Ln = Rn (a case Ln−1 = Rn, evidently, is impossible). Then, by the
Definitions 1-3, p is the smallest and the largest prime for which π(p) − π(p/2) = n. Thus
the difference π(x)−π(x/2) = n, where x is prime, occurs only once. However, if there exists
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q 6= p for which π(q) − π(q/2) = π(p) − π(p/2) = n, then the difference π(x) − π(x/2) = n
with a prime x occurs at least twice. The contradiction shows that p is a peculiar prime.
Conversely, if a prime p is peculiar, then, for any q 6= p, we have π(p/2)−π(q/2) 6= π(p)−π(q)
and, consequently, π(q) − π(q/2) 6= π(p) − π(p/2). Thus the difference π(x) − π(x/2) =
π(p) − π(p/2), where x is prime, appears only once. This means that Ln = Rn = p, where
n = π(p) − π(p/2).

Thus the peculiar primes are (A164554 in [11])

2, 71, 101, 181, 239, 241, 269, 349, 373, 409, 419, 433, 439, 491, . . . (10)

Corollary 20. If there exist infinitely many peculiar primes, then lim infn→∞(Rn−Ln) = 0.

5 Prime gaps

Note that, as it follows from Lemma 9 and Theorem 2, if we consider a run of consecu-
tive Ramanujan primes p = Rl, . . . , q = Rk, then the interval [1

2
(p + 1), 1

2
(q + 1)] is free

from primes. However, this note is far from a complete characterization of the prime gaps.
For example, we have a run {2521, 2531} of consecutive Ramanujan primes which gives a
“prime gap” [2521+1

2
, 2531+1

2
] = [1261, 1266]. However, the real prime gap is much larger:

(1259,1277). A better result can be obtained using over-Ramanujan primes. Indeed, the
considered property of Ramanujan primes is valid for all over-Ramanujan primes, while runs
of consecutive over-Ramanujan primes, generally speaking, are longer. For example, instead
of the run {2521, 2531} of Ramanujan primes, we have the run {2521, 2531, 2539, 2543, 2549}
of over-Ramanujan primes. This gives the interval [2521+1

2
, 2549+1

2
] = [1261, 1275], which is

free from primes and very close to the real gap. In general, since over-Ramanujan primes
satisfy Condition 1, to every run of consecutive over-Ramanujan primes p = R′

l, . . . , q = R′
k

there corresponds the interval [1
2
(p + 1), 1

2
(q + 1)] which contains no primes. Note that the

prime q′ following q gives an additional improvement of the lower estimate of size (l) of the
considered prime gap. Indeed, we know that q′ is necessarily an over-Labos prime. Since the
over-Labos primes satisfy Condition 3, all numbers q′−1

2
, q′−3

2
, . . . , q+1

2
are composite. Hence

l ≥ q′−p
2

. For example, consider the run {227, 229, 233, 239, 241} of over-Ramanujan primes
(all of which are Ramanujan). The following prime is q′ = 251. Thus, for the gap containing
(227 + 1)/2 = 114 we have l ≥ 251−227

2
= 12 (the exact value of l here is 14).

6 The first sieve for the selection of the over-Ramanujan

primes from all primes

Recall that Bertrand’s sequence {b(n)} is defined by b(1) = 2, and, for n ≥ 2, b(n) is the
largest prime less than 2b(n − 1) (see A006992 in [11]):

2, 3, 5, 7, 13, 23, 43, 83, 163, 317, 631, 1259, 2503, 5003, . . . (11)

Put
B0 = {b(0)(n)} = {b(n)}. (12)
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Further we build sequences B1 = {b(1)(n)}, B2 = {b(2)(n)}, . . . according to the following
inductive rule: if the sequences B0, . . . , Bk−1 have been defined already, let us consider the
minimal prime p(k) 6∈

⋃k−1
i=1 Bi. Then the sequence {b(k)(n)} is defined by b(k)(1) = p(k), and,

for n ≥ 2, b(k)(n) is the largest prime less than 2b(k)(n − 1). Consequently:

B1 = {11, 19, 37, 73, . . .}, (13)

B2 = {17, 31, 61, 113, . . .}, (14)

B3 = {29, 53, 103, 199, . . .}, (15)

etc., such that, putting p(1) = 11, we obtain the sequence

{p(k)}k≥1 = {11, 17, 29, 41, 47, 59, 67, 71, 97, 101, 107, 109, 127, . . .}. (16)

Sequence (16) coincides with sequence (1) of Ramanujan primes from the second term up
to the 12-th term, but the 13-th term of this sequence is 109 which is the first term of the
pseudo-Ramanujan primes.

Theorem 21. For n ≥ 1 :
p(n) = R′

n. (17)

Proof. The least omitted prime in (11) is p(1) = 11 = R′
1; the least omitted prime in the

union of (12) and (13) is p(2) = 17 = R′
2. We use induction. Suppose we have already defined

the primes
p(1) = 11, p(2), . . . , p(n−1) = R′

n−1.

Let q be the least prime which is omitted in the union
⋃n−1

i=1 Bi, such that q/2 is in the interval
(pm, pm+1). According to our algorithm, q which is dropped should not be the largest prime
in the interval (pm+1, 2pm+1). Then there are primes in the interval (q, 2pm+1); let r be one
of them. We have 2pm < q < r < 2pm+1. This means that q, in view of its minimality
among the dropped primes which are more than R′

n−1 = p(n−1), is the least over-Ramanujan
prime larger than R′

n−1 and the least prime of the form p(k) larger than p(n−1). Therefore,
q = p(n) = R′

n.

Analogously, using sequence {cn} defined by c(1) = 2, and, for n ≥ 2, c(n) is the smallest
prime more than 2c(n − 1) (see A055496 in [11]), one can construct a sieve for over-Labos
primes.

7 The second sieve for the selection of the over-Ramanujan

primes from all primes

Theorem 17 on the precise symmetry between distributions of the sequences {R′
n} and {L′

n}
allows us to construct the second sieve for over-Ramanujan primes.
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Consider consecutive intervals of the form (2pn, 2pn+1), n = 1, 2, . . . Remove all the
intervals containing less than two primes. For every remaining interval, we write the primes
(in increasing order) except for the last one. Then all remaining primes are over-Ramanujan.
Indeed, by the definition, an over-Ramanujan prime cannot be the last prime in every such
interval. Let us demonstrate this sieve. For the primes 2,3,5,7,11,. . . consider the intervals

(4, 6), (6, 10), (10, 14), (14, 22), (22, 26), (26, 34), (34, 38), . . . . (18)

Remove those intervals containing less than two primes. We have the following sequence of
intervals:

(10, 14), (14, 22), (26, 34, ), (38, 46), (46, 58), (58, 62), (62, 74), . . . . (19)

Now we write all primes from these intervals, excluding the last primes. Then we obtain
sequence (16). Analogously we obtain the second sieve for over-Labos primes. This sequence
can be obtained in a parallel way, since, by definition, an over-Labos prime cannot be the first
prime in any interval of the considered form. Therefore, here, for every remaining interval,
we write the primes (in increasing order) except of the first one. Then all remaining primes
are over-Labos (cf. sequence A164333 in [11]):

13, 19, 31, 43, 53, 61, 71, 73, 101, 103, 109, 113, 131, 139, 151, 157, . . . . (20)

8 A classification of primes

In connection with the considered construction, let us consider the following classification of
primes.

1) The first two primes 2,3 form a separate set of primes. 2) If p ≥ 11 is an over-
Ramanujan but not an over-Labos prime, then, in connection with the second sieve, we call
p a right prime (cf. A166307 in [11]):

11, 17, 29, 41, 47, 59, 67, 97, 107, 127, 137, 149, 167, 179, 197, 227, . . . .

3) If p ≥ 5 is an over-Labos but not an over-Ramanujan prime, then we call p a left prime
The first terms of this sequence are (cf. A182365 in [11]):

13, 19, 31, 43, 53, 61, 73, 103, 113, 131, 139, 157, 173, 193, 199, 251, . . . .

4) If p is simultaneously an over-Ramanujan and an over-Labos prime, then we call it a
central prime (sequence A166252 in [11]):

71, 101, 109, 151, 181, 191, 229, 233, 239, 241, 269, 283, 311, 349, . . . .

Note that, by Proposition 19, every peculiar prime more than 2 is central. Conversely is not
true. The non-peculiar central primes are (cf. A182451 in [11]):

109, 151, 191, 229, 233, 283, 311, 571, 643, 683, 727, 941, 991, 1033, . . .

5) Finally, the rest of the primes are naturally called isolated primes (sequence A166251 in
[11]):

5, 7, 23, 37, 79, 83, 89, 163, 211, 223, 257, 277, 317, 331, 337, 359, . . . .

Note that from the second sieve the following results follow.
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Proposition 22. Let ln, rn denote the n-th left prime and the n-th right prime, respectively.
Then ln ∼ rn as n → ∞.

Proof. The prime number theorem yields pn+1 − pn = o(pn). Since, by the construction,
ln and rn belong to the same interval of the form (2pm(n), 2pm(n)+1), we have rn − ln <
2(pm(n)+1 − pm(n)) = o(ln), and the statement follows.

Proposition 23. The sequence of lengths of the runs of the consecutive isolated primes is un-
bounded if and only if there exist arbitrary long sequences of consecutive primes pk, pk+1, . . . , pm,
such that every interval (pi

2
, pi+1

2
), i = k, k + 1, . . . ,m − 1, contains a prime.

Proof. Since the isolated primes more than 3 are the only primes which are neither over-
Labos nor over-Ramanujan, then the statement follows from the condition and Propositions
13,16.

9 On density of over-Ramanujan and over-Labos primes

Let πR′(x) be the counting function of over-Ramanujan numbers not exceeding x. It follows
from (2), Theorem 2 and Definition 12 that, if limn→∞ πR′(x)/π(x) exists, then it is more
than or equal to 1

2
. Berend [2] beautifully shown that this fact follows from Definition 12

only.

Proposition 24. ([2])

lim inf
n→∞

πR′(x)/π(x) ≥
1

2
.

Proof. In the range from 7 up to n there are π(n) − 3 primes. Put

h = h(n) = π(n/2) − 2.

Then ph+2 ≤ n/2 and interval (ph+2, n/2] is free from primes. Furthermore, consider intervals

(2p2, 2p3), (2p3, 2p4), . . . , (2ph+1, 2ph+2).

Our π(n) − 3 primes are somehow distributed in these h intervals. Suppose k = k(n) of
these intervals contain at least one prime and h − k contain no primes. Then, for exactly k
primes, there is no primes between them and the next 2pj, and for the other π(n) − 3 − k
there is. Therefore, since k(n) ≤ h(n) ≤ π(n/2) − 2, then, for ε > 0 and n > nε, we have:

π(n) − k(n)

π(n)
≥

π(n) − π(n/2)

π(n)
≥

1

2
− ε.

Unfortunately, the analysis of the sieves obtained in section 7 seems much more dif-
ficult than the analysis of the sieve of Eratosthenes for primes. Nevertheless, some very
simple probabilistic arguments lead to a very plausible conjecture about the density of over-
Ramanujan and over-Labos primes. First of all, let us show that events R′ : “a prime is
over-Ramanujan” and L′ : “a prime is over-Labos” are independent.
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Proof. Indeed, denoting events r : “a prime is right”, l : “a prime is left” and Is : “a prime
is isolated”, we have

P[R′|L′] = 1 − P[l] − P[Is]; P[R′|L′] = 1 − P[r] − P[Is]. (21)

Hence, in view of P[l] = P[r] (cf. Proposition 5), we have

P[R′|L′] = P[R′|L′]. (22)

Conjecture 25.

πR′(x) ∼ (1 − e−1)π(x) = 0.63212 · · · π(x). (23)

The following proof is heuristic.

Proof. Consider asymptotically π(n)
2

intervals of the form (2pm, 2pm+1) covering all π(n)
primes. It is well known ([5]) that, for large n, an interval between two random consecutive
primes on the average has length ln pn. Thus a random interval of the considered form
has length 2 ln pn and, according to the Cramér model, the number of primes in such a
random interval has the binomial (2 ln pn,

1
ln pn

) distribution which, for large ln pn, has a
good approximation by a Poisson distribution with parameter λ = 2. Thus we accept that
a random interval contains k primes with probability P[X = k] = 2k

k!
e−2, k = 0, 1, 2 . . . .

Since P[X = 0] = e−2, then the number of intervals containing at least one prime is about
π(n)

2
(1−e−2). This number corresponds to our condition, since we consider only such intervals.

Furthermore, since P[X = 1] = 2e−2, then the probability that such an interval contains an

only prime is 2e−2/(1−e−2) and, consequently, we have about π(n)
2

(1−e−2)· 2e−2

(1−e−2)
= π(n)e−2

intervals containing, by our terminology, isolated primes and this number coincides with the
number of isolated primes. This means that the probability that a prime is isolated is e−2.
On the other hand, this probability equals P[R′ · L′] = (P[R′])2. Therefore, P[R′] = e−1 and
P[R′] = 1 − e−1 which justifies the conjecture.

Greg Martin [4] did the corresponding calculations for the first million primes p, and
found that approximately 61.2% of them have a prime in the interval (p, 2pn+1). Since in
this case ln pn is small (less than 17), an error of about 2% is quite acceptable.

Remark 26. It could be done also the following simple explanation of appearance of the con-
stant 1−1/e in Conjecture 25. Consider a random prime p. Let it be in interval (2pn, 2pn+1).
We accept that p could be to the left or to the right from the midpoint pn + pn+1 with the
same frequency. Thus the mathematical expectation of the distance between p and 2pn+1 is
the difference pn+1 − pn which in average is ln n. Accepting for large n that the frequency
of appearance a prime approximately is 1

ln n
, we see that it is natural to accept that the

frequency of the appearance of a prime to the right from p in the considered interval is close
to 1 − (1 − 1

ln n
)ln n which for large n is close to 1 − e−1. Thus the frequency that a random

p is over-Ramanujan is 1 − e−1.
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Note that, if Conjecture 25 is true, then, using (2), for the counting function πR∗(x) of
pseudo-Ramanujan primes we have

πR∗(x) ∼ (
1

2
−

1

e
)π(x) = 0.13212...π(x), (24)

so that the proportion of Ramanujan primes among all over-Ramanujan primes is approx-
imately 0.79099. Using Theorem 17, we note that, if Conjecture 25 is true, then, for the
counting function πL′(x) of over-Labos primes we have

πL′(x) ∼ πR′(x) ∼ (1 − e−1)π(x). (25)

Therefore, if Conjecture 25 is true, then, for the counting functions πl(x), πr(x), πc(x)
and πis(x) of the left, right, central and isolated primes, respectively, of our classes of primes,
we have

πl(x) ∼ πr(x) ∼ (1 − e−1)e−1π(x) = 0.2325 · · · π(x), (26)

πc(x) ∼ (1 − e−1)2π(x) = 0.3995 · · · π(x), (27)

πis(x) ∼ e−2 = 0.1353 · · · π(x), (28)

so that πr(x) + πl(x) + πc(x) + πis(x) = π(x).

10 A generalization

Let us consider a natural generalization of Ramanujan primes.

Definition 27. For a real v > 1, a v-Ramanujan prime is the largest prime (Rv(n)) for
which π(Rv(n)) − π(Rv(n/v)) = n.

As in case v = 2, equivalently Rv(n) is the smallest integer with the property: if x ≥
Rv(n), then π(x) − π(x/v) ≥ n. Note that, evidently,

Rv(n) ∼ p((v/(v−1))n) (29)

as → ∞. Let π
(v)
R (x) be the counting function of v-Ramanujan primes. Then (cf. (2))

π
(v)
R (x) ∼ (1 − 1/v)π(x). (30)

Put

κ(v) =

{

0, if v is not the ratio between two primes;

r, if v = r
q

where r and q are primes.
(31)

The following theorem is proved in the same way as Theorem 1.

Theorem 28. Let v > 1 be a given real number. If p > max(2v, κ(v)) is v-Ramanujan
prime such that pm < p/v < pm+1, then the interval (p, ⌈vpm+1⌉ + ε) contains a prime.
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Remark 29. The condition p > max(2v, κ(v)) allows us to avoid the cases p = 2v and p = vq
with a prime q, when the condition pn < p/v < pn+1 is impossible.

Let us find an upper bound on the n-th v-Ramanujan prime.

Theorem 30. If n ≥ 1
k

max(6k, ev, v(0.79677 k−1
k

v−1)−1
), then, for v ≥ 1.25507 k

k−1
, we have

Rv(n) ≤ pkn. (32)

Proof. It is sufficient to show that π(pkn

v
) ≤ (k−1)n. Indeed, then we have π(pkn)−π(pkn

v
) ≥

kn − (k − 1)n = n. We use the following known results ([1], [9]-[10]):

pn < n ln n + n ln ln n, n ≥ 6; (33)

pn > n ln n; (34)

π(x) < 1.25506
x

ln x
, x > 1. (35)

Note that pkn

v
> kn

v
> kn

ev . Hence, by the condition, pkn

v
> 1. By (33)-(35),

π(
pkn

v
) < 1.25506

pkn

v ln(pkn

v
)

< 1.25506
kn

v
·
ln(kn) + ln(ln(kn))

ln(kn ln(kn)
v

)

= 1.25506
kn

v
(1 +

ln v

ln(kn ln(kn)
v

)
).

Taking into account that, by the condition, ln(kn) > v, we have

π(
pkn

v
) < 1.25506

kn

v
(1 +

ln v

ln(kn)
).

Finally, note that, by the condition, ln v
ln(kn)

≤ 0.7968k−1
k

v − 1. Therefore,

π(
pkn

v
) < 1.25506 · 0.79677(k − 1)n < (k − 1)n.

Corollary 31.

R3(n) < p2n, n ≥ 1. (36)

R1.8(n) < p4n, n ≥ 1. (37)

Proof. By Theorem 30, for v = 3, k = 2, we get the required inequality for n ≥ 279. Using
a computer verification for n < 279, we obtain (36). In case v = 1.8, k = 4, we get the
required inequality for n ≥ 2370. Using a computer verification for n < 2370, we obtain
(10.9).
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The first 1.8-Ramanujan primes are

2, 11, 17, 37, 43, 59, 61, 79, 97, 101, 103, 137, 163, 167, 191, 211, . . . . (38)

Remark 32. In case v = 2, k = 3, by Theorem 6, we find that Rn = R2(n) < p3n, for
n ≥ 22398. Computer verification for n < 22398 leads to Laishram’s result [3].

Definition 33. A prime p > max(2v, κ(v)) is a v-over-Ramanujan prime if, as soon as
pm < p/v < pm+1, the interval (p, vpm+1) contains a prime.

Definition 34. A v-over-Ramanujan not v-Ramanujan prime is a v-pseudo-Ramanujan
prime.

Now v-Labos primes, v-over-Labos primes and v-pseudo-Labos primes are introduced quite
symmetrically (see Section 3). In particular, the following statements are valid.

Theorem 35. Let v > 1 be a given real number. If p > max(2v, κ(v)) is v-Labos prime,
such that pm < p/v < pm+1, then the interval (⌊vpm⌋ − ε, p) contains a prime.

Theorem 36. For the sequences {R′
v(n)} and {L′

v(n)} of v-over-Ramanujan and v-over-
Labos primes, we have

R′
v(1) ≤ L′

v(1) ≤ R′
v(2) ≤ L′

v(2) ≤ · · · (39)

A generalization of the first sieve for v-over-Ramanujan primes, v ≥ 2, is based on the
Bertrand-like sequence {bv(n)}, defined by bv(1) = 2, and, for n ≥ 2, as the largest prime
less than ⌈vbv(n− 1)⌉+ ε. A generalization of the second sieve for v-over-Ramanujan primes
is based on the sequence of intervals

(⌊2v⌋ − ε, ⌈3v⌉ + ε), (⌊3v⌋ − ε, ⌈5v⌉ + ε), (⌊5v⌋ − ε, ⌈7v⌉ + ε), . . . (40)

with the removing intervals containing less than two primes (cf. (19)). For every remaining
interval, we write the primes (in increasing order) except for the last one. Then all remaining
primes are v-over-Ramanujan. For example, if v = 3, we obtain the following sequence of
3-over-Ramanujan primes (sequence A164952 in [11]):

2, 3, 11, 17, 23, 29, 41, 43, 59, 61, 71, 73, 79, 97, 101, 103, 107, . . . . (41)

Furthermore, one can obtain a v-classification of primes, including v-left, v-right, v-central
and v-isolated primes (see Section 8). In particular, if lv(n), rv(n) denote the n-th v-left
prime and the n-th v-right prime, respectively, then ln ∼ rn as n → ∞. Consider now a
natural generalization of Proposition 19 with the similar proof.

Proposition 37. Let πR′

v
(x) be the counting function of v-over-Ramanujan numbers not

exceeding x. Then

lim inf
n→∞

πR′

v
(x)/π(x) ≥ 1 −

1

v
.

A generalization of Conjecture 25 (with a similar heuristic proof) is the following.
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Conjecture 38.

πR′

v
(x) ∼ (1 − e−(v−1))π(x). (42)

Note that, if Conjecture 38 is true, then, using (30), for the counting function πR∗

v
(x) of

v-pseudo-Ramanujan primes we have

πR∗

v
(x) ∼ (

1

v
− e−(v−1))π(x), (43)

so that the proportion of v-pseudo-Ramanujan primes among all v-over-Ramanujan primes
is ( 1

v
− e−(v−1))/(1 − e−(v−1)). This proportion tends to 1 as v → 1, and decreases to 0 as

v → ∞. Using Theorem 36, we note that, if Conjecture 38 is true, then, for the counting
function πL′

v
(x) of v-over-Labos primes, we have

πL′

v
(x) ∼ πR′

v
(x) ∼ (1 − e−(v−1))π(x). (44)

Furthermore, if Conjecture 38 is true, then, for the counting functions πlv(x), πrv
(x), πcv

(x)
and πisv

(x) of the v-left, v-right, v-central and v-isolated primes, respectively, of the consid-
ered classes of primes, we have

πlv(x) ∼ πrv
(x) ∼ (1 − e−(v−1))e−(v−1)π(x), (45)

πcv
(x) ∼ (1 − e−(v−1))2π(x), (46)

πisv
(x) ∼ e−2(v−1)π(x), (47)

so that πrv
(x) + πlv(x) + πcv

(x) + πisv
(x) = π(x).

11 Other open problems

Conjecture 39. (cf. Proposition 23). There exist arbitrary long sequences of consecutive
primes pk, pk+1, . . . , pm, such that every interval (pi

2
, pi+1

2
), i = k, k + 1, . . . ,m − 1, contains

a prime.

Conjecture 40. (cf. Proposition 18). lim supn→∞(Rn − Ln) = ∞.

Conjecture 41. (cf. Proposition 19). There exist infinitely many peculiar primes.

Problem 42. For v > 1, to estimate the smallest pseudo-v-Ramanujan prime, the smallest
v-central prime and the smallest v-isolated prime.
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